
IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

[DOI: 10.2197/ipsjtsldm.10.63]

Short Paper

Towards Open-HW: A Platform to Design, Share and
Deploy FPGA Accelerators in Low Cost

Qian Zhao1,a) Motoki Amagasaki1 Masahiro Iida1 Morihiro Kuga1 Toshinori Sueyoshi1

Received: November 28, 2016, Accepted: January 25, 2017

Abstract: Field-programmable gate array (FPGA) is a promising technology for the implementing of high-
performance and power-efficient cloud computing by serving dedicated hardware as co-processor to accelerate loads
on CPUs. However, developing an FPGA-based system is challenging because the complexity of the hardware and
software co-design. In this paper, we propose a platform named hCODE to simplify the design, share, and deployment
of FPGA accelerators. First, we adopt a shell-and-IP design pattern to improve the reusability and the portability of
accelerator designs. Second, we implement an open accelerator repository to bridge hardware development and soft-
ware development on one platform. On the hCODE platform, hardware developers can provide designs that follow
hCODE specifications, which allowing software engineers to easily search, download, and integrate accelerators in
their applications without caring about the hardware details.

Keywords: FPGA, open-source hardware, hardware acceleration

1. Introduction

The process of constructing an information and communica-
tion society constantly requires more and higher-performance
computing devices with the constrain of lower power consump-
tion. Although the performance per Watt of present CPUs and
GPUs is hitting a wall, many recent studies have demonstrated
the power-efficiency advantages of field-programmable gate ar-
rays (FPGAs), which allows dedicated hardware to be imple-
mented by programming after manufacture. However, designing
of hardware on FPGAs is costly because circuits are tradition-
ally developed by using low-level hardware description languages
(HDLs). Although a variety of convenient high-level synthesis
(HLS) tools [1], [2] that translating C-like programs into HDLs
have been introduced by academic community and FPGA ven-
dors recently, a deep understanding on hardware is still required
for the production of high-performance circuits with these tools.
In order for FPGAs to be adopted in real world data-center appli-
cations such as big data, machine learning, and web services, in
particular, the methodology as well as tools that efficiently orga-
nizing both hardware and software designs are required.

We believe co-designing of hardware and software is difficult
in large and complex projects for two reasons that were not fully
discussed yet. First, there is no clear division between the hard-
ware design flow and the software design flow. Co-designing of
hardware and software under current methods requires developers
to have knowledge of both hardware and software development,
which is difficult especially when architecting large projects in-
volving tens to hundreds of people. Therefore, an engineering

1 Kumamoto University,
Kumamoto 860–8555, Japan

a) cho@arch.cs.kumamoto-u.ac.jp

methodology clarifying roles and responsibilities of developers
is needed, which allows the hardware developers to concentrate
on accelerator design and software developers to benefit without
caring about the details of the hardware.

Second, there is no sophisticated open-source platform for
hardware developers to publish their designs and from which
software developers can directly obtain accelerators out of the
box. Although many valuable efforts have been done on frame-
works [3], [4], [5], [6] and high-performance accelerators for FP-
GAs, which are commonly not easy to be obtained, evaluated and
reused because of having different interfaces, different working
devices, and managed in different places (difficult to search). In
the past two decades, software developers have solved the very
similar problem under the open-source model, which has signif-
icantly reduced development costs by enabling the sharing and
reuse of source code and knowledge. An open-source hardware
platform is therefore expected to be an indispensable component
of hardware and software co-design.

These problems consequently prevent the value delivery from
the hardware community to the software community, then be-
come difficulties for FPGAs to be adopted in large and com-
plex projects. In this paper, we propose a hardware and soft-
ware co-design platform named the Heterogeneous Computing
Oriented Development Environment (hCODE). The hCODE is
the first open-source platform approach for simplifying the de-
sign, share, and deployment of FPGA accelerators. As a solution
of the described problems, the main contributions of hCODE are
as follows.
• A shell-and-IP methodology. By following the shell + IP =

accelerator design pattern from traditional FPGA frame-
works, hCODE defines three roles in the platform: the
shell developer, the IP developer and the accelerator user.

c© 2017 Information Processing Society of Japan 63

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

Responsibilities of each role and interfaces between roles are
clearly defined so that the collaboration cost of hardware and
software engineers can be reduced.

