
IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

[DOI: 10.2197/ipsjtsldm.12.13]

Regular Paper

Scalar Replacement with Circular Buffers

Kenshu Seto1,a)

Received: May 28, 2018, Revised: September 4, 2018,
Accepted: October 22, 2018

Abstract: Scalar replacement is one of effective array access optimizations that can be applied before High-level syn-
thesis (HLS). The successful application of scalar replacement removes local memories, and as a result, it decreases
hardware area. In addition, scalar replacement reduces the numbers of hardware execution cycles by reducing mem-
ory access conflicts. In scalar replacement, shift registers are introduced to remove local arrays, and reuse distances
corresponds to the lengths of the shift registers. Previous scalar replacement methods implement the shift registers
with chains of registers, so that the hardware area becomes large when the reuse distances are large. In addition, when
reuse distances are unknown at compile time, previous scalar replacement methods require multiplexers with large
numbers of inputs, which further increase on hardware area. In this paper, we propose a new technique to resolve
the issues. In particular, we implement the shift registers with circular buffers instead of chains of registers. Large
shift registers implemented by RAM-based circular buffers are more compact than those implemented by the chains
of registers. We also show that the proposed method requires no multiplexers to realize scalar replacement for loops
with statically unknown reuse distances, which leads to area-efficient hardware implementation. We developed a tool
that implements the method and applied the tool to the benchmark programs which require large shift registers or have
statically unknown reuse distances. We found that the hardware area is reduced with the proposed method compared
to the previous method without sacrificing the hardware performance. We conclude that the proposed method is an
area efficient scalar replacement method for programs that have large or unknown reuse distances at compile time.

Keywords: high level synthesis, scalar replacement, shift register, circular buffer, loop pipelining

1. Introduction

High-level synthesis (HLS) [1], [2] automatically generates
RTL descriptions from C programs, so it significantly reduces
the hardware design time. HLS maps large arrays to RAMs, and
such RAMs usually provides limited numbers of ports such as 1
port or 2 ports. So, intensive accesses to specific arrays in C pro-
grams lead to access conflicts to the corresponding RAMs, which
degrade the performance of the generated hardware. To generate
efficient hardware with HLS without memory access conflicts, ar-
ray access optimizations are usually applied to input C programs.
Memory partitioning [3], [4], [5], [6] is one of such array access
optimizations, and it partitions an array into smaller arrays to in-
crease the number of ports.

Scalar replacement is another array access optimization that
exploits data reuse among array accesses. In C programs with
loops that contain accesses to arrays (or RAMs), it is common
that an array access reuses the data by another array access af-
ter a constant amount of loop iterations. The constant amount of
the loop iterations is called reuse distance. In scalar replacement,
data that will be reused in later loop iterations are stored in a shift
register whose length is the maximum value of the reuse distances
for all reusing array accesses. When an array access can always
reuse data in the shift register, the array access is replaced by the
shift register access. As a result, scalar replacement resolves ac-
cess conflicts to the RAM by the use of the shift register. If scalar

1 Tokyo City University, Setagaya, Tokyo 158–8557, Japan
a) kseto@tcu.ac.jp

replacement successfully removes all the array accesses to tar-
get local arrays, we can completely remove the access conflicts
to the corresponding RAMs. The removal of the access conflicts
leads to performance improvement. In addition, after the success-
ful application of scalar replacement, we can completely replace
all the target local arrays, or the corresponding RAMs with the
shift registers. Since the numbers of elements in the shift regis-
ters are typically much smaller than the numbers of elements in
the corresponding local arrays, significant reduction in hardware
area is achieved. So, the successful application of scalar replace-
ment brings significant benefits in hardware designs with HLS as
discussed in the previous work [7].

The pioneering work on scalar replacement [8] focused on ex-
ploiting data reuse carried by innermost loops. In the work, the
code transformation called unroll-and-jam is necessary to exploit
data reuse carried by outer loops. Unfortunately, unroll-and-jam
increases the code size that will lead to the degradation of the
clock frequency of generated hardware. In Ref. [9], scalar re-
placement for nested loops was proposed and it does not require
unroll-and-jam. In Ref. [7], the scalar replacement algorithm in
Ref. [9] was extended with polyhedral model to handle array ac-
cesses with constant subscripts. In Ref. [10], array SSA is used to
perform scalar replacement in the LLVM compiler infrastructure.

All the previous methods including [7], [8], [9], [10] imple-
ment the shift registers by chains of registers, so that they have
two problems. One problem is the large hardware area due to long
shift registers that are implemented by the chains of registers.
When the lengths of the shift registers become longer, the shift

c© 2019 Information Processing Society of Japan 13

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

registers occupy the large portion of the hardware area. So, it is
important to reduce the area of the shift registers to generate com-
pact hardware with HLS. Another problem is the introduction of
large-input multiplexers when the reuse distances of reusing ar-
ray accesses are statically unknown, in other words, unknown at
compiler time. When reuses are carried by outer loops in a nested
loop, and the numbers of loop iterations of the inner loops contain
parameters, for example, N, which are unknown at compile time,
the reuse distances include the parameter N and also become un-
known at compile time. When the parameter N takes various
values, the reusing accesses require large-input multiplexers that
select appropriate elements in the shift registers. Such large mul-
tiplexers can significantly increase hardware area. In this paper,
we propose a method that addresses the above two problems by
implementing the shift registers with RAM-based circular buffers
instead of chains of registers.

The organization of this paper is as follows. In Section 2, we
explain the problems of the previous scalar replacement meth-
ods. In Section 3, we present our proposed method for scalar
replacement that generates circular buffers to implement the shift
registers, followed by experimental results in Section 4. Finally,
we conclude this paper in Section 5.

