
IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

[DOI: 10.2197/ipsjtsldm.11.46]

Regular Paper

Scalar Replacement with Polyhedral Model

Kenshu Seto1,a)

Received: December 16, 2017, Revised: March 9, 2018,
Accepted: April 16, 2018

Abstract: High-level synthesis (HLS) significantly reduces hardware design time. Unfortunately, the users of HLS
usually have to manually rewrite algorithm C code for satisfactory synthesis results. These manual tunings of C code
often cause extra design time and decrease the advantage of HLS. One of such manual tunings is array access optimiza-
tion. Large arrays are implemented as RAMs in HLS, so reducing array accesses in C code can increase performance
of synthesized hardware since access conflicts to the RAMs are reduced. Furthermore, the removal of all accesses to
arrays leads to the complete removal of the RAMs corresponding to the arrays. By successful application of scalar
replacement to C code, data read from RAMs or written to RAMs are stored in shift registers, and these shift regis-
ters are accessed instead of the RAMs when reusing the accessed data, thus array accesses are completely removed.
Unfortunately, the most advanced scalar replacement method for nested loops cannot appropriately handle array ac-
cesses with constant subscripts. This paper proposes a scalar replacement method to solve the problem. In particular,
we target a subset of C code called Static Control Part (SCoP) for which we can build the mathematical representa-
tion called the polyhedral model. The proposed method builds elaborate reuse information tables with the polyhedral
model. Differently from the previous method, the proposed method replaces each reuse destination that has multiple
reuse vectors with scalar variables. These scalar variables are referenced conditionally according to the conditions in
the reuse information tables. With the experimental results, we demonstrate that the proposed method decreases the
area of synthesized hardware significantly and improves circuit performance compared to the most advanced scalar
replacement method for nested loops in the case of C code which contain array accesses with constant subscripts.

Keywords: high level synthesis, memory access optimization, data reuse, scalar replacement, loop pipelining

1. Introduction

High-level synthesis (HLS) [1], [2] significantly reduces hard-
ware design time compared to manual RTL design, since HLS
automatically generates RTL descriptions from C/SystemC code.
HLS is useful not only for hardware engineers who have to reduce
design time, but also for software engineers who try to acceler-
ate their software with FPGAs. One of the most important steps
for hardware design with HLS is the creation of input C/SystemC
code. Unfortunately, HLS from software C code that is written
without considering hardware implementation often leads to poor
hardware. So, designing efficient hardware with current HLS re-
quires sufficient understanding of high-level synthesis algorithms,
interface options and source-level optimizations such as various
loop transformations and array (memory) access optimizations
and appropriate settings of synthesis directives. In particular, this
paper focuses on array access optimizations. Large arrays are
mapped to RAMs with limited number of ports in HLS. It is,
therefore, necessary to increase the bandwidth of these RAMs by
optimizing array accesses to generate high-performance hardware
from C code with rich array accesses.

The main objectives of array access optimizations are increas-
ing the bandwidth of corresponding RAMs or removing access
conflicts to RAMs with limited numbers of ports. Examples of
array access optimizations include array reshaping [2], memory

1 Tokyo City University, Setagaya, Tokyo 158–8557, Japan
a) kseto@tcu.ac.jp

partitioning [3], [4] and scalar replacement [6], [7], [8], [9]. Ar-
ray reshaping [2] increases the bandwidth of successive accesses
of array elements by increasing the word widths of RAMs and
can be applied along with memory partitioning or scalar replace-
ment. Memory partitioning [3], [4] partitions a single array into
multiple smaller arrays which are accessed in parallel and can
even partition arrays with non-affine indices [10]. Memory parti-
tioning requires address generation units and multiplexers to se-
lect the partitioned arrays, which increase clock period and hard-
ware area. Recent memory partitioning [5] reduces the amount of
multiplexers by limiting the target code to stencil computations.
By reducing memory access conflicts with memory partitioning,
the initiation intervals (IIs) of the loop kernels after loop pipelin-
ing [2] is minimized.

Scalar replacement [6], [7], [8], [9] copies data accessed from
an array into a set of scalar variables that forms a shift register.
By replacing repeated accesses to the array with accesses to the
scalar variables, scalar replacement reduces access conflicts to
the RAMs corresponding to the array. Since scalar replacement
does not require multiplexers, scalar replacement results in syn-
thesized hardware with less area and faster clock frequency com-
pared to memory partitioning. Furthermore, if we can replace all
accesses to the array storing temporal data with the shift register
accesses in C code, we can completely remove the array, or the
corresponding RAM, from the code, which leads to significant
chip area reduction.

It is often necessary to apply scalar replacement to nested

c© 2018 Information Processing Society of Japan 46

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

loops, such as two-dimensional image processing loops, since
real-life loops commonly have nested levels of more than one. A
classical scalar replacement method is proposed by Carr et al. [6].
Unfortunately, the method is applicable to the data reuse carried
by innermost loops, so the chances of applying scalar replace-
ment is limited. To enhance the chances of applying scalar re-
placement for nested loops, the method [6] requires a loop trans-
formation called unroll-and-jam, which increases the code size
and, hence, most likely degrades the clock frequencies of synthe-
sized hardware. In addition, unroll-and-jam is not always appli-
cable to C code. To resolve the problem, So et al. proposed a
scalar replacement method [7] that exploits data reuse carried by
multiple levels of loops, so that their scalar replacement method
can be applied to arbitrarily nested loops without unroll-and-jam.
Budiu et al. proposed the scalar replacement method that mini-
mizes the numbers of dynamic memory accesses in the presence
of conditional control flow [8]. Unfortunately, their method can-
not always minimize the number of static memory accesses or the
numbers of memory accesses in program texts, so that the initia-
tion intervals (IIs) of the pipelined loop kernels cannot always be
minimized. Recently, Surendran et al. proposed a scalar replace-
ment method using Array SSA form [9] that handles loop kernels
with conditional control flows and implemented their algorithm
in the LLVM compiler infrastructure. Similar to the classical
method [6], the approach [9] is applicable only to the data reuse
carried by innermost loops, so that the applicability of the scalar
replacement is limited. In summary, the most advanced and ef-
fective scalar replacement algorithm that handles nested loops is
Ref. [7]. Unfortunately, the previous method [7] cannot apply to
array accesses with constant values in array indices, so that the
chances of the access conflict reduction and the RAM removal by
scalar replacement [7] are limited. To resolve the limitation, this
paper presents a scalar replacement method based on the poly-
hedral model [15] in order to handle array accesses with constant
subscripts.

The organization of this paper is as follows. In Section 2, we
describe the impact of scalar replacement on the hardware syn-
thesized by HLS. In Section 3, we explain the most advanced
scalar replacement method [7] and its problem. In Section 4, we
present our proposed method for scalar replacement, followed by
experimental results in Section 5. Finally, we conclude this paper
in Section 6.

2. The Impact of Scalar Replacement on the
Hardware Synthesized by HLS

In terms of hardware area, scalar replacement adds shift regis-
ters to the synthesized hardware. The addition of shift registers
increases the area of synthesized hardware. Successful scalar re-
placement, however, removes all the array accesses to arrays, so
that we can completely remove the RAMs corresponding to the
arrays. If the area reduction by the removal of the RAMs is larger
than the area increase by the shift registers, the hardware area is
reduced after scalar replacement.