• An online repository and manager. The hCODE repository
can host many lightweight shells. Each shell only imple-
ments necessary blocks for a specific device or interface. An
IP could be portable between shells by following the hCODE
design rules, which also allows for easy searching, down-
loading, auto-assembling the IP with a compatible shell, and
finally compiled with the manager tool.

The prototype of hCODE is currently open-sourced on Github
(https://github.com/hCODE-FPGA/hCODE) for evaluation. All
shells and IPs for the case study are also available on the hCODE
platform. The rest of this paper is organized as follows. Section
2 introduces related works. A quick overview of hCODE is given
in Section 3. Section 4 describes the proposed hCODE platform
in detail. Evaluation of the proposed hCODE platform and case
studies are shown in Section 5. Section 6 gives conclusions and
discusses future work.

2. Related Works

OpenCores is an open-source hardware website that offers a
variety of open-source intellectual properties (IPs) [7]. How-
ever, OpenCores does not provide any functions beyond online
storage. In contrast, modern software package managers pro-
vide an online repository, version control, dependency control,
and even allow automatic integration of third-party packages
into a user project [8]. These convenient functions contribute to
building a software development ecosystem and significantly re-
duced design costs. However, managing a hardware and soft-
ware co-design project is more challenging when considering
portability and scalability on different devices. The hCODE
implements a hardware design manager based on the popular
CocoaPods [8] from the iOS development community, while also
providing necessary supports for reducing hardware and software
co-designing costs.

Packaging common modules into a reusable shell framework
is a traditional practice to improve hardware design productiv-
ity. Although FPGA vendors provide fundamental IPs in their
development tools, it still requires efforts to utilize these IPs in
specific projects. Third-party frameworks like RIFFA [3] and
XILLYBUS [5] have done a lot of works on hardware and drivers
in order to provide an easy-to-use interface based on the official
PCIe IP core. Reference [6] introduced a complete open-source
framework that provides PCIe, Ethernet, and DRAM interfaces.
Microsoft also introduced a shell-and-role hardware architecture
in Ref. [4]. However, no framework can efficiently fit all applica-
tion scenario. General purpose frameworks are complexly imple-
mented for more functionality and flexibility, which may result
in a larger area and a lower frequency for FPGA designs. There-
fore, we implement an online repository as well as a manager in
hCODE. The hCODE repository can host many lightweight shells
that only implements necessary blocks for a specific device or in-
terface. And these shells can be easily searched and reused with
the hCODE manager tool.

There are other works related to improving hardware and

software co-design cost on FPGAs. In commercial, Xilinx
SDAccel [9] and Altera [10] both released design tools and li-
braries by extending OpenCL. The vendors have greatly im-
proved the FPGA design efficiency by linking HLS compiler, of-
ficial OpenCL compatible co-design framework, and IP libraries
together. These tools as well as third-party libraries are not open-
sourced nor free at present. However, the hCODE approach has
the potential to integrate open-source IPs with these commercial
flow in future. Other works implement customized multi-core
processors on FPGA [11], [12], [13], so that advanced compiler
techniques can be employed to utilize high-performance hard-
ware. Because hCODE is an accelerator platform, both dedicated
accelerator and multi-core processor on FPGA could be IPs and
benefit from the platform.

From the software point of view, most current co-design flow
follows embedded or OpenCL programming manner based on
C-like languages. In order to allow more high-level (like Java)
developers utilize accelerators easier, Refs. [3], [5] provide com-
munication drivers, while [14] extends the OpenCL technique to
Java. However, both ways require software developers to under-
stand hardware. In hCODE, we suggest to package an IP follow-
ing the interface of software library, so that it can be integrated
into software application seamlessly.

3. hCODE Overview

The hCODE platform contains design method and tools in or-
der to simplify the design, share, and deployment of FPGA ac-
celerators. As Fig. 1 shows, on the hCODE platform, hardware
design and software design are organized in an online accelerator
repository. In this section, we first introduce the fundamental de-
sign pattern of hCODE, and then demonstrate the hCODE using
a quick example.