2. The problems of the previous scalar re-
placement methods

In this section, we highlight the problems of the previous scalar
replacement methods [7], [8], [9], [10] with example C programs.
Although we use the previous scalar replacement algorithm [7]
for explanation, the problems are not limited to Ref. [7] but are
common to other scalar replacement methods [8], [9], [10].

2.1 Preliminaries
Before describing the problems, we define some terminologies

that are necessary to understand the problems. In this paper, for
simplicity, we call static array accesses (array accesses that ap-
pear in program texts) array access.

As in Ref. [7], we assume input C programs are stencil com-
putations [5] in Static Control Part (SCoP) format [11]. We also
assume that the input C program consists of a fully nested loop
as shown in Fig. 1 where all statements are contained in the in-
nermost loop and no statement exists outside the innermost loop.
For example, when statements exist between lines 1 and 2, or be-
tween lines 9 and 10 in Fig. 1, the loop is still a nested loop but
not a fully nested loop. We also assume that each target array is
accessed only inside the loop body, that each target array has only
one write access and at least one read access in the loop body, and

Fig. 1 Example code with large reuse distances.

that the increment value of each loop index is 1.
Definition 2.1 (Reuse) When an array element accessed by

an array access s will be accessed later by an array access d, we
say that the array access d reuses the data accessed by the array
access s, or we say that there exists a reuse from s to d. We call
s a reuse source and d a reuse destination. An array access can
be both a reuse source and a reuse destination at the same time.

Definition 2.2 (Generator) When an array access is a reuse
source but is not a reuse destination, the access is called a gen-
erator. A generator s starts to access each array element and
the data accessed by the generator will be reused later by reuse
destinations d.

Definition 2.3 (Reuse vector) A reuse vector 〈d1, d2, . . .〉
represents the numbers of loop iterations (or simply, iterations)
between the access to an array element by a reuse source s and
the later access to the same element by a reuse destination d. In
the reuse vector, d1, d2, . . . correspond to iterations for outermost
loop, 2nd outermost loop, . . ., respectively. More specifically, an
element di in a reuse vector 〈d1, d2, . . .〉means a difference Id,i−Is,i

between i-th loop iterator value Id,i for a reuse destination d and
i-th loop iterator value Is,i for a reuse source s when the reuse oc-
curs. In this paper, we assume each element of reuse vectors is a
constant value.

Definition 2.4 (Reuse distance) A reuse distance is calcu-
lated from a reuse vector 〈d1, d2, . . . , dn〉 and it means the number
of innermost loop iterations in which the reuses from s to d oc-
cur. For a given reuse vector 〈d1, d2, . . . , dn〉, the reuse distance is
computed by the following formula where Ik represents the num-
ber of loop iterations for the k-th loop from the outermost loop.

n−1∑
l=1

{(n∏
k=l+1

Ik

)
× dl

}
+ dn (1)

2.2 The previous scalar replacement [7] and the problems
Given the input C program shown in Fig. 1, the previous

work [7] builds the reuse information table shown in Table 1
which is a key data structure in the previous work. The C pro-
gram in Fig. 1 contains 4 array accesses to the array A and the
write access A[y][x] in the line 3 is the generator. The previous
work [7] assumes that there is a single generator for each reuse
information table. As shown in Table 1, the data accessed by the
generator A[y][x] is reused by the three array accesses A[y][x-2],
A[0][x] and A[y-3][x]. The reuse destination A[0][x] has dif-
ferent reuse distances according to the different reuse conditions
as shown in Table 1, so we separate the reuses by A[0][x] into
two parts according to the different reuse distances. Since the
number of the inner-loop iterations is 32, the maximum reuse
distance by A[y-3][x] becomes 96 according to the formula (1).

Table 1 The reuse information table for Fig. 1 by the previous method [7].

Access Array Reuse Reuse Scalar Reuse
type access vector distance variable condition

0 Generator A[y][x] N/A N/A s0 N/A
1 Reuse A[y][x-2] 〈0, 2〉 2 s2 always
2 Reuse A[0][x] 〈1, 0〉 32 s32 y==1
3 Reuse A[0][x] 〈2, 0〉 64 s64 y==2
4 Reuse A[y-3][x] 〈3, 0〉 96 s96 always

c© 2019 Information Processing Society of Japan 14

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

Fig. 2 Shift register implemented by previous scalar replacement methods for the C program in Fig. 1.

Fig. 3 Code after applying the previous scalar replacement [7] to Fig. 1.

Fig. 4 Example code with parameters N and M in loop counts.

Table 1 shows the names s0, s2, s32, . . ., of scalar variables that
will replace the corresponding array accesses after scalar replace-
ment. For each target array, the names of such scalar variables are
uniquely generated with the corresponding reuse distances.

After building the reuse information table in Table 1, the pre-
vious method [7] performs the following code transformations:
(1) Insert the declaration of the shift registers and their shifting

behavior at the bottom of the loop body
(2) Replace each array access with the corresponding scalar

variables with the conditions.
The result of the code transformation is shown in Fig. 3. Since the
maximum reuse distance is 96 in Table 1, the previous method [7]
prepairs the shift register with the length of 96. In the previous
method, the shift register is implemented by a set of 96 scalar
variables whose shift behavior is described by the chain of 96 as-
signments to the scalar variables (or registers) at the end of the
loop body from the line 13 to the line 108 shown in Fig. 3. Fig-
ure 2 depicts the generated shift register. In the shift register,
we use the outputs of the registers s2, s32, s64, s96 to replace
the corresponding array accesses. The shift register generated by
this way occupies the large portion of the area in the generated
hardware.

In real-life C programs, we commonly have loops with un-
known numbers of iterations at compile time as shown in Fig. 4.

Table 2 The reuse information table for Fig. 4.