HLS infers RAMs from large arrays and these RAMs typically
allow very limited numbers of accesses in each clock cycle be-
cause the number of ports in such RAMs are limited to 1 or 2.

As a result, rich array accesses in C code usually degrade the
performance of the synthesized hardware due to memory access
conflicts. Scalar replacement is effective in reducing the execu-
tion cycles of the synthesized hardware since it removes array
accesses in C code.

In this paper, we focus on fully nested loops with rich array ac-
cesses, such as image processing code, as target C code, and aim
to generate hardware with highest performance with loop pipelin-
ing [2]. We perform loop pipelining to the innermost loops. One
of the key parameters in loop pipelining is the initiation interval
(II), which represents the fixed number of clock cycles between
the successive iterations of a loop. So, II=1 is the best achievable
II in loop pipelining and provides highest performance. In this
paper, we minimize IIs to achieve the best performance for given
C code.

For an innermost loop, it is known that the MII (Min-
imum Initiation Interval), which is the lower-bound of
achievable IIs, is given by the following formula: MII =
Max(ResMII,RecMII) [11]. RecMII is the lower-bound of IIs
due to loop-carried data dependencies and it is typically zero for
image processing loops because of the absence of loop-carried
data dependences. On the other hand, ResMII is the lower-bound
of IIs due to resource usage conflicts and it is given by the
following formula:

ResMII = max
r∈R

ResMIIr = max
r∈R

⌈
Or

Nr

⌉

where R is a set of allocated resources, such as adders, multi-
pliers and memory ports of RAMs that implement arrays. Or is
the number of the operations in the loop body that are mapped
to the resource r. Nr is the number of the allocated resource in-
stances of the resource r. If the resource r is a functional unit,
we can increase the number of the resource Nr to Or, in order
to make the value of Or/Nr to be the minimum value 1. Un-
fortunately, we cannot typically increase the numbers of mem-
ory ports of large RAMs as desired, because the numbers of the
memory ports are usually limited to 1 or 2. Since increasing the
numbers of ports of RAMs significantly increases both the area
and the power consumption of the RAMs, it is better to use sin-
gle port RAMs in HLS when possible. In the case of the ex-
ample code in Fig. 1, there are four array accesses to the array
A. If we map the array A to a single port memory M and allo-
cate sufficient resource instances for other types of resources r,
ResMIIM = OM/NM = 4/1 = 4 and ResMIIr = Or/Or = 1, so
that II equals to 4 even in the best case. On the other hand, if
we can remove the array accesses as shown in the code in Fig. 5,

Fig. 1 Example code.

c© 2018 Information Processing Society of Japan 47

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

ResMIIM = OM/NM = 0/1 = 0. As a result, the MII becomes 1,
so that we can expect the loop pipelining with II=1 after scalar
replacement and significant performance improvement.

3. The Previous Scalar Replacement
Method [7] and Its Problem

We describe the most advanced scalar replacement method that
effectively handles nested loops [7] in this section, followed by its
problem using the example code in Fig. 1. Before the detailed de-
scription, we define some terminologies.

3.1 Preliminaries
Definition 3.1 (Reuse graph) A reuse graph (V, E) illus-

trates the possibility of data reuse between array accesses and is a
directed graph where each node v ∈ V represents an array access,
and each edge e = (s, d) ∈ E from the source node s to the desti-
nation node d means that an array element accessed by the access
s will be accessed later by the access d. We call s a reuse source
and d a reuse destination. Figure 2 shows the reuse graph for the
array A in the code shown in Fig. 1.

Definition 3.2 (Reuse chain) A reuse chain is a connected
component in a reuse graph. So, Fig. 2 is not only a reuse graph
but also a reuse chain.

Definition 3.3 (Generator) In a reuse graph, a special reuse
source s without any incoming edge is called a generator. The
double circle in Fig. 2 is a generator. A generator s starts to access
each array element and the data accessed by the generator will be
reused later by reuse destinations d.

Definition 3.4 (Reuse vector) In reuse graphs, each edge e =

(s, d) ∈ E is assigned a reuse vector 〈d1, d2, . . .〉 which means the
number of loop iterations (or simply, iterations) between the ac-
cess by s and the succeeding access by d. In the reuse vector,
d1, d2, . . . are the numbers of iterations for outermost loop, 2nd
outermost loop, . . . , respectively. In Fig. 2, the reuse vector from
the access A[y][x] to the access A[y-3][x] is 〈d1, d2〉 = 〈3, 0〉. If
a component of a reuse vector is not a single constant value but
a set of multiple positive values, the component is represented by
‘+’. Figure 2 contains three reuse vectors with the ‘+’ in com-
ponents. In the previous method [7], reuses whose reuse vectors
contain the ‘+’ are not the target for scalar replacement.

Definition 3.5 (Reuse distance) A reuse distance for an
edge e = (s, d) is calculated from the reuse vector 〈d1, d2, . . . , dn〉
and it means the number of innermost loop iterations in which the
reuses from s to d occur. For a given reuse vector 〈d1, d2, . . . , dn〉,
the reuse distance is computed by the following formula where Ik

represents the number of loop iterations for the k-th loop from the
outermost loop.

Fig. 2 Reuse graph (or reuse chain) for Fig. 1.

n−1∑
l=1

{(n∏
k=l+1

Ik

)
× dl

}
+ dn (1)

In Fig. 2, the reuse distance from the access A[y][x] to the access
A[y-3][x] is I2 × d1 + d2 = 10 × 3 + 0 = 30.

3.2 The Previous Scalar Replacement Method [7]
Below, we show the algorithm of the previous scalar replace-

ment method [7].
Step 1. Perform reuse analysis.
Step 2. Build a reuse graph and partition the reuse graph to reuse

chains.
Step 3. Classify the reuse chains into four types C∅, CC , Ci∅, CiC .
Step 4. Find the unique generator for each reuse chain.
Step 5. Build the reuse information table for each reuse chain.
Step 6. Perform code transformations.

(a) Insert the declaration of the shift registers and their
shifting behavior at the bottom of the loop body.

(b) Replace each array access with the corresponding scalar
variable.