3.1 The Shell-and-IP Design Pattern
The hCODE implements the shell-and-IP design pattern and

defines participant roles to reduce the design costs of accelerators.
It is a common methodology to partition a hardware design into
an application-independent shell part and an application-logic IP
part [3], [4], [5], [6], as shown in Fig. 2. The shell part provides
common modules and functions such as communication, memory
control, and fault-tolerance. With this method, a developed shell
can be reused in different IP projects, or an IP can be integrated
into compatible shells for difference scenarios. An IP and a shell
are linked to produce an accelerator.

Fig. 1 hCODE platform.

c© 2017 Information Processing Society of Japan 64

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

Fig. 2 Shell-and-IP hardware framework.

Table 1 List of main hCODE commands.

Command Function

hcode setup Set up the hCODE environment.
Download a copy of hCODE SPEC repo. to ∼/.hcode.

hcode list/search List projects/Search projects with a QUERY string.

hcode ip get Download an IP and select a compatible shell.

hcode ip make Compile the accelerator automatically.

hcode repo Add or remove private repositories.

hcode fpga Scripts kit for FPGA management.

hcode ip create Create a project with a specified shell.

Based on this design pattern, we define three roles on the
hCODE platform: the shell developer, the IP developer and the
accelerator user. As Fig. 2 shows, the shell developer provides a
shell hardware design and a shell driver. An IP developer pro-
vides the IP design, IP driver, and IP library based on a shell.
Please note that making software-friendly accelerators is an im-
portant principle of the hCODE. Therefore, IP developers have
the responsibility to provide libraries for the ease of use. For
instance, if a sorter IP is packaged as the same interface with
Arrays.sort(int[] a) of Java core class library, a Java engineer can
switch the sorting implementation between the software class and
the accelerator seamlessly without caring about hardware details.

3.2 A Quick Tour
The hCODE manager is a command line tool developed from

the CocoaPods [8]. Implemented commands are a collection of
tools and scripts for the operation of the online repository as well
as simplifing FPGA development. Table 1 gives a list of the main
commands in hCODE. Next, we demonstrate basic usages using
a tour of obtaining an accelerator.
3.2.1 hcode setup

This command is used to perform environment initialization.
A .hcode folder will be created under the user’s home direc-
tory. Then the hCODE master SPEC repository that holding all
projects’ specification (SPEC) files is cloned to this folder.
3.2.2 hcode list/search

The hcode list command lists names of all projects that hold-
ing on the hCODE platform, while hcode search is used to search
projects by with keywords. For instance, hcode search vc707 re-
turns projects related to the vc707 board. At present, the search
command perform full-text search through the SPEC repository.
This is sufficient to find target projects by a keyword such as the
name of an accelerator, a board, an FPGA device or an interface.

3.2.3 hcode ip get
An accelerator user uses hcode ip get command to download

the required IP. First, the IP is downloaded from its original repos-
itory. Then, hCODE lists all compatible shells for the user to
choose. Then the selected shell is obtained and all components
to produce an accelerator is ready. The hCODE provides three
mechanisms to match compatible shells for an IP, which is dis-
cussed in Section 4.3.
3.2.4 hcode ip make

Finally, hcode ip make command performs the configuration
and the compilation of the accelerator. This process configures
and compiles the IP, integrates the product of the IP to the shell
project, and at last compiles the combined project to generate a
bitstream file. The IP driver compilation and installation are also
performed in this stage. More details are explained in Section 4.4.

There are other commands relate to the ip creation, ip sharing,
repository management and FPGA management. More details
are given in hCODE project page on Github.

4. hCODE Implementation

The hCODE inherits modern version control and repository
management features from the CocoaPods [8]. In addition, we
implement the shell-and-IP support to provide scalability and
portability for hardware designs while do not setting too much
limitations on developer’s implementation freedom. In this sec-
tion, we discuss the mechanism of reduction of the the design,
share, and deployment costs of FPGA accelerators in details.