Access Array Reuse Reuse Scalar Reuse
type access vector distance variable condition

0 Generator A[y][x] N/A N/A s0 N/A
1 Reuse A[y][x-2] 〈0, 2〉 2 s2 always
2 Reuse A[0][x] 〈1, 0〉 M+1 sM y==1
3 Reuse A[0][x] 〈2, 0〉 2(M+1) s2M y==2
4 Reuse A[y-3][x] 〈3, 0〉 3(M+1) s3M always

Fig. 5 Code after applying the previous scalar replacement [7] to Fig. 4.

In Fig. 4, the loop bounds for the outer loop and the inner loop are
represented by the parameters N and M, respectively. The compu-
tation of the program in Fig. 4 is exactly the same as the program
in Fig. 1. We assume that we know the maximum values of the
parameters at compiler time but the values of the parameters can
vary at runtime for each instance of the loop execution. For the
example in Fig. 4, we assume the maximum value is 31 and the
minimum value is 8 for both N and M. The reuse information
table built by the previous method [7] is shown in Table 2. As
shown in Table 2, the values of the reuse distances for the reuse
destinations A[0][x] and A[y-3][x] depend on the value of the pa-
rameter M. Since M takes one of the 24 values from 8 to 31, each
reuse distance of these reuse destinations takes one of 24 values,
so that we have to generate a program that select an appropriate
register from the 24 possible registers for these reuse destinations
as shown in Fig. 5. The generated hardware with HLS from the

c© 2019 Information Processing Society of Japan 15

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

Fig. 6 Shift register and multiplexers implemented by previous scalar replacement methods for the C
program in Fig. 4.

Fig. 7 Shift register implemented with circular buffers by the proposed scalar replacement for the C pro-
gram in Fig. 4.

program in Fig. 5 is shown in Fig. 6 and it contains 3 large multi-
plexers with 24 inputs which significantly increase the hardware
area.

3. Proposed scalar replacement method with
circular buffers

In this section, we present the proposed scalar replacement
method in order to solve the problems highlighted in Section 2
and illustrate the proposed method with the example in Fig. 4.
The proposed method is directly applicable to the programs with
constant loop counts, as shown in Fig. 1 as well. As far as the
author knows, all the previous approaches for scalar replace-
ment [7], [8], [9], [10] describe the behavior of a shift register as
a chain of assignments to scalar variables that represent registers
as shown in the line 85 to the line 180 in Fig. 5. Instead of imple-
menting a shift register by a single chain of registers as shown in
Fig. 5 or as illustrated in Fig. 6, we propose a method that imple-
ments the shift register by an appropriate combination of circular
buffers and chains of registers as shown in Fig. 7. The proposed
descriptions of circular buffers can be directly implemented by
RAMs with HLS. Since RAMs are typically more area-efficient
than registers for storing large numbers of bits, we can expect the
reduction in hardware area with the proposed approach. In addi-
tion, the proposed method removes all the multiplexers in Fig. 6
since we can flexibly change the lengths of shift registers imple-
mented by circular buffers by changing the reset conditions of the
pointers for the circular buffers. In the following, we describe the
detail of the proposed method.

The proposed method uses the same method as the previous
method [7] to build the reuse information table as shown in Ta-
ble 2, although we extended the tool in Ref. [7] in order to han-
dle parameters such as N and M in the input C programs using
ISL (Integer Set Library) [12], [13]. In addition, we extended the
tool [7] so that it can read the maximum values of the parame-
ters as command line options. Other scalar replacement methods
can also be used as long as they generate the reuse information
tables as shown in Fig. 2. In the reuse information table, reuse
vectors, reuse distances and scalar variable names are important,
and other entries such as reuse conditions are not used in the pro-
posed method for generating shift register descriptions. In this
work, we assume that the reuse information tables do not change

Table 3 The partitioned shift registers table for the C program in Fig. 4 by
the proposed method.

ID
Input Output

Length MaxLength
variable variable

0 s0 s2 2 2
1 s2 sM M-1 30
2 sM s2M M+1 32
3 s2M s3M M+1 32

when the values of parameters change within their ranges of the
minimum and maximum values.

The proposed method performs the following code transforma-
tions based on the reuse information table.
(1) Insert the declaration of the shift registers and their shifting

behavior at the bottom of the loop body
(2) Replace each array access with the corresponding scalar

variables with the conditions.
As for the second transformation (2), the proposed method is
the same as the previous method [7]. On the other hand, the
first transformation (1) of the proposed method is different from
that of the previous method [7] which has been explained in Sec-
tion 2.2. In the following, we will explain the first transformation
(1) of the proposed method which utilizes circular buffers in shift
registers.

Intuitively, the proposed method partitions the shift register
shown in Fig. 2 into the sequence of smaller shift registers by
using the intermediate scalar variables, s2, s32 and s64 as sepa-
rators. Each of the partitioned shift registers is implemented as
a chain of registers or as a circular buffer as shown in Fig. 7. In
the proposed method, we use a table as shown in Table 3 where
each row represents a partitioned shift register. We call the ta-
ble partitioned shift registers table. The partitioned shift registers
table is important, since it contains all information necessary for
generating circular buffer descriptions. As shown in Table 3 from
the left, each row of partitioned shift registers tables contains an
ID number (ID), an input variable name (Input variable), an out-
put variable name (Output variable), a length possibly with pa-
rameters (Length), and the maximum length (MaxLength) for a
partitioned shift register.