In the following, we explain the above algorithm with the ex-
ample code in Fig. 1. The code in Fig. 1 has four memory ac-
cesses to the array A. One of the accesses, A[0][x], contains a
constant 0 in the subscript. In Step 1, the method performs reuse
analysis to collect the information for building a reuse graph. The
previous method [7] does not analyze conditions of if condition-
als that enclose reuse destinations, so that the reuse analysis re-
sults are approximate ones. As the results of the reuse analy-
sis, a reuse graph is built in Step 2. Figure 2 shows the reuse
graph for the array A in the code in Fig. 1. The reuse graph is
a connected graph, therefore, it is a reuse chain. In Step 3, the
reuse chain is classified as one of the four categories, namely,
C∅, CC , Ci∅, CiC [7]. Unfortunately, reuse chains with array ac-
cesses whose subscripts contain constant values deviate from the
classification, so that scalar replacement of array accesses whose
subscripts contain constant values, such as A[0][x] in Fig. 1, is
outside the scope of the method [7]. In order to perform scalar
replacement to the code in Fig. 1 with the method [7], we need
to remove the array access A[0][x] from the reuse chain in Fig. 2
as shown in Fig. 3. The modified reuse chain in Fig. 3 is classi-
fied as CC , and can be handled by the method [7]. In Step 4, the
unique generator for the reuse chain is identified. If more than
one generators exist in a reuse chain, the reuse chain is out of
scope for the scalar replace by the previous method [7] and also
by the proposed method. The double circle in Fig. 3 illustrates
the identified generator which corresponds to the array access
A[y][x]. The edge e = (A[y][x],A[y-3][x]) in Fig. 3 means that
array elements that are accessed by the reuse source A[y][x] will
be accessed by the reuse destination A[y-3][x] three iterations
later of the outer loop (y loop). In Step 5, the method builds the

Fig. 3 Reuse chain of CC type after the removal of the array access A[0][x].

c© 2018 Information Processing Society of Japan 48

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

Table 1 The reuse information table for Fig. 1 by the previous method [7].

Access Array Reuse Reuse Scalar
type access vector distance variable

1 Generator A[y][x] N/A N/A s0
2 Reuse A[y][x-2] 〈0, 2〉 2 s2
3 Reuse A[y-3][x] 〈3, 0〉 30 s30

reuse information table which consists of reuse vectors and reuse
distances from the generator to all reuse destinations in the reuse
chain. Table 1 shows the reuse information table for the reuse
chain in Fig. 3. Each reuse vector is computed as the difference
of the corresponding array subscripts between the generator and
each reuse, and each reuse distance is computed by the formula
(1) from the corresponding reuse vector. Finally in Step 6, we
perform code transformations to the input C code based on the
reuse information table. First, in Step 6(a), the declarations of
scalar variables corresponding to shift registers are inserted, and
in addition, the behaviors of the shift registers are added at the
bottom of the loop body. The number of the scalar variables for
each reuse chain is determined by the maximum reuse distance in
the reuse information table. For the reuse information table in Ta-
ble 1, the maximum reuse distance is 30, so the length of the shift
register, or the number of scalar variables, is determined as 30. In
this paper, we use a prefix ’s’ followed by an integer represent-
ing a reuse distance to denote a scalar variable corresponding to
an element in a shift register. The data accessed by the generator
is stored in the scalar variable s0 and the data in s0 reaches, for
example, the scalar variable s2 after two iterations of the inner-
most loop. In other words, it takes x iterations of the innermost
loop before the reuse destination with the reuse distance x reuses
the data s0 accessed by the generator. The scalar variables that
constitute shift resisters are shifted at every iteration of the inner-
most loop. Such shifting operations are placed at the bottom of
the innermost loop body, and can be done in one clock cycle in
hardware. Since the length of shift register is 30, the shifting op-
erations are generated as s29→ s30, s28→ s29, . . . , s0→ s1. In
Step 6(b), each reuse destination is replaced by the scalar variable
with the corresponding reuse distance. For example, reuse desti-
nations A[y][x-2] and A[y-3][x] whose reuse distances are 2 and
30 are replaced by the scalar variables s2 and s30, respectively.
The final optimized code by the previous scalar replacement [7]
is shown in Fig. 4.

3.3 The Problem of the Previous Scalar Replacement [7]
Array accesses with constant subscripts such as A[0][x],

A[15][x-1], A[y][0], A[y][14], etc., are common in image fil-
tering algorithms in order to fill up the pixel values outside im-
age edges where the filter kernels run off. As explained in Sec-
tion 3.2, the previous method [7] cannot replace array accesses
that have constant subscripts with scalar variables, since such
accesses make reuse chains out of the scope for their method.
Therefore, performance improvement and area reduction of syn-
thesized hardware for such image filtering algorithms by the pre-
vious method [7] are limited. In Section 4, we propose a method
to address this problem.

By applying loop distribution to the example code in Fig. 1,
and splitting the fully nested loop into a sequence of four fully

Fig. 4 Code after applying previous scalar replacement for example code.

nested loops with the range of y being y == 0, y == 1, y == 2
and 3 <= y <= 9, respectively, we can successfully apply the
previous method [7] to each of these four loops. Unfortunately,
high-level synthesis of a sequence of the loops typically results in
hardware which sequentially executes each loop, so the number
of execution cycles will increase compared to the hardware syn-
thesized with the proposed method in Section 4 which handles
the scalar replacement of the original fully nested loop. In ad-
dition, the application of loop distribution will increase the code
size, which is likely to degrade the maximum clock frequency of
the synthesized hardware.

4. Proposed Scalar Replacement Method with
Polyhedral Model

A careful observation on the code in Fig. 1 reveals that the ar-
ray access A[0][x] in line 6 occurs only when y == 1 or y == 2.
In addition, the data accessed by A[0][x] is accessed in advance
by the generator A[y][x] in line 3 when y == 0. So, we can expect
that A[0][x] can reuse the data accessed by the generator. In this
section, we propose a scalar replacement method with the poly-
hedral model that can handle such array accesses with constant
subscripts.

4.1 Target Code for the Proposed Method
The Static Control Part (SCoP) is a subset of C code that trans-

lates into the polyhedral model and is the target for polyhedral-
model based loop optimizations [15]. Differently from the pre-
vious method [7], we assume that the input C code is a stencil
code [5] in the form of a static control part (SCoP) [13] repre-
sented by a fully nested loop where all statements are included
only in the innermost loop. A sequence of loops with the same
nested levels can be fused into a fully nested loop by using loop
fusion [12].

A SCoP consists of for-loops or if-conditionals or both in ar-
bitrary nested form, where the following expressions are limited
to affine expressions in terms of loop induction variables of the
enclosing for-loops.
• condition expressions of for-loops and if-conditionals
• lower-bound and upper-bound expressions of for-loops
• array subscripts

c© 2018 Information Processing Society of Japan 49

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

C code in the form of a SCoP is translated into the polyhedral
model and benefits from exact array dataflow analysis [18], [19]
which is important for the proposed scalar replacement. We as-
sume that lower-bound and upper-bound expressions of for-loops
are constant values. C code that deviates from the above limita-
tions may be handled as a SCoP by approximation [20] or com-
piler transformations [21]

Array accesses in loops are classified as one of the two cate-
gories: static array accesses and dynamic array accesses. Static
array accesses in C code is array accesses that appear in program
texts (or C code). Dynamic array accesses in C code is array ac-
cess instances that are actually executed while the execution of
the C code. A static array access typically generates multiple dy-
namic array accesses. For reducing initiation intervals (IIs) of
loop pipelining, it is important to reduce the number of static ar-
ray accesses in the loop body as explained in Section 2. In this
paper, array accesses mean static array accesses.

Data reuses between array accesses are classified as one of
the two types: group-temporal reuse and self-temporal reuse [7].
Group-temporal reuses are data reuses between different array ac-
cesses. On the other hand, self-temporal reuses are data reuses by
the same array access. Exploiting self-temporal reuses in scalar
replacement does not remove the corresponding RAMs, so we
only focus on scalar replacement for array accesses with group-
temporal reuses.