4.1 The SPEC File and Online Repository
A JSON format SPEC file with the name hcode.spec is neces-

sary to describe a hardware design. Figure 3 shows SPEC file
example parts for a shell and an IP design. Basic information
sections such as the design name, project type, author, summary,
license, source for the two type of designs are the same. The
name section describes the project name. The hCODE requires
the name of shell and IP projects start with the shell- and ip-

prefixes, respectively. The type section indicates the type of the
project, which can be a value of shell or ip. The source section
shows the Git URI and tag version of the IP, which is important
for hCODE to know when cloning the project. The remainder
parts will be explained in the following shell and IP sections.

There is a central hCODE SPEC repository on Github that
holds public information for all of the projects in the hCODE
platform, as shown in Fig. 4. The folders in this repository are
organized in a structure consisting of project name, project ver-
sion, and project specification file. This repository is synchro-
nized to local when a user executing hcode setup command. By
indexing this repository, hCODE can perform project searching,
downloading, and shell-and-IP matching for platform users.

Shell and IP developers are allowed publishing their designs
on the hCODE platform by submitting SPEC files to the SPEC
repository. This flow is shown in Fig. 4. First, a developer has
to fork the SPEC repository from the hCODE master branch
to a private repository. Second, the developer creates a sam-
ple hcode.spec with hcode spec create command, makes neces-
sary modifications on it, and pushes entire design into the private

c© 2017 Information Processing Society of Japan 65

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

Fig. 3 hCODE SPEC file examples.

Fig. 4 Repository and design publish flow.

Fig. 5 Accelerator project and compile flow example.

repository with hcode repo push command. At last, a pull request
to the hCODE master repository has to be sent on Github. In or-
der to ensure the platform quality, we will evaluate developers’
requests. After confirmation, the project is merged and becomes
public to all hCODE users.

4.2 The Shell Design
In order to reduce the framework overhead, a shell design

should provide the minimum reusable functions for IPs of a cer-
tain application scenario. Flexibility for difference devices, in-
terfaces and functional blocks can be implemented by providing
several shells on hCODE platform. An IP developer can use the
hcode search command to find the shell that exactly fit a project.

The right side of Fig. 5 shows a shell project structure. The ip-

src is a directory to place the IP source codes. A configure script
should be provided by a shell developer for minor changes such
as clock frequency adjustment and IP reference code modifica-

tion. This script simply reads parameters and make modifications
on the shell project source code. The make script should provide
three functions for IP integration and compiling: removing IPs
files in ip-src folder from the shell project (-removeip argument),
adding IPs files in ip-src folder to the shell project (-addip ar-
gument), and executing FPGA vendor’s tool for compilation (no
argument).

As Fig. 3 shows, a shell SPEC file must contain three deter-
mined sections. The hardware section describes the development
board and the target FPGA device. The interface section indicates
the interface providing for IPs. Figure 3 gives an IP-host interface
example of a 32-bit Xilinx ap fifo port and a 256-bit memory ar-
ray port. Shell developers are free to describe the interface of their
shells here. For instance, appending a ddr interface for DDR ac-
cess or a serdes interface for high-speed communication. This
information is helpful for IP developer to find a shell with desired
interface. The compatible shell section shows the name of other
shells that may compatible with this shell. The interface and the
compatible shell sections are used by hCODE manager to find
compatible shells for an IP; this mechanism is introduced in the
next section.

4.3 The IP Design
A main target of the hCODE platform is providing method-

ology and tool for the scalable and portable IP designing. The
scalability is implemented by the IP developer; and the portabil-
ity is implemented by the hCODE and shells. A structure of an IP
project instance is shown in the left side of Fig. 5. The specified
sections of an IP SPEC file is the shell section, which describes
parameters for implementing this IP on a certain shell.
4.3.1 Scalability

Most IP designs can be parameterized for scaling. For exam-
ple, the merge-sorter demo IP can be scaled from a 4-input small
tree to a tree of any input size by using an IP generator, because
the tree structure rule does not change with size. As the same with
the shell project, an IP developer has to prepare a configure script
file, which reads parameters and perform necessary changes on
the IP project. And a make script is also necessary to generate
final HDL files and prepare these files in the output folder. The
hCODE does not limit implementation of these scripts, an IP de-
veloper are free to use any method for the IP generation, such as
a novel IP generator and the HLS, as long as final product HDLs
can be found in the output folder.
4.3.2 Portability

The portability is the most attractive feature for IP developers.
The hCODE can find compatible and possibly compatible shells
for an IP. With this feature, an IP developed on one device has
the potential to be implemented on other devices with compatible
shells. The hCODE provides three methods for the shell-and-IP
matching task.