Figure 8 shows the proposed algorithm to build the partitioned
shift registers tables such as the one shown in Table 3. One of the
two inputs to the algorithm is a reuse information table Treuse as
shown in Table 2. In the Table 2, we set the reuse vector and reuse

c© 2019 Information Processing Society of Japan 16

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

Fig. 8 Procedure for building a partitioned shift registers table from a reuse
information table.

distance for the generator to 〈0, 0〉 and 0, respectively, instead of
N/As. Another input to the algorithm in Fig. 8 is the maximum
values Max of parameters that appears in the input C program,
such as N = 31 and M = 31. In the line 1 in Fig. 8, we sort the
rows of the input reuse information table Treuse in the ascending
lexicographic order in terms of the reuse vectors and store the
result to the table Ttmp1. The reuse information table shown in
Table 2 is already sorted in such an order. In the line 2 in Fig. 8,
we remove duplications in rows in terms of reuse vectors in the
sorted table Ttmp1 and store the result to the table Ttmp2. In other
words, in the line 2 in Fig. 8, we remove rows that have the same
reuse vector as other rows in the table Ttmp1. As a result, the table
Ttmp2 has rows whose reuse vectors are ordered in the ascending
lexicographic order and has no two rows that have the same reuse
vector. The table in Table 2 is already ordered in such a way and
has no row with the same reuse vector as other rows. In general,
however, input reuse information tables may have unordered rows
and have rows with the same reuse vectors as other rows. In the
line 3 in Fig. 8, we initialize the ID number that is attached to each
partitioned shift register. From the 1st row to the final row in the
table Ttmp2, we repeat the processing from the line 5 to the line 13
in Fig. 8 to generate a row in the partitioned shift register table in
order as shown in Table 3. We denote the i-th row of a table T as
T [i]. In the line 5 in Fig. 8, we set the scalar variable name of the
previous row Ttmp2[i − 1] to the input variable name for the row
Tsreg[i − 1] of the partitioned shift register table Tsreg. Similarly
in the line 6, we set the scalar variable name of the current row
Ttmp2[i] to the output variable name for the row Tsreg[i− 1] of the
partitioned shift register table Tsreg. In the line 7, the length of the
partitioned shift register Tsreg[i − 1] is computed by subtracting
the reuse distance of the previous row Ttmp2[i−1].ReuseDistance

from the reuse distance Ttmp2[i].ReuseDistance of the current row
Ttmp2[i] of the sorted table Ttmp2. If the computed length contains
parameters, we substitute the maximum values in Max to the pa-
rameters by using the gist operation in ISL [12], [13] in order to
compute the maximum length of the shift registers as shown in
the line 9 in Fig. 8. If the computed length is a constant value and
does not contain parameters, the length is used as the maximum

Fig. 9 Procedure for generating implementations of shift registers from a
partitioned shift registers table.

Fig. 10 Code after applying the proposed scalar replacement to Fig. 4.

length of the shift register as shown in the line 11 in Fig. 8. Fi-
nally, the computed row of the partitioned shift registers table is
stored in Tsreg and the ID number is incremented by one as shown
in the lines 12 and 13 in Fig. 8.

Figure 9 shows the proposed algorithm to generate code frag-
ment for the partitioned shift register behaviors as shown from
the line 13 to the line 26 in Fig. 10. One of the inputs to the algo-
rithm in 9 is the partitioned shift registers table Tsreg that is built
by the algorithm in Fig. 8. Another input is a user-specified inte-
ger Threshold which is larger than 1. The value of Threshold is
used to switch the implementations of the partitioned shift regis-
ters. Since the implementation of a circular buffer requires addi-
tional hardware such as a pointer register, a comparator, an in-
crementer, sense amplifiers and decoders, the partitioned shift
registers whose lengths are short will be implemented more ef-
ficiently with chains of registers rather than with circular buffers.
In addition, RAMs in ASICs usually have the minimum size re-

c© 2019 Information Processing Society of Japan 17

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

quirements. In the proposed algorithm, partitioned shift registers
whose maximum lengths are greater than or equal to Threshold

are implemented as circular buffers, while those whose maximum
lengths are less than Threshold are implemented by chains of reg-
isters. In this paper, we set the Threshold to 16 in the experiments
in Section 4.

The algorithm in Fig. 9 processes each row of the partitioned
shift registers table Tsreg in the reverse order, namely, from the
bottom row to the top row. Depending on the MaxLength of the
row Tsreg[i] in the partitioned shift registers table Tsreg, the pro-
posed algorithm generates different types of implementations for
each partitioned shift register. If the MaxLength is larger than or
equal to Threshold, a circular buffer is generated as shown from
the line 13 to the line 16 in Fig. 10. On the other hand, if the
MaxLength is smaller than the Threshold, a chain of registers is
generated as shown in the lines 25 and 26 in Fig. 10. When the
MaxLength is 1, a simple assignment such as
Tsreg[i].OutputVar = Tsreg[i].InputVar;
is generated, where the left hand side (LHS) is the output vari-
able of Tsreg[i] and the right hand side (RHS) is the input variable
of Tsreg[i]. When the MaxLength is 0, the value of the genera-
tor is reused in the same iteration. So, we do not generate any
description for shift registers in such a case.

Figure 10 shows the optimized code after applying the pro-
posed scalar replacement method and Fig. 7 illustrates the HLS-
generated shift register from the code in Fig. 10. Differently from
the HLS-generated shift register with the previous method as
shown in Fig. 6, the HLS-generated shift register with the pro-
posed method in Fig. 7 requires no multiplexer.

In Fig. 10, the code fragments 3©, 2©, 1© and 0© correspond to
the rows whose IDs are 3, 2, 1 and 0 in Table 3, respectively. For
example, the code fragment 3© in Fig. 10 corresponds to the row
whose ID is 3 (3rd row) in Table 3. Since the code fragment 3©
in Fig. 10 corresponds to the row with ID = 3, we use the symbol
buf3 and p3 for the array variable corresponding to the circular
buffer and the pointer for the circular buffer, respectively. Al-
though not shown in Fig. 10, buf3 is declared as an array variable
whose size is 32 as specified in the column MaxLength in Table 3.
In other words, the maximum number of elements in the circular
buffer buf3 is set to 32 as specified in the column MaxLength in
Table 3. buf3 as well as buf2 and buf1 are declared as 2-port
memories in order to perform loop pipelining with the initiation
interval (II) of 1. We focus on generating hardware whose inner
loops are pipelined with the initiation interval (II) of 1.