4.2 The Polyhedral Model for Scalar Replacement
In this subsection, we explain the definitions of the polyhe-

dral model which is used in the proposed method. Typically, the
polyhedral model defines three key concepts: domains, access

functions and multi-dimensional schedules for statements in C
code and is used for statement reordering, or equivalently, loop
transformation [13], [14]. Differently from the previous defini-
tions of the polyhedral model for statements [13], [14], we de-
fine the polyhedral model especially for array accesses in order
to use the model for the proposed scalar replacement. The poly-
hedral model for scalar replacement defined below is represented
or computed with ISL (Integer Set Library) [18], [19].

Definition 4.1 (Iteration vector) A vector�i whose elements
are values of loop induction variables from the outermost loop
to the innermost loop in a nested loop is called an iteration vec-
tor. For the 2-dimensional loop in Fig. 1, the iteration vectors are
�i = (y, x) = (0, 0), . . . , (9, 9).

Definition 4.2 (Domain of array access) A set of iteration
vectors, Da, that contains all iterations at which an array access
a in a loop is executed is called the domain of the array ac-
cess a. For Fig. 1, the domain DA[0][x] of the access A[0][x] is
{(y, x) | 1 ≤ y ≤ 2 ∧ 0 ≤ x ≤ 9} where ∧ represents logical AND.

Definition 4.3 (Subscript vector of array) We define a vec-
tor �s whose elements are subscript values of an array as a sub-
script vector. The number of dimensions of subscript vectors for
an m-dimensional array equals to m, and the i-th element of a sub-
script vector corresponds to the i-th subscript from the leftmost
array subscript. A subscript vector represents specific subscript
values of an array access. For the 2-dimensional array A in Fig. 1,
the array subscript vectors are �s = (s1, s2) = (0, 0), . . . , (9, 9).

Definition 4.4 (Subscript space of array) We call a set of
all subscript vectors of an array A a subscript space of the array
A and denote it by S A. For the 2-dimensional array A in Fig. 1,
the subscript space S A of the array A is {(s1, s2) | 0 ≤ s1 ≤ 9∧0 ≤
s2 ≤ 9}.

Definition 4.5 (Access function of array access) The ac-
cess function Fa of an array access a to an m-dimensional array
A is a function Fa : �i ∈ Da → �s ∈ S A. In other words, the
access function of an array access a represents a mapping from
each iteration vector�i in Da to a subscript vector �s of the array A.
For Fig. 1, the access function of the access A[0][x] is FA[0][x] :
{(y, x)→ (s1, s2) | 1 ≤ y ≤ 2 ∧ 0 ≤ x ≤ 9 ∧ s1 == 0 ∧ s2 == x}.

Definition 4.6 (Multi-dimensional schedule of array access)
The multi-dimensional schedule [15] φa of an array access a

is a function φa : �i ∈ Da → �t ∈ Ta where Ta represents
the set of multi-dimensional discrete time when the array
access a at the iteration �i is executed and �t is represented
by a vector which has alternating components of constants
and loop induction variables from the outermost loop. For
Fig. 1, the multi-dimensional schedule of the access A[0][x] is
φA[0][x] : {(y, x)→ (0, y, 0, x, 3) | 1 ≤ y ≤ 2∧0 ≤ x ≤ 9}. For each
iteration vector (y, x) ∈ DA[0][x], the multi-dimensional schedule
φA[0][x] gives the multi-dimensional time (0, y, 0, x, 3) which
represents the time when the array access A[0][x] is executed at
the iteration vector (y, x) ∈ DA[0][x].

The polyhedral model typically defines the dependence rela-
tion (Read-after-Write, Read-after-Read, Write-after-Read, and
Write-after-Write) which represents the condition under which a
statement S 1 depends on a statement S 2 and is used in loop trans-
formations. In the proposed method, we define a similar con-
cept called reuse relations (Read-after-Write, Read-after-Read)
which represents the condition under which a reuse destination d

reuses the accessed data by a reuse source s.
Definition 4.7 (Reuse relation between array accesses)

The reuse relation Rs,d from a reuse source s to a reuse des-
tination d is a set of pairs (�is, �id) of iteration vectors �is =

(is1, is2, . . . , isn) ∈ Ds and �id = (id1, id2, . . . , idn) ∈ Dd where the
array access d at the iteration vector �id ∈ Dd accesses the same
array element which was previously accessed by the array access
s at the iteration vector �is ∈ Ds. The reuse relation is formally de-
fined as Rs,d = {(�is, �id) | �is ∈ Ds ∧ �id ∈ Dd ∧ φs(�is) ≺ φd(�id)∧∃�s ∈
S A, (Fs(�is) = �s∧Fd(�id) = �s)}where φs(�is) ≺ φd(�id) means that the
schedule φd(�id) of the reuse destination d at the iteration �id is lex-
icographically later than the schedule φs(�is) of the reuse source s

at the iteration �is. Differently from the previous method [7], our
method analyze exact reuse relations with the polyhedral model.
For Fig. 1, the reuse relation RA[y][x],A[0][x] from the reuse source
A[y][x] to the reuse destination A[0][x] is {(ys, xs), (yd, xd) | (ys =

0) ∧ (xd == xs) ∧ (0 ≤ xs ≤ 9) ∧ (1 ≤ yd ≤ 2)}.
Definition 4.8 (Reuse vector between array accesses) For

a pair of iteration vectors (�is, �id) in a reuse relation Rs,d, the dif-
ference �id − �is is called a reuse vector from the access s to
the access d. A set of reuse vectors, or simply, reuse vectors
from a reuse source s to a reuse destination d is represented by
Vs,d = {�id − �is | (�is, �id) ∈ Rs,d}. For Fig. 1, the set of reuse vectors
from the reuse source A[y][x] to the reuse destination A[0][x] is

c© 2018 Information Processing Society of Japan 50

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

VA[y][x],A[0][x] = {(yd − ys, 0) : 1 ≤ (yd − ys) ≤ 2} which consists
of two reuse vectors (1, 0) and (2, 0). On the other hand, the set
of reuse vectors from the array access A[y][x] to the array access
A[y][x-2] is VA[y][x],A[y][x−2] = {(0, 2)} which consists of a single
reuse vector (0, 2).

4.3 The Proposed Method
In this section, we present our proposed algorithm for scalar

replacement. The input to the algorithm is C code in the form
of a SCoP, and the output is the optimized C code after scalar
replacement.

The major differences of the proposed scalar replacement algo-
rithm from the previous algorithm [7] in Section 3.2 are in Step
1, Step 5 and Step 6(b) in the following algorithm. By the differ-
ences, the proposed scalar replacement method applies not only
to reuse destinations with a single reuse vector but also to reuse
destinations, such as A[0][x], with multiple reuse vectors. Array
accesses with constant subscripts, therefore, are handled by the
proposed method.
Step 1. Build the polyhedral model for array accesses.
Step 2. Perform reuse analysis with the polyhedral model.
Step 3. Build a reuse graph and partition the reuse graph to reuse

chains.
Step 4. Find the unique generator for each reuse chain.
Step 5. Build the reuse information table for each reuse chain

with the polyhedral model.
Step 6. Perform code transformations.