First, using the shell section in the IP SPEC file to specify
shells (Fig. 3-A). This method requires IP developers determine
shells as well as IP parameters clearly. With these informa-
tion, hCODE can automatically compile an accelerator by pass-
ing these parameters to configure scripts of the IP and the shell.
Making a complete shell list is difficult, however, this work will

c© 2017 Information Processing Society of Japan 66

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

Table 2 Interface between shell and IP.

Signal IO Description

dout[data width-1:0] I Data from shell FIFO

Read FIFO empty n I shell FIFO empty

read O read enable

din[data width-1:0] O Data to shell FIFO

Write FIFO full n I shell FIFO full

write O write enable

Mem (Xillybus only) mem[255:0] I direct memory map signals

be possible if accepting contributions from the open-source com-
munity. On the software side, the IP developer have to prepare
drivers for different shells under the driver folder. The make script
reads the shell parameter, then compiles and installs driver of a
selected shell.

Second, the hCODE suggests shells using the compatible shell

section (Fig. 3-B). A compatible-shell table is created inside
hCODE by analyzing this section from all shells, and then sug-
gestions can be made by returning compatible-shells of the de-
termined shells from the first method. This feature is especially
useful to new devices. Existing IPs can be ported to the new de-
vice if the vendor implementing compatible-shells and claiming
compatibility with existing shells.

Third, the hCODE suggests shells with the same interface sec-
tion (Fig. 3-C1,C2) of an IP. An IP is possibly implementable
on the shell with the same interface it required. At present,
hCODE performs this feature with simple content matching on
this section.

Please note, only the first method provides information to the
hCODE for an automatic accelerator integration. The last two
methods require the user to perform the shell-and-IP integration
manually. However, we believe accelerator users and shell devel-
opers have the motivation to contribute for enriching the shell list
for valuable IPs.

4.4 The Accelerator Generation
As introduced in the Section 3.2.3, hCODE gives shells choos-

ing options when downloading an IP. After shells and IPs are
prepared, the accelerator project directory should be like Fig. 5
shows. By executing the hcode ip make command, the automatic
compiling flow starts. First, hCODE loads the selected shell sec-
tion parameters from the IP SPEC file, executes configure and
make scripts of the IP project with these parameters. Second,
generated IP HDL files are copied from the IP output folder to
the shell ip-src folder. Then, the configure and make -addip of
shell are executed to prepare the shell project. At last, the shell
make script is called to generate the accelerator bitstream. Please
note, because hCODE only defines the project directory structure
and the script command interface, this flow is compatible with
various design tools.

5. Case Study

In this section, we use several workable shells and IPs as the
case study to evaluate the proposed hCODE platform. We have
ported two host-IP communication shells from the Xillybus [5]
framework and one shell from the RIFFA 2.0 framework [3]. For

the application, we first use a simple loopback IP that can be auto-
matically integrated with all shells to examine the hCODE accel-
erator compilation flow. Then an AES accelerator is implemented
to show the portability between different shell frameworks and
devices. At last, we use a merge-sorter IP to show the software
integration that allowing a Java program utilize the accelerator in
low cost.

5.1 Conditions
In order to examine the scalability and portability of the

hCODE platform, we used two totally different hardware sys-
tems. One is a desktop platform with an Intel Core i7-2600K
processor, 16 GB DDR3 memory, and a vc707 FPGA evaluation
board plugged into a Gen2 PCIe interface with 8 lanes. The desk-
top OS is Ubuntu 14.04. A Xillybus shell and a RIFFA shell are
ported for the desktop environment. The other platform is a DIG-
ILENT Zedboard, which is based on the ZYNQ programmable
system-on-a-chip and has 512 MB DDR3 memory. The OS on
the Zedboard is Ubuntu 12.04 and a Xillybus shell is prepared
for it. Table 2 shows the interface between shell and IP. The
hardware-design CAD system is Xilinx Vivado 2015.4.