The behavior of the code fragment 3© in Fig. 10 is explained as
follows. The 4 lines of the code fragment from the line 13 to the
line 16 in Fig. 10 are executed in a single cycle in parallel, since
the inner loop is pipelined with the initiation interval (II) of 1. In
the line 13, the result of the read access to the circular buffer buf3
is stored in the output variable s3M. In the line 14, the circular
buffer buf3 stores the value of the input variable s2M. In the line
15, the pointer p3 for the circular buffer is incremented. In the
line 16, the pointer p3 of the circular buffer is reset to 0 when
the pointer exceeds the length of the circular buffer buf3. When
the value of the parameter M changes at runtime, the line 16 in
Fig. 10 changes the length of the circular buffer automatically in

accordance with the changed value of M.

4. Experimental results

In this section, we show the impacts of the proposed method
on hardware performance and area. In particular, we compare the
performance and area by the proposed method with those by the
previous scalar replacement method [7].

4.1 Experimental setups
We implemented the proposed method in Section 3 based on

the tool presented in Ref. [7]. To determine the Threshold value
in the algorithm shown in Fig. 9, we can generate chains of reg-
isters and circular buffers for different shift register lengths, syn-
thesize the generated circuits and build a table that contains the
circuit area of a chain of registers and of a circular buffer for a
given shift register length. Based on this table, we can determine
the Threshold value as the shift register length when the circuit
area of a circular buffer becomes less than that of a chain of regis-
ters. Unfortunately, we could not access memory compiler, so we
used the following simple method to determine the Threshold

value. We assumed that the circuit area of a circular buffer is
smaller than that of a chain of registers when the total bit size of
the corresponding shift register is more than 512 bits. Since the
variables stored in the shift registers have 32 bits in the bench-
mark programs used in this paper, the circuit area of a circular
buffer is smaller than that of a chain of registers when the lengths
of shift registers are more than 16. So, we set the Threshold to 16
(except two cases with prop.(Th = 64) in loop4 and loop4 par

in Table 4).
We applied the proposed method and the previous method [7]

to 12 benchmark programs, shown in Table 4, which are fully
nested loops with the nested level of two. These benchmark pro-
grams are basically the same as the benchmark programs used in
[7], but the loop counts were modified. More specifically, we set
the loop counts of the inner and the outer loops to the constant
value of 32 in this experiment. ex is the example code shown in
Fig. 1. ex d60 and ex1 are modified versions of ex and have dif-
ferent reuse distances compared to ex. ex2 is a 1-dimensional
filter code. f ilter is a 2-dimensional filter code which origi-
nally consists of two loops but fused into a single loop with
loop fusion [14]. loop4 is a real-life image processing applica-
tion originally consisting of four loops, each of which performs
image difference, vertical 1-dimensional filtering, horizontal 1-
dimensional filtering, and image blending, respectively. In loop4,
these four loops are also fused into a single fully nested loop with
loop fusion [14]. In the benchmark programs whose names have
par as suffixes, such as ex par, we set the loop counts of the

inner loops to M which is unknown at compile time, but takes
one of the values from 8 to 32 at runtime. In other words, the
minimum and the maximum values of M were set to 32 and 8,
respectively. The loop counts for the outer loops in the bench-
mark programs with the suffix par were set to 32, since these
loop counts of the outer loops do not affect the reuse distances or
the scalar replacement results. Because the benchmark programs
ex1 x5 and ex1 x10 used in Ref. [7] are similar to ex1 and are dif-
ferent from ex1 only in terms of the reuse conditions, we omitted

c© 2019 Information Processing Society of Japan 18

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

Table 4 Comparison between the previous method [7] and the proposed method when initiation interval
(II) is 1.

Benchmark Type # of execution Gate counts Gate counts Gate counts Total gate # of shift # of circular # of I/O
program cycles (Computation) (Shift regs) [gates] counts [gates] register buffer RAM

[cycles] [gates] [gates] bits [bits] bits [bits] bits [bits]

ex
prev. 1025 2991 (1.00) 19968 (1.00) 22959 (1.00) 72111 (1.00) 3072 0 32768
prop. 1025 3927 (1.31) 9440 (0.47) 13367 (0.58) 62519 (0.87) 3072 3008 32768

ex par
prev. 1024 7156 (1.00) 19968 (1.00) 27124 (1.00) 76276 (1.00) 3072 0 32768
prop. 1024 4653 (0.65) 9440 (0.47) 14093 (0.52) 63245 (0.83) 3072 3008 32768

ex d60
prev. 1025 4032 (1.00) 39936 (1.00) 43968 (1.00) 93120 (1.00) 6144 0 32768
prop. 1025 4574 (1.13) 18432 (0.46) 23006 (0.52) 72158 (0.77) 6144 6144 32768

ex d60 par
prev. 1024 9649 (1.00) 39936 (1.00) 49585 (1.00) 98737 (1.00) 6144 0 32768
prop. 1024 5436 (0.56) 18432 (0.46) 23868 (0.48) 73020 (0.74) 6144 6144 32768

ex1
prev. 1025 2271 (1.00) 6656 (1.00) 8927 (1.00) 58079 (1.00) 1024 0 32768
prop. 1025 2596 (1.14) 3408 (0.51) 6004 (0.67) 55156 (0.95) 1024 928 32768