(a) Insert the declaration of the shift registers and their
shifting behavior at the bottom of the loop body.

(b) Replace each array access with the corresponding scalar
variables with the conditions.

Our tool parses an input C code in the form of a SCoP and
builds the polyhedral model for array accesses (Step 1) explained
in Section 4.2. The polyhedral model is the key to Step 5 which
is one of the important steps in the proposed method. In Step 2,
we perform reuse analysis. With the polyhedral model, the pro-
posed method takes if conditionals that enclose reuse destinations
into consideration, so that exact reuse graphs without false reuse
edges can be built in Step 3. Except the differences in the result-
ing reuse graphs and reuse chains, the Step 3 is the same as the
Step 2 in the previous method [7]. For the example code in Fig. 1,
our method generates the same reuse graph as the one shown in
Fig. 2 except that all edges have reuse relations defined in Defi-
nition 4.7. The proposed method does not have the classification
step (Step 3 in Section 3.2), since the proposed method does not
use it. Step 4 is the same as the previous method. In Step 5,
we compute the reuse information table for each reuse chain with
the polyhedral model. The proposed polyhedral-model based al-
gorithm for Step 5 is shown in Fig. 7, which will be explained
later in Section 4.4. The reuse information table contains not
only reuse vectors and reuse distances but also reuse conditions in
terms of the domains of reuse destinations. For the code in Fig. 1,
the reuse information table generated by the Step 5 is shown in
Table 2. In the table, a single access A[0][x] with the constant
subscript 0 has the two reuses with reuse vectors 〈1, 0〉 and 〈2, 0〉
and the corresponding reuse conditions of y == 1 and y == 2,

Table 2 The reuse information table for Fig. 1 by the proposed method.

Access Array Reuse Reuse Scalar Reuse
type access vector distance variable condition

1 Generator A[y][x] N/A N/A s0 N/A
2 Reuse A[y][x-2] 〈0, 2〉 2 s2 always
3 Reuse A[0][x] 〈1, 0〉 10 s10 y==1
4 Reuse A[0][x] 〈2, 0〉 20 s20 y==2
5 Reuse A[y-3][x] 〈3, 0〉 30 s30 always

Fig. 5 Code after applying proposed scalar replacement for example code.

Algorithm ReuseRelation

ComputeReuseRelation(s, d)
Input Ds, Fs, φs: Polyhedral model for an access s
Input Dd , Fd , φd: Polyhedral model for an access d
Output Rs,d: Reuse relation from the access s to the access d

1: temps,d ← Fs ◦ Fd
−1

2: Order ← {(�is, �id) | �is ∈ Ds ∧ �id ∈ Dd ∧ φs(�is) ≺ φd(�id)}
3: Rs,d ← temps,d ∩ Order

Fig. 6 Procedure for computing the reuse relation from an array access s to
an array access d.

respectively. Finally, in Step 6, we perform code transformations
and obtain the optimized C code. Step 6(a) is the same as the
previous method. Differently from the previous method [7], our
method replaces a reuse destination that has multiple reuse vec-
tors with the corresponding multiple scalar variables in Step 6(b).
The final optimized code is shown in Fig. 5. In the lines 7 and 8
of the code, the array access A[0][x] with the constant subscript 0
is conditionally replaced by the two scalar variables s10 and s20
with reuse conditions y == 1 and y == 2, respectively. In the
code, all array accesses to array A, and consequently the RAM
corresponding to the array A, are completely removed, so that the
proposed scalar replacement achieves significant area reduction
as well as performance improvement in synthesized hardware as
will be demonstrated by the experimental results in Section 5.

4.4 The Algorithm for Building Reuse Information Tables
In this subsection, we explain Step 5 in Section 4.3 in detail.

Before computing reuse information tables such as the one shown
in Table 2, we compute reuse relations by the algorithm shown in
Fig. 6, according to Definition 4.7. In Fig. 6, Fd

−1 in the line
1 is the inverse function of the array access function Fd. The

c© 2018 Information Processing Society of Japan 51

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

Algorithm BuildReuseIn f ormationTable

BuildReuseIn f ormationTable(AC , Rg,a)
Input AC : A set of array accesses in a reuse chain C
Input Rg,a: Reuse relations from the generator g in C to

each array access a in C
Output The reuse information table for the reuse chain C

1: for each array access a ∈ AC

2: ReuseVectors← {�ia − �ig : (�ig, �ia) ∈ Rg,a}
3: while (ReuseVectors � ∅)
4: �v← SamplePoint(ReuseVectors)
5: Compute reuse relation R�v ⊆ Rg,a whose reuse vector is �v
6: Ran← Range(R�v)
7: ReuseCond← gist(Ran, Da)
8: ReuseDistance← ComputeReuseDistance(�v)
9: AddReuse(a, �v, ReuseDistance, ReuseCond)

10: ReuseVectors = ReuseVectors −�v
11: end while
12: end for

Fig. 7 Procedure for computing reuse vectors, reuse distances and reuse
conditions of array accesses in reuse information tables.

line 1 in Fig. 6 computes the composition of the functions Fs

and Fd
−1. The line 2 in Fig. 6 computes the set Order that con-

sists of all pairs (�is, �id) of iteration vectors �is ∈ Ds and �id ∈ Dd

such that the multi-dimensional schedule φs(�is) is lexicographi-
cally smaller than the multi-dimensional schedule φd(�id). By the
line 3 in Fig. 6, all the pairs (�is, �id) that are not only in temps,d but
also in Order are stored in the resulting reuse relation Rs,d.

Figure 7 shows the proposed algorithm for building reuse in-
formation tables. We implemented the algorithm with Integer Set
Library (ISL) [18], [19]. A reuse information table is built for
each reuse chain C. The inputs to the algorithm are (1) AC : a
set of all array accesses except the generator in a reuse chain C

and (2) Rg,a: the reuse relations between the generator g in C and
each array access a in C. The algorithm in Fig. 7 uses reuse re-
lations computed by the algorithm in Fig. 6 and processes each
access a in AC one by one. The line 2 in Fig. 7 computes the set
of all reuse vectors, ReuseVectors, from the generator g to the
access a. While ReuseVectors is not empty, the algorithm picks
up a reuse vector �v in ReuseVectors one by one in the lines 3
to 4. The algorithm processes the reuse vector according to the
lines 5 to 9 in Fig. 7. The line 5 in Fig. 7 computes the reuse re-
lation R�v which is a subset of the reuse relation Rg,a. R�v has all
the elements in Rg,a that have only one reuse vector �v in com-
mon. The line 6 in Fig. 7 computes the range Ran of the reuse
relation R�v, which is a subset of Da. The computed range Ran

represents the reuse condition ReuseCond under which the reuse
from the generator g to the access a occurs with the reuse vector
�v. The line 7 in Fig. 7 simplifies the reuse condition ReuseCond

in terms of the iteration domain Da of the access a by the gist
operation [22]. The line 8 in Fig. 7 computes the reuse distance
corresponding to the reuse vector �v with the formula (1) in Sec-
tion 3.1. The line 9 in Fig. 7 adds the computed 3-tuple of (a reuse
vector�v,ReuseDistance,ReuseCond) for the access a to the reuse
information table. The line 10 in Fig. 7 subtracts the reuse vector
�v from ReuseVectors.