5.2 Loopback
The loopback IP simply echoes data from the input FIFO port

back to the output FIFO port (Table 2), which is used to test the
design flow and evaluate shell performance. This IP is imple-
mented with Vivado HLS. We made the configure script for the
data width and clock frequency parameters scaling. These param-
eters are specified in the shell section of the IP SPEC file, so that
the IP can be compiled with all three shells automatically with
hCODE.

Table 3 shows the implementation results. Comparing differ-
ent shells and devices are helpful for the shell selection. Through-
put dependent application should consider shell-vc707-riffa2-

ap fifo128 for the high performance. However, because Xillybus
includes ZYNQ FPGA shells, a broader range of devices are sup-
ported (such as Zedboard). In addition, drivers are also different.
An IP developer has to include the RIFFA library to communicate
with the hardware, while the Xillybus provides a set of conve-
nient device files that can be accessed by common file operation
from any language. Therefore, two drivers for RIFFA and Xilly-
bus shells are prepared in the loopback IP driver folder for the
software portability.

5.3 AES Encryption
The AES is an encryption algorithm that widely adopted in

c© 2017 Information Processing Society of Japan 67

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

Table 3 Implementation results of the loopback IP.

Shell Name CLK
(MHz)

LUT
Used

BRAM
Used

Throughput*
(Max MB/s)

shell-vc707-xillybus-ap fifo32 250 6965(2%) 11(1%) 800**

shell-vc707-riffa2-ap fifo128 250 10487(3%) 44(4%) 3675.0

shell-zedboard-xillybus-ap fifo32 200 4628(9%) 6(4%) 300**
*The total reading and writing band width of the PCIe bus.
**Official data is used. Because according to the Xillybus document, a loopback IP

cannot show the maximum throughput of Xillybus [5] PCIe core for design reasons.

applications from embedded system to data center. We used an
open-source AES-128-ECB core [15] to examine the portability
of IPs on hCODE.

The original AES core has an interface of FIFOs for I/O data
streaming and a 128-bit key signal port. This interface fits Xilly-
bus shells, however, the RIFFA shell only has FIFO ports. We
implemented an FIFO interface adapter for the original core with
Vivado HLS. The data width of the adapter can be scaled to
32 or 128, so that the AES IP is implementable with all three
shells. We also provided drivers for Xillybus shell and RIFFA
shell in the IP project. We first developed this IP on shell-vc707-

riffa2-ap fifo128. Then in the compatible shells section of shell-

vc707-riffa2-ap fifo128, we claimed that this shell is compatible
with shell-vc707-xillybus-ap fifo32 and shell-zedboard-xillybus-

ap fifo32. Therefore, the hCODE can find all three shells when
implementing the IP. Because the AES IP does not have scaling
parameters, not much manual operations are required for the ac-
celerator compiling.

The evaluation is performed on two hardware environ-
ments and three shells by encrypting a 8 MB data file. On
the desktop, a pure Java evaluation of the same AES algo-
rithm from javax.crypto.Cipher (OpenJDK1.8) package showed
a 110.4 MB/s throughput. On the other hand, the through-
put of shell-vc707-xillybus-ap fifo32 and shell-vc707-riffa2-

ap fifo128 implemented accelerators were 559.2 MB/s (5×) and
932.1 MB/s (8.4×), respectively. On the zedboard, the shell-

zedboard-xillybus-ap fifo32 implemented IP showed a 56.3 MB/s
throughput, which achieved 264 times the speed of Java (Open-
JDK1.6) on this low-end ARM processor. This case shows
the hCODE can speedup hardware and software co-design on
both high-performance and embedding systems under the same
platform.

5.4 Merge-sorter
Sorting is a fundamental task in computer science. Soft-

ware sorters are implemented in almost all programming envi-
ronments. Therefore, we built a scalable merge-tree sorter IP to
explain how to integrate an accelerator with software in low cost.

For the IP development, we selected the shell-vc707-xillybus-

ap fifo32 shell for few reasons. First, Xillybus can provide
enough throughput for the implemented merge-tree. Second, the
32-bit FIFO is convenient for Int32 numbers operation. And last,
we need the mem port for the ease of controlling. After deter-
mining the shell, we implemented and tested a 4-number merge-
tree IP using Vivado HLS based on the shell. We then extended
this small IP to a scalable IP generator script, which can pro-

Fig. 6 Example of the hCODE acceleration data flow.

duce merge-tree HLS code of any input size according to a given
argument.