ex1 par
prev. 1024 4411 (1.00) 6656 (1.00) 11067 (1.00) 60219 (1.00) 1024 0 32768
prop. 1024 3561 (0.81) 3408 (0.51) 6969 (0.63) 56121 (0.93) 1024 928 32768

ex2
prev. 1090 3777 (1.00) 13312 (1.00) 17089 (1.00) 115393 (1.00) 2048 0 65536
prop. 1090 4466 (1.18) 6144 (0.46) 10610 (0.62) 108914 (0.94) 2048 2048 65536

ex2 par
prev. 1090 6458 (1.00) 13312 (1.00) 19770 (1.00) 118074 (1.00) 2048 0 65536
prop. 1090 4844 (0.75) 6144 (0.46) 10988 (0.56) 109292 (0.93) 2048 2048 65536

filter
prev. 1122 6471 (1.00) 13312 (1.00) 19783 (1.00) 118087 (1.00) 2048 0 65536
prop. 1122 7536 (1.16) 6256 (0.47) 13792 (0.70) 112096 (0.95) 2048 2016 65536

filter par
prev. 1122 9330 (1.00) 13312 (1.00) 22642 (1.00) 120946 (1.00) 2048 0 65536
prop. 1122 8224 (0.88) 6256 (0.47) 14480 (0.64) 112784 (0.93) 2048 2016 65536

loop4
prev. 1186 15812 (1.00) 41600 (1.00) 57412 (1.00) 204868 (1.00) 6400 0 98304
prop. 1186 17225 (1.09) 19760 (0.48) 36985 (0.64) 184441 (0.90) 6400 6240 98304

prop.(Th=64) 1186 15983 (1.01) 34096 (0.82) 50079 (0.87) 197535 (0.96) 6400 2144 98304

loop4 par
prev. 1186 23078 (1.00) 41600 (1.00) 64678 (1.00) 212134 (1.00) 6400 0 98304
prop. 1186 18717 (0.81) 19760 (0.48) 38477 (0.59) 185933 (0.88) 6400 6240 98304

prop.(Th=64) 1186 17207 (0.75) 34096 (0.82) 51303 (0.79) 198759 (0.94) 6400 2144 98304

them in this experiment.
We generated RTL code and gate-level netlists with a commer-

cial high-level synthesis (HLS) tool (Stratus) and a commercial
logic synthesis tool (Genus) from Cadence, respectively, from
the code optimized by the previous method [7] and the code opti-
mized by the proposed method. In HLS, we used the loop pipelin-
ing directives to all the innermost loops with the initiation inter-
vals (IIs) of 1. The clock constraints for both the HLS and the
logic synthesis were set to 500 MHz and we used a 45nm tech-
nology library for the target cell library. All arrays that contain
input or output data, which correspond to input or output buffers,
were mapped to 1-port RAMs, since these arrays are accessed
only once in one iteration of the innermost loops. On the other
hand, the arrays that correspond to circular buffers, which are ac-
cessed twice in one iteration of the innermost loops, were mapped
to 2-port RAMs in order to achieve the initiation intervals (IIs) of
1 after loop pipelining.

4.2 Results and discussions
Table 4 shows the experimental results for the 12 benchmark

programs. In the table, prev. and prop. show the synthesis re-
sults for the code optimized by the previous SR method [7] and
the code optimized by the proposed SR method, respectively. For
the benchmark programs loop4 and loop4 par with code type of
prop. (Th=64), we used the Threshold value of 64 instead of 16.
All the designs satisfied the clock constraints of 500 MHz and
achieved the initiation interval (II) of 1 for the innermost loops.
Under the clock constraints of 500 MHz, the numbers of execu-
tion cycles for prev. and prop. were the same for all benchmark
programs as shown in Table 4. In addition, we observe that the
numbers of execution cycles in Table 4 are almost the same be-

tween the benchmark programs with constant loops counts, such
as ex, and the corresponding benchmark programs with the un-
known loop counts, such as ex par. In summary, we found that
the proposed scalar replacement method did not negatively im-
pact the performance of the hardware generated with HLS.

Table 4 also shows gate counts in terms of NAND2 gates. In
Table 4, we approximated the gate counts for 1-port RAMs such
as the I/O RAMs by 1.5 NAND gates per 1 bit and those for 2-port
RAMs such as RAMs implementing circular buffers by 3 NAND
gates per 1 bit. As shown in the second column from the right (#
of circular buffer bits) of Table 4, we see that the proposed method
generates circular buffers while the previous method does not.
The generated hardware by the proposed method and by the pre-
vious method both use the same amount of I/O RAMs (input and
output buffers) as shown in the rightmost column. The sixth col-
umn from the left (Gate counts) shows the gate counts of the syn-
thesized hardware including the gate counts due to the RAMs im-
plementing the circular buffers but excluding the gate counts due
to the I/O RAMs. In the column, the figures in the parentheses
show the ratios of the gate counts by the proposed method against
those by the previous method. The fourth column from the left
(Gate counts (Computation)) and the fifth column from the left
(Gate counts (Shift regs)) show the breakdown of the the sixth
column from the left (Gate counts) and represent gate counts for
computation parts and gate counts for shift register parts, respec-
tively. The seventh column from the left (Total gate counts) shows
all the gate counts in the synthesized hardware including both the
gate counts due to the RAMs implementing circular buffers and
the gate counts due to the I/O RAMs. As shown in Gate counts
or Total gate counts in Table 4, the proposed method reduced the
gate counts in all the benchmark programs compared to the previ-

c© 2019 Information Processing Society of Japan 19

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

Table 5 Comparison between the previous method [7] and the proposed method when initiation interval
(II) is 2.