5. Experimental Results

In this section, we show the impacts of the proposed scalar

Fig. 8 Benchmark code (ex d60).

Fig. 9 Benchmark code (ex1).

Fig. 10 Benchmark code (ex1 x5).

Fig. 11 Benchmark code (ex1 x10).

replacement method on hardware performance and area. In par-
ticular, we compare these design metrics by the proposed method
with those by the most advanced scalar replacement method for
nested loops [7].

5.1 Experimental Setups
We implemented the proposed method in Section 4 in C with

the libraries Clan [15], CLooG [17] and ISL [18]. We applied the
proposed method and the previous method [7] to eight image pro-
cessing code shown in Fig. 1, Figs. 8 to 14. The reuse informa-
tion tables for each code are shown in Tables 3 to 9. Each of
the code consists of a fully nested loop with the nested level of
two, although the proposed method is applicable to fully nested

c© 2018 Information Processing Society of Japan 52

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

Fig. 12 Benchmark code (ex2).

Fig. 13 Benchmark code (filter).

loops with any nested levels. We did not use the benchmark pro-
grams in Ref. [7], since the programs do not contain array ac-
cesses with constant subscripts. ex is the example code shown
in Fig. 1. ex d60 is a modified version of ex and the maximum
reuse distance is 60 as shown in Table 3, which is larger than that
of ex which is 30. ex1, ex1 x5 and ex x10 are also modified ver-
sions of ex and their maximum reuse distances are the same. The
reuse conditions of these three programs, however, are different
as shown in Tables 4 to 6. ex2 is a 1-dimensional filter code. fil-

ter is a 2-dimensional filter code which originally consists of two
loops but fused into a single loop with loop fusion [12]. loop4

is an image processing code originally consisting of four loops,

Fig. 14 Benchmark code (loop4).

each of which performs image difference, vertical 1-dimensional
filtering, horizontal 1-dimensional filtering, and image blending,
respectively. In loop4, these four loops are also fused into a single
fully nested loop with loop fusion [12].

We generated RTL code and gate-level netlists with a commer-
cial high-level synthesis (HLS) tool (Stratus) and a commercial
logic synthesis tool (Genus) from Cadence, respectively, from the

c© 2018 Information Processing Society of Japan 53

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

Table 3 The reuse information table for benchmark ex d60.

Access Array Reuse Reuse Reuse
type access vector distance condition

ex d60

Generator A[y][x] N/A N/A N/A
Reuse A[y-6][x] 〈6, 0〉 60 always
Reuse A[0][x] 〈1, 0〉 10 y==1
Reuse A[0][x] 〈2, 0〉 20 y==2
Reuse A[y-3][x] 〈3, 0〉 30 always

Table 4 The reuse information table for benchmark ex1.

Access Array Reuse Reuse Reuse
type access vector distance condition

ex1

Generator A[y][x] N/A N/A N/A
Reuse A[y-1][x] 〈1, 0〉 30 always
Reuse A[y][0] 〈0, 1〉 1 x==1
Reuse A[y][0] 〈0, 2〉 2 x==2
Reuse A[y][x-3] 〈0, 3〉 3 always

Table 5 The reuse information table for benchmark ex1 x5.

Access Array Reuse Reuse Reuse
type access vector distance condition

ex1 x5

Generator A[y][x] N/A N/A N/A
Reuse A[y-1][x] 〈1, 0〉 30 always
Reuse A[y][0] 〈0, 1〉 1 x==1
Reuse A[y][0] 〈0, 2〉 2 x==2
Reuse A[y][0] 〈0, 3〉 3 x==3
Reuse A[y][0] 〈0, 4〉 4 x==4
Reuse A[y][0] 〈0, 5〉 5 x==5
Reuse A[y][x-6] 〈0, 6〉 6 always

Table 6 The reuse information table for benchmark ex1 x10.

Access Array Reuse Reuse Reuse
type access vector distance condition

ex1 x10

Generator A[y][x] N/A N/A N/A
Reuse A[y-1][x] 〈1, 0〉 30 always
Reuse A[y][0] 〈0, 1〉 1 x==1
Reuse A[y][0] 〈0, 2〉 2 x==2
Reuse A[y][0] 〈0, 3〉 3 x==3
Reuse A[y][0] 〈0, 4〉 4 x==4
Reuse A[y][0] 〈0, 5〉 5 x==5
Reuse A[y][0] 〈0, 6〉 6 x==6
Reuse A[y][0] 〈0, 7〉 7 x==7
Reuse A[y][0] 〈0, 8〉 8 x==8
Reuse A[y][0] 〈0, 9〉 9 x==9
Reuse A[y][0] 〈0, 10〉 10 x==10
Reuse A[y][x-11] 〈0, 11〉 11 always

Table 7 The reuse information table for benchmark ex2.

Access Array Reuse Reuse Reuse
type access vector distance condition

ex2

Generator tmp0[y][x] N/A N/A N/A
Reuse tmp0[0][x] 〈1, 0〉 16 always
Reuse tmp0[y-2][x] 〈2, 0〉 32 always
Reuse tmp0[y-1][x] 〈1, 0〉 16 always
Reuse tmp0[11][x] 〈1, 0〉 16 always
Reuse tmp0[y][x] 〈0, 0〉 0 always

original code, the code optimized by the previous method [7] and
the code optimized by the proposed method. In HLS, we used
the loop pipelining directives to all the innermost loops with the
smallest initiation intervals (IIs). The clock constraints for both
the HLS and the logic synthesis were set to 500 MHz and we used
a 45 nm technology library for the target cell library. All arrays
were mapped to single-port RAMs.

5.2 Results and Discussions
Table 10 shows the experimental results for the eight bench-

mark code including array accesses with constant subscripts. In
the table, no SR, previous, proposed show the synthesis results for

Table 8 The reuse information table for benchmark filter.

Access Array Reuse Reuse Reuse
type access vector distance condition

filter

Generator tmp0[y][x] N/A N/A N/A
Reuse tmp0[y][x] 〈0, 0〉 0 always
Reuse tmp0[y][15] 〈0, 0〉 0 always
Reuse tmp0[y][x-1] 〈0, 1〉 1 always
Reuse tmp0[y][x] 〈0, 0〉 0 always
Reuse tmp0[y][0] 〈0, 0〉 0 always

Generator tmp1[y][x-1] N/A N/A N/A
Reuse tmp1[y][x-1] 〈0, 0〉 0 always
Reuse tmp1[15][x] 〈1, -1〉 16 always
Reuse tmp1[y-1][x] 〈1, -1〉 16 always
Reuse tmp1[y-2][x] 〈2, -1〉 33 always
Reuse tmp1[0][x] 〈1, -1〉 16 always

Table 9 The reuse information table for benchmark loop4.