The data flow of the whole system is shown in Fig. 6. IP drivers
and Java class wrappers are developed. The merge-tree IP driver
receives data, recursively sends the data to the FPGA until all data
is sorted, and then finally returns the sorted data to the applica-
tion. The Java class wrapper passes data between the target ap-
plication and the IP driver, which implements the same interface
as the Arrays class of the OpenJDK core class library. Therefore,
the whole accelerator can seamlessly replace the original Arrays

class. With the help of hCODE, a software developer can easily
search, download and compile the proposed accelerator. After in-
stallation, the original software Arrays class can be replaced with
the hardware Arrays class by using the -Xbootclasspath option of
Java HotspotVM, so that the target application can be accelerated
without modification.

In the acceleration evaluation, we compared the original Java
Arrays.sort, the merge sorter implemented in C and the merge-
tree accelerator. The Arrays.sort method in OpenJDK 8 imple-
ments a high performance dual-pivot quick-sort algorithm, which
has similar performance to the C merge sorter. The 221 Int32
numbers take only three rounds of sorting by the 128-number
merge-tree. The proposed accelerator was 2.0 times the speed
of Java, and 1.8 times the speed of C. The achieved throughput
was 470 MB/s.

6. Conclusion and Future Works

In this paper, we proposed the hCODE platform for high-
efficiency low-cost hardware and software co-design. This is
achieved by implementing the methods and tools for running
an open-source platform for accelerators. In addition, a hard-
ware open-source methodology is proposed for reducing the soft-
ware integration costs of accelerators. The evaluation showed

c© 2017 Information Processing Society of Japan 68

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

hardware acceleration can be easily achieved with hCODE. The
hCODE platform is still under development at present. In future
work, we intend to continue to provide more useful features and
documents for hCODE and to contribute to the open-source com-
munity. More useful open-source IPs are also in development for
the online repository.

References

[1] Xilinx: Vivado Design Suite User Guide, High-Level Synthesis, Xil-
inx UG902 (v2015.1) (2015).

[2] Calagar, N., Brown, S. and Anderson, J.H.: Source-Level debugging
for FPGA high-Level synthesis, IEEE International Conference on
Field-Programmable Logic and Applications (FPL) (2014).

[3] Jacobsen, M., Richmond, D., Hogains, M. and Kastner, R.: RIFFA
2.1: A reusable integration framework for FPGA accelerators, ACM
Trans. Reconfigurable Technology and Systems, Vol.8, No.4, Article
22 (2015).

[4] Putnam, A. et al.: A reconfigurable fabric for accelerating large-
scale datacenter services, ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), pp.13–24 (2014).

[5] XILLYBUS Ltd., available from 〈http://xillybus.com〉.
[6] Vipin, K., Shreejith, S., Gunasekera, D., Fahmy, S.A. and Kapre, N.:

System-level FPGA device driver with high-level synthesis support,
Proc. 2013 International Conference on Field Programmable Tech-
nology (ICFPT), pp.128–135 (2013).

[7] OpenCores, available from 〈http://opencores.org〉.
[8] Cocoapods, available from 〈https://cocoapods.org〉.
[9] Xilinx SDAccel, available from 〈http://www.xilinx.com/products/

design-tools/software-zone/sdaccel.html〉.
[10] Altera SDK for OpenCL, available from 〈http://dl.altera.com/opencl/〉.
[11] Caspi, E., Chu, M., Huang, R., Yeh, J., Wawrzynek, J. and DeHon,

A.: Stream Computations Organized for Reconfigurable Execution
(SCORE), International Workshop on Field-Programmable Logic and
Applications (FPL), pp.605–614 (2000).

[12] Peck, W., Anderson, E., Agron, J., Stevens, J., Baijot, F. and Andrews,
D.: Hthreads:A Computational Model For Reconfigurable Devices,
IEEE International Conference on Field-Programmable Logic and
Applications (FPL), pp.1–4 (2006).

[13] Ma, S., Ding, H., Huang, M. and Andrews, D.: Archborn: An open
source tool for automated generation of chip heterogeneous multi-
processor architectures, 2015 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), pp.1–6 (2015).