Benchmark Type # of execution Gate counts Gate counts Gate counts Total gate # of shift # of circular # of I/O
program cycles (Computation) (Shift regs) [gates] counts [gates] register buffer RAM

[cycles] [gates] [gates] bits [bits] bits [bits] bits [bits]

ex
prev. 2113 3806 (1.00) 19968 (1.00) 23774 (1.00) 72926 (1.00) 3072 0 32768
prop. 2113 5809 (1.53) 4928 (0.25) 10737 (0.45) 59889 (0.82) 3072 3008 32768

ex par
prev. 2048 7235 (1.00) 19968 (1.00) 27203 (1.00) 76355 (1.00) 3072 0 32768
prop. 2048 4690 (0.65) 4928 (0.25) 9618 (0.35) 58770 (0.77) 3072 3008 32768

ex d60
prev. 2113 4833 (1.00) 39936 (1.00) 44769 (1.00) 93921 (1.00) 6144 0 32768
prop. 2113 5656 (1.17) 9216 (0.23) 14872 (0.33) 64024 (0.68) 6144 6144 32768

ex d60 par
prev. 2048 9601 (1.00) 39936 (1.00) 49537 (1.00) 98689 (1.00) 6144 0 32768
prop. 2048 5546 (0.58) 9216 (0.23) 14762 (0.30) 63914 (0.65) 6144 6144 32768

ex1
prev. 2113 3135 (1.00) 6656 (1.00) 9791 (1.00) 58943 (1.00) 1024 0 32768
prop. 2113 4051 (1.29) 2016 (0.30) 6067 (0.62) 55219 (0.94) 1024 928 32768

ex1 par
prev. 2048 3831 (1.00) 6656 (1.00) 10487 (1.00) 59639 (1.00) 1024 0 32768
prop. 2016 3460 (0.90) 2016 (0.30) 5476 (0.52) 54628 (0.92) 1024 928 32768

ex2
prev. 2114 3871 (1.00) 13312 (1.00) 17183 (1.00) 115487 (1.00) 2048 0 65536
prop. 2114 4632 (1.20) 3072 (0.23) 7704 (0.45) 106008 (0.92) 2048 2048 65536

ex2 par
prev. 2146 7579 (1.00) 13312 (1.00) 20891 (1.00) 119195 (1.00) 2048 0 65536
prop. 2146 5757 (0.76) 3072 (0.23) 8829 (0.42) 107133 (0.90) 2048 2048 65536

filter
prev. 2115 6471 (1.00) 13312 (1.00) 19783 (1.00) 118087 (1.00) 2048 0 65536
prop. 2114 7536 (1.16) 3232 (0.24) 10768 (0.54) 109072 (0.92) 2048 2016 65536

filter par
prev. 2115 8942 (1.00) 13312 (1.00) 22254 (1.00) 120558 (1.00) 2048 0 65536
prop. 2114 7384 (0.83) 3232 (0.24) 10616 (0.48) 108920 (0.90) 2048 2016 65536

loop4
prev. 2242 17350 (1.00) 41600 (1.00) 58950 (1.00) 206406 (1.00) 6400 0 98304
prop. 2242 18853 (1.09) 10400 (0.25) 29253 (0.50) 176709 (0.86) 6400 6240 98304

loop4 par
prev. 2274 26388 (1.00) 41600 (1.00) 67988 (1.00) 215444 (1.00) 6400 0 98304
prop. 2274 20925 (0.79) 10400 (0.25) 31325 (0.46) 178781 (0.83) 6400 6240 98304

ous method [7]. The proposed method reduced the Gate counts by
38% and 43% on average for the benchmark programs with the
constant loop counts and those with the unknown loop counts, re-
spectively. The reason for the reductions is because the proposed
method implements the shift registers with RAM-based circular
buffers instead of only with chains of registers. In addition, the
proposed method gave further reductions in the case of the bench-
mark programs with the unknown loop counts compared to the
case of the benchmark programs with the constant loop counts.
This is because the proposed method did not generate 24-input
multiplexers in the case of the benchmark programs with the un-
known loop counts while the previous method generated the mul-
tiplexers in the same case. If we took the gate counts of the I/O
RAMs into account, the proposed method reduced the Total gate
counts by 10% and 13% on average for the benchmark programs
with the constant loop counts and for those with the unknown
loop counts, respectively. For the benchmark programs of loop4
and loop4 par, Table 4 also shows the experimental results when
the Threshold value was changed to 64. The two benchmark pro-
grams have four shift registers with the length of 32 and one shift
register with the length of 67. In the case of Threshold = 16, all
the shift registers were implemented as circular buffers. When we
changed the Threshold value to 64 from 16, only one shift regis-
ters with the length of 67 was implemented as a circular buffer and
the other four shift registers were implemented by chains of reg-
isters which have large circuit area compared to circular buffers.
So, the circuit area for the two benchmark programs loop4 and
loop4 par was increased in the case of Threshold = 64 com-
pared to the case when Threshold = 16 as shown in Table 4.
When we compare the benchmark programs ex d60 and ex1, for
example, which perform similar computations but have different
numbers of shift register bits (6,144 and 1,024, respectively), the
reduction percentage of the gate counts for ex d60 were larger

than that for ex1, since ex d60 has the larger number of shift reg-
ister bits than ex1 does. In summary, we found that the proposed
method reduced the gate counts compared to the previous method
without sacrificing the hardware performance.