Access Array Reuse Reuse Reuse
type access vector distance condition

loop4

Generator src1[y][x] N/A N/A N/A
Reuse src1[y-2][x-3] 〈2, 3〉 41 always

Generator tmp0[y][x] N/A N/A N/A
Reuse tmp0[11][x] 〈1, 0〉 19 y==12
Reuse tmp0[11][x] 〈2, 0〉 38 y==13
Reuse tmp0[y-1][x] 〈1, 0〉 19 always
Reuse tmp0[11][x] 〈2, 0〉 38 always
Reuse tmp0[y-2][x] 〈2, 0〉 38 always
Reuse tmp0[y-3][x] 〈3, 0〉 57 always
Reuse tmp0[0][x] 〈2, 0〉 38 always
Reuse tmp0[y-4][x] 〈4, 0〉 76 always
Reuse tmp0[0][x] 〈2, 0〉 38 always
Reuse tmp0[0][x] 〈3, 0〉 57 always
Reuse tmp0[y][x] 〈0, 0〉 0 always

Generator tmp1[y-2][x] N/A N/A N/A
Reuse tmp1[y-2][x-1] 〈0, 1〉 1 always
Reuse tmp1[y-2][x-2] 〈0, 2〉 2 always
Reuse tmp1[y-2][x-3] 〈0, 3〉 3 always
Reuse tmp1[y-2][0] 〈0, 3〉 3 always
Reuse tmp1[y-2][0] 〈0, 3〉 3 x==3
Reuse tmp1[y-2][0] 〈0, 3〉 3 x==3
Reuse tmp1[y-2][0] 〈0, 4〉 4 x==4
Reuse tmp1[y-2][0] 〈0, 3〉 3 x==3
Reuse tmp1[y-2][0] 〈0, 4〉 4 x==4
Reuse tmp1[y-2][0] 〈0, 5〉 5 x==5
Reuse tmp1[y-2][x] 〈0, 0〉 0 always
Reuse tmp1[y-2][15] 〈0, 0〉 0 x==15
Reuse tmp1[y-2][15] 〈0, 1〉 1 x==16
Reuse tmp1[y-2][15] 〈0, 2〉 2 x==17
Reuse tmp1[y-2][15] 〈0, 1〉 1 x==16
Reuse tmp1[y-2][15] 〈0, 2〉 2 x==17
Reuse tmp1[y-2][15] 〈0, 2〉 2 always
Reuse tmp1[y-2][x-3] 〈0, 3〉 3 always
Reuse tmp1[y-2][x-4] 〈0, 4〉 4 always
Reuse tmp1[y-2][x-5] 〈0, 5〉 5 always

Generator tmp2[y-2][x-3] N/A N/A N/A
Reuse tmp2[y-2][x-3] 〈0, 0〉 0 always

the original benchmark code without scalar replacement (SR), the
code optimized by the previous SR method [7] and the code opti-
mized by the proposed SR method, respectively.

All the designs satisfied the clock constraints of 500 MHz.
From the table, we see that scalar replacement reduces initiation
intervals (IIs) in loop pipelining, and hence, the numbers of ex-
ecution cycles by removing memory accesses. Compared to the
previous method [7], the proposed method enhances the perfor-
mance improvement, since the proposed method removes array
accesses with constant subscripts. For example, for loop4, the
proposed method achieves 2.81x speedup compared to the previ-
ous method [7]. Both ex and ex d60 had the same numbers of ex-
ecution cycles and satisfied the clock constraint of 500 MHz. So,

c© 2018 Information Processing Society of Japan 54

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

Table 10 Comparison between the previous method [7] and the proposed method.

Benchmark
Code type

II # of execution
Speedup

Total gate counts # of shift register bits # of RAM bits
code [cycles] cycles [cycles] [gates] [bits] [bits]

ex
no SR 4 401 1 10,829.8 (1.00) 0 6,400

previous 2 221 1.81 18,527.9 (1.71) 960 6,400
proposed 1 101 3.97 13,342.1 (1.23) 960 3,200

ex d60
no SR 4 401 1 10,809.0 (1.00) 0 6,400

previous 2 221 1.81 25,154.8 (2.33) 1,920 6,400
proposed 1 101 3.97 19,795.7 (1.83) 1,920 3,200

ex1
no SR 4 3,601 1 87,768.0 (1.00) 0 57,600

previous 2 1,861 1.93 95,624.2 (1.09) 960 57,600
proposed 1 901 4.00 51,775.3 (0.59) 960 28,800

ex1 x5
no SR 4 3,601 1 87,776.6 (1.00) 0 57,600

previous 2 1,861 1.93 95,640.5 (1.09) 960 57,600
proposed 1 901 4.00 51,954.9 (0.59) 960 28,800

ex1 x10
no SR 4 3,601 1 87,773.5 (1.00) 0 57,600

previous 2 1,861 1.93 95,631.0 (1.09) 960 57,600
proposed 1 901 4.00 52,131.0 (0.59) 960 28,800

ex2
no SR 4 899 1 12,206.8 (1.00) 0 6,144

previous 2 457 1.97 20,322.5 (1.67) 1,024 6,144
proposed 1 236 3.81 14,506.2 (1.19) 1,024 3,072

filter
no SR 6 1,788 1 53,567.2 (1.00) 0 32,768

previous 2 614 2.91 63,112.9 (1.18) 1,088 32,768
proposed 1 342 5.23 38,388.4 (0.72) 1,088 16,384

loop4
no SR 14 3,880 1 87,832.9 (1.00) 0 51,072

previous 3 912 4.26 119,388.1 (1.36) 3,904 51,072
proposed 1 324 11.98 77,143.6 (0.88) 3,904 25,536

the increase in the maximum reuse distance did not degrade the
performance in these two benchmark code. Although the high-
level synthesis results of ex1, ex1 x5 and ex x10 contained multi-
plexers with 2 inputs, 5 inputs and 10 inputs due to the different
reuse conditions, the numbers of the execution cycles were ex-
actly the same. In addition, ex1, ex1 x5 and ex x10 satisfied the
clock constraint of 500 MHz. So the changes in the reuse condi-
tions, or equivalently, the numbers of multiplexer inputs, did not
degrade the performance in these three benchmark code.

Table 10 also shows the total gate counts including all RAMs
in terms of NAND2 gates. We approximated the gate counts for
RAMs by 1.5 NAND gates per 1 bit of a RAM. Scalar replace-
ment introduced shift registers as shown in Table 10. The pre-
vious [7] and the proposed scalar replacement require the same
numbers of shift register bits because the maximum reuse dis-
tances for the corresponding reuse chains were the same. Com-
pared to the synthesis results for the original code without scalar
replacement, the synthesis results for the code with the previous
scalar replacement [7] showed increased total gate counts because
of the added shift registers. In addition, the total gate counts
after the previous method increased because of the increases in
the numbers of functional units that were necessary for the paral-
lel execution with the reduced IIs. Differently from the previous
method [7], the proposed method completely removed the inter-
nal RAMs storing temporary results, so that the numbers of the
RAM bits in the synthesized hardware by the proposed method
were significantly less than those by the previous method [7]. Fur-
thermore, in the proposed method, the decreases in gate counts by
the removal of the RAMs exceeded the increases in gate counts
by the addition of shift registers, so that the total gate counts for
the code after the proposed scalar replacement method were sig-
nificantly less than those for the original code without scalar re-
placement in case of ex1, ex1 x5, ex1 x10, filter and loop4 bench-
mark code. For loop4, the proposed method achieves 35.4% gate

counts reduction compared to the previous method [7].
Since the maximum reuse distance, or equivalently, the num-

ber of shift register bits of ex d60 doubled compared to those of
ex, the total gate count of ex d60 in proposed was significantly
larger than that of ex. So, the scalar replacement for array ac-
cesses with large reuse distances results in large numbers of shift
registers and significant area increase, which also holds for the
previous work [7].