[14] AMD Aparapi, available from 〈http://developer.amd.com/
tools-and-sdks/opencl-zone/aparapi/〉.

[15] Salah, A.: available from 〈http://opencores.org/project,aes-128
pipelined encryption〉, overview, (2016).

Qian Zhao received his B.E. degree in
the College of Automation and Electronic
Engineering from Qingdao University of
Science and Technology, China, in 2007.
Further, he received his M.E. and D.E. de-
grees in Computer Science and Electrical
Engineering from Kumamoto University
in 2011 and 2014, respectively. He is now

a postdoctoral researcher at Kumamoto University. His research
interests include architecture and design methods of reconfig-
urable computing systems. He is a member of IEICE.

Motoki Amagasaki received his B.E.
and M.E. degrees in Control Engineer-
ing and Science from Kyushu Institute of
Technology, Japan in 2000, 2002, respec-
tively. He was a design engineer at NEC
Micro Systems Co., Ltd. from 2002 to
2005. He received his D.E. degree from
Kumamoto University, Japan, in 2007. He

had been an assistant professor in the Department of Computer
Science at Kumamoto University until 2007. He has been an as-
sistant professor in the Faculty of Advanced Science and Technol-
ogy at Kumamoto University since 2016. His research interests
include reconfigurable system and VLSI design. He is a member
of IPSJ, IEICE and IEEE.

Masahiro Iida received his B.E. degree
in Electronic Engineering from Tokyo
Denki University in 1988. He was a re-
search engineer at Mitsubishi Electric En-
gineering Co., Ltd. from 1988 to 2003.
He received his M.E. degree in Computer
Science from Kyushu Institute of Tech-
nology in 1997. Further, he received his

D.E. degree from Kumamoto University, Japan, in 2002. He was
an associate professor at Kumamoto University until 2015, and
during 2002–2005, he held an additional post as a researcher at
PRESTO, Japan Science and Technology Corporation (JST). He
has been a professor in the Faculty of Advanced Science and
Technology at Kumamoto University since January 2016. His
current research interests include high-performance low-power
computer architectures, FPGA computing, VLSI devices and de-
sign methodology. He is a senior member of IPSJ and the IEICE,
and a member of IEEE.

Morihiro Kuga received his B.E. degree
in Electronics from Fukuoka University in
1987 and M.E. and D.Eng. degrees in
Information Systems from Kyushu Uni-
versity in 1989 and 1992. From 1992
to 1998, he was a lecturer at the center
for Microelectronic Systems, Kyushu In-
stitute of Technology. He has been an as-

sociate professor of computer science at Kumamoto University
since 1998. His research interests include parallel processing,
computer architecture, reconfigurable system, and VLSI system
design. He is a member of IPSJ and IEICE.

c© 2017 Information Processing Society of Japan 69

IPSJ Transactions on System LSI Design Methodology Vol.10 63–70 (Aug. 2017)

Toshinori Sueyoshi received his B.E.
and M.E. degrees in Computer Science
and Communication Engineering from
Kyushu University in 1976 and 1978 re-
spectively. From 1978 to 1987, he was a
research associate at Kyushu University,
where he received D.E. degree in 1986.
From 1987 to 1989, he was an associate

professor of Information System at Kyushu University. From
1989 to 1997, he was an associate professor of Artificial Intelli-
gence at Kyushu Institute of Technology. Since 1997 he has been
a professor of Computer Science at Kumamoto University. His
primary research interests include computer architecture, recon-
figurable computing, parallel processing. He served as Chair of
the Technical Committee on Reconfigurable Systems of the IE-
ICE, Chair of the Technical Committee on Computer Systems of
the IEICE, Chair of the IEEE Computer Society Fukuoka Chap-
ter, Chair of the IEEE CAS Society Fukuoka Chapter, and Di-
rector of the IPSJ Kyushu Chapter. Currently he also serves as
Director-Elect of the IEICE Kyushu Chapter. He is a fellow of
IEICE and a senior member of IPSJ.

(Recommended by Associate Editor: Tetsuo Hironaka)

c© 2017 Information Processing Society of Japan 70