Table 5 shows the experimental results when the pipeline ini-
tiation interval (II) constraint was increased to 2 from 1. When
the II is 2, the memory bandwidth requirement for the circular
buffers can be relaxed, so we set the number of ports for the
RAMs corresponding to the circular buffers to 1. For all bench-
mark programs, II = 2 was achieved and the clock constraints
of 500 MHz were satisfied. The numbers of execution cycles for
prev. and prop. were almost the same. In general, we have more
chances of resource sharing with increased II, because increas-
ing II results in less required parallelism. Since the benchmark
C programs we used do not contain area-consuming computing
units such as multipliers, the increased II did not consistently de-
crease the hardware area of the computing unit parts. Instead, the
hardware area of the circular buffers was reduced by half from
3 NAND gates per 1 bit to 1.5 NAND gates per 1 bit since the
number of ports for the circular buffers was reduced to 1. So,
the reductions of the total gate counts in the case of II = 2 were
larger than those in the case of II = 1. In the case of II = 2,
the proposed method reduced the Gate counts by 52% and 58%
on average for the benchmark programs with the constant loop
counts and those with the unknown loop counts, respectively. In
summary, we found that the proposed method reduced the gate
counts compared to the previous method without sacrificing the
hardware performance even in the case of II = 2.

When given application programs satisfy the assumptions de-
scribed in Section 2.1, we can successfully remove target arrays
by scalar replacement [7]. However, when the lengths of shift
registers are less than the Threshold value, the circular buffers
proposed in this paper are not generated since chains of registers

c© 2019 Information Processing Society of Japan 20

IPSJ Transactions on System LSI Design Methodology Vol.12 13–21 (Feb. 2019)

are more compact than the circular buffers in such cases. So, the
lengths of generated shift registers for a given application pro-
gram should be more than the Threshold value for the proposed
technique to be effective compared to the previous scalar replace-
ment technique [7].

The proposed technique assumes that the given loop programs
are in the form of stencil computations [5]. In stencil computa-
tions, dimensions of arrays must be the same as the nesting depth
of a fully nested loop. In real-life applications, it is common that
target C programs are not in the form of the stencil computa-
tions. Future work will be extending the proposed technique to
non-stencil computations.

5. Conclusion

Scalar replacement is a memory access optimization for hard-
ware area reduction and performance boost in HLS. Scalar re-
placement generates shift registers, which can occupy large por-
tions of the hardware area when the shift registers are long. All of
the previous scalar replacement methods implement the shift reg-
isters by chains of registers, but the implementation is not com-
pact compared to the shift register implementation with RAMs.
In addition, the previous methods generate large-input multiplex-
ers when reuse distances vary widely due to loop counts unknown
at compile-time. To resolve the problems, we proposed a method
to partition the shift registers and implement each partitioned shift
register either by a chain of registers or by a RAM-based circular
buffer. We implemented the proposed method as a tool, and used
the tool to perform experiments with benchmark programs. From
the experiments, we found that the proposed method reduces the
hardware area without negatively impacting the hardware per-
formance compared to the previous method. We conclude that
the proposed method is effective in reducing hardware area when
scalar replacement generates long shift registers, or target pro-
grams contain loop counts that are unknown at compile time and
vary widely.

References

[1] Gajski, D.D. et al.: High Level Synthesis: An Introduction to Chip and
System Design, Kluwer Academic Publishers (1992).

[2] Vivado Design Suite User Guide: High-Level Synthesis (UG902),
Xilinx (2017).

[3] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Automatic Memory Parti-
tioning and Scheduling for Throughput and Power Optimization, ACM
Trans. Design Automation of Electronic Systems (2011).

[4] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Theory and algorithm for
generalized memory partitioning in high-level synthesis, International
Symposium on Field-Programmable Gate Arrays (FPGA) (2014).

[5] Cong, J., Li, P., Xiao, B. and Zhang, P.: An Optimal Microarchitec-
ture for Stencil Computation Acceleration Based on Nonuniform Par-
titioning of Data Reuse Buffers, IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, Vol.35, pp.407–418 (2016).

[6] Zhou, Y., Al-Hawaj, K. and Zhang, Z.: A New Approach to Automatic
Memory Banking using Trace-Based Address Mining, FPGA’17
(2017).

[7] Seto, K.: Scalar Replacement with Polyhedral Model, IPSJ Trans. Sys-
tem LSI Design Methodology, Vol.12 (2018).

[8] Callahan, D., Carr, S. and Kennedy, K.: Improving Register Allo-
cation for Subscript Variables, Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (1990).

[9] So, B. and Hall, M.W.: Increasing the Applicability of Scalar Replace-
ment, Compiler Construction (CC) (2004).

[10] Surendran, R., Barik, R., Zhao, J. and Sarkar, V.: Inter-iteration Scalar
Replacement Using Array SSA Form, International Conference on
Compiler Construction (2014).

[11] Bastoul, C.: Clan: A Polyhedral Representation Extractor for High
Level Programs, available from 〈http://icps.u-strasbg.fr/people/
bastoul/public html/development/clan/docs/clan.pdf〉 (accessed 2018-
05).

[12] Verdoolaege, S.: Integer Set Library: Manual, available from
〈http://isl.gforge.inria.fr/manual.pdf〉 (accessed 2018-03).

[13] Verdoolaege, S.: isl: An Integer Set Library for the Polyhedral Model,
International Congress on Mathematical Software (ICMS) (2010).

[14] Kato, Y. and Seto, K.: Loop Fusion with Outer Loop Shifting for High-
level Synthesis, IPSJ Trans. System LSI Design Methodology, Vol.6
(2013).

Kenshu Seto received his B.S. degree in
electrical engineering, M.S. and D. Eng.
degrees in electronics engineering from
the University of Tokyo in 1997, 1999 and
2004, respectively. From 2004 to 2006, he
was a researcher at VLSI Design and Ed-
ucation Center (VDEC), the University of
Tokyo. He joined the department of elec-

trical and electronic engineering, Tokyo City University (renamed
from Musashi Institute of Technology) in 2007. His primary re-
search interests include high-level synthesis and compiler tech-
niques for System-on-Chips (SoCs).

(Recommended by Associate Editor: Takashi Takenaka)

c© 2019 Information Processing Society of Japan 21