Compared to that of ex1, the total gate counts of ex1 x5 and
ex x10 in proposed increased by 179.6 and 355.7 gates, respec-
tively. The increases were mainly due to the increases in the num-
bers of inputs of the multiplexers (5 inputs and 10 inputs, respec-
tively) caused by the increases in the numbers of reuse condi-
tions. Although we consider that the numbers of reuse conditions
are not large in typical image processing applications, code with
significantly large numbers of reuse conditions will result in the
synthesized hardware with large multiplexers, which will nega-
tively impact the gate counts and the maximum clock frequency
of the hardware.

6. Conclusion

For successful application of high-level synthesis, manual code
tunings that optimize memory accesses are often necessary. In
this paper, we focused on one of the most effective memory ac-
cess optimizations called scalar replacement, and proposed the
improved method. Differently from the most advanced scalar re-
placement method for nested loops [7], our scalar replacement
method handles array accesses with constant subscripts which of-
ten appear in image filtering code. Our method focuses on input C
code in the form of a Static Control Part (SCoP) and builds elab-
orate reuse information tables with the polyhedral model. Our
method replaces each reuse destination that has multiple reuse
vectors with the corresponding scalar variables. These scalar
variables are referenced conditionally according to the corre-

c© 2018 Information Processing Society of Japan 55

IPSJ Transactions on System LSI Design Methodology Vol.11 46–56 (Aug. 2018)

sponding conditions in the reuse information tables. We imple-
mented the proposed method to carry out experiments to see the
impacts of our method. From the experimental results, we con-
clude that the proposed method is a promising approach for re-
ducing area and improving performance of hardware generated
by HLS from array-intensive C code which contain array accesses
with constant subscripts.

References

[1] Gajski, D.D. et al.: High Level Synthesis: An Introduction to Chip and
System Design, Kluwer Academic Publishers (1992).

[2] Vivado Design Suite User Guide: High-Level Synthesis (UG902), Xil-
inx (2017).

[3] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Automatic Memory Parti-
tioning and Scheduling for Throughput and Power Optimization, ACM
Trans. Design Automation of Electronic Systems (2011).

[4] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Theory and algorithm for
generalized memory partitioning in high-level synthesis, International
Symposium on Field-Programmable Gate Arrays (FPGA) (2014).

[5] Cong, J., Li, P., Xiao, B. and Zhang, P.: An Optimal Microarchitec-
ture for Stencil Computation Acceleration Based on Nonuniform Par-
titioning of Data Reuse Buffers, IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, Vol.35, pp.407–418 (2016).

[6] Carr, S. and Kennedy, K.: Scalar Replacement in the Presence of
Conditional Control Flow, Software-Practice and Experience, Vol.24,
No.1, pp.51–77 (1994).

[7] So, B. and Hall, M.W.: Increasing the Applicability of Scalar Replace-
ment, Compiler Construction (CC) (2004).

[8] Budiu, M. and Goldstein, S.C.: Inter-iteration Scalar Replacement in
the Presence of Conditional Control Flow, Workshop on Optimizations
for DSP and Embedded Systems (ODES) (2005).

[9] Surendran, R., Barik, R., Zhao, J. and Sarkar, V.: Inter-iteration Scalar
Replacement Using Array SSA Form, International Conference on
Compiler Construction (2014).

[10] Zhou, Y., Al-Hawaj, K. and Zhang, Z.: A New Approach to Automatic
Memory Banking using Trace-Based Address Mining, FPGA’17
(2017).

[11] Rau, B.: Iterative Modulo Scheduling, HP Labs Technical Report
HPL-94-115 (1994).

[12] Kato, Y. and Seto, K.: Loop Fusion with Outer Loop Shifting for High-
level Synthesis, IPSJ Trans. System LSI Design Methodology, Vol.6
(2013).

[13] Bastoul, C., Cohen, A., Girbal, S., Sharma, S. and Temam, O.: Putting
Polyhedral Loop Transformations to Work, International Workshop on
Languages and Compilers for Parallel Computers (LCPC) (2003).

[14] Bondhugula, U., Hartono, A., Ramanujam, J. and Sadayappan, P.:
A practical automatic polyhedral parallelizer and locality optimizer,
Proc. 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (2008).

[15] Bastoul, C.: Clan: A Polyhedral Representation Extractor for
High Level Programs, available from 〈http://icps.u-strasbg.fr/people/
bastoul/public html/development/clan/docs/clan.pdf〉 (accessed 2018-
03).

[16] Bastoul, C.: A Specification and a Library for Data Exchange in
Polyhedral Compilation Tools, available from 〈http://icps.u-strasbg.fr/
people/bastoul/public html/development/openscop/docs/openscop.
pdf〉 (accessed 2018-03).

[17] Bastoul, C.: CLooG: A Loop Generator For Scanning Polyhedra,
available from 〈http://www.bastoul.net/cloog/pages/download/cloog.
pdf〉 (accessed 2018-03).

[18] Verdoolaege, S.: Integer Set Library: Manual, available from
〈http://isl.gforge.inria.fr/manual.pdf〉 (accessed 2018-03).

[19] Verdoolaege, S.: isl: An Integer Set Library for the Polyhedral Model,
International Congress on Mathematical Software (ICMS) (2010).

[20] Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A. and Bastoul, C.:
The Polyhedral Model is More Widely Applicable Than You Think,
Compiler Construction (CC) (2010).

[21] Grosser, T., Groesslinger, A. and Lengauer, C.: Polly - Performing
polyhedral optimizations on a low-level intermediate representation,
Parallel Processing Letters (2012).

[22] Kelly, W. and Pugh, W.: A unifying framework for iteration reorder-
ing transformations, IEEE 1st International Conference on Algorithms
and Architectures for Parallel Processing (1995).

Kenshu Seto received his B.S. in electri-
cal engineering, M.S. and D.Eng. in elec-
tronics engineering from the University of
Tokyo in 1997, 1999 and 2004, respec-
tively. From 2004 to 2006, he was a re-
searcher at VLSI Design and Education
Center (VDEC), the University of Tokyo.
He joined the department of electrical and

electronic engineering, Tokyo City University (renamed from
Musashi Institute of Technology) in 2007. His primary research
interests include high-level synthesis and compiler techniques for
System-on-Chips (SoCs).

(Recommended by Associate Editor: Hiroyuki Tomiyama)

c© 2018 Information Processing Society of Japan 56

