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Abstract: The performance of recent CNN accelerators falls behind their peak performance because they fail to
maximize parallel computation in every convolutional layer from the parallelism that varies throughout the CNN.
Furthermore, the exploitation of multiple parallelisms may reduce calculation-skip ability. This paper proposes a con-
volution core for sparse CNN that leverages multiple types of parallelism and weight sparsity efficiently to achieve
high performance. It alternates dataflow and scheduling of parallel computation according to the available parallelism
of each convolutional layer by exploiting both intra- and inter-output parallelism to maximize multiplier utilization.
In addition, it eliminates redundant multiply-accumulate (MACC) operations due to weight sparsity. The proposed
convolution core enables both abilities with ease of dataflow control by using a parallelism controller for scheduling
parallel MACCs on the processing elements (PEs) and a weight broadcaster for broadcasting non-zero weights to the
PEs according to the scheduling. The proposed convolution core was evaluated on 13 convolutional layers in a sparse
VGG-16 benchmark. It outperforms the baseline architecture for dense CNN that exploits intra-output parallelism by
4x speedup. It achieves 3x effective GMACS over prior arts of CNN accelerator in total performance.
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1. Introduction

In modern artificial intelligence (AI) platforms, data pro-
cessing at the edge and on embedded systems requires high-
performance computing devices. Convolutional Neural Network
(CNN), which is one of the most vigorous AI algorithms, evolves
day-by-day for a vast number of applications especially in image
and video analytic domain, such as surveillance systems and au-
tonomous driving, because of their remarkable classification per-
formance shown in several image recognition studies [1], [2], [3]
on ImageNet benchmark [4]. The processing of these applica-
tions usually takes place at the edge (near sensor, such as camera)
or on embedded systems in order to achieve a real-time response.
Unfortunately, CNN comes with the cost of an excessive compu-
tation that becomes critical for real-time and low-power inference
processing on both edge and embedded systems. Most process-
ing time of CNN is consumed by convolutional layers. In order
to accelerate its computation, CNN requires high-performance
and low-power accelerator to deliver its superior ability, and pro-
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grammability of the device in response to its rapid growth. For
that reason, FPGA is one of the promising platforms for real-time
CNN acceleration at the edge and on embedded systems.

High-performance CNN accelerators bring about real-time
ability with the exploitation of four major techniques. First,
data-reuse maximization focuses on reusing input feature maps
(IFMs), kernels and output feature maps (OFMs). It is employed
by several low-power architectures [5], [6], [7], [8] because it re-
duces high-latency and energy-consuming external memory ac-
cess. Second, data precision minimization aims to reduce data
bitwidth while the recognition accuracy is maintained [9], [10].
Third, calculation-skip maximization reduces the calculation by
omitting zero-operand multiply-accumulate (MACC), which is
the result from weight pruning process [11], [12]. This allows
several architectures to achieve performance improvement by the
degree of sparsity [8], [13]. Fourth, parallel calculation maxi-
mization leverages various types of parallelism in CNN. Recent
publications exploit specific types of parallelism and schedule the
computation accordingly to maximally utilize the multipliers in
processing elements (PEs) [6], [7], [14]. Typically, the accelera-
tors exploit more than one techniques.

There exist two main problems that prevent CNN accelerators
from achieving superior performance. First, most CNN accel-
erators fail to maximize parallel calculation of all convolutional
layers due to the fact that the dominant type of parallelism varies
by the size and number of IFMs and OFMs, while the dataflow
and computation scheduling (mapping parallel operations to the
multipliers) remain fixed throughout all layers. Specifically,
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the accelerators have difficulty in adjusting their dataflow and
scheduling according to layer specification, which results in low
multiplier utilization and low performance in some layers. For
example, even though the architecture proposed in Ref. [7] ex-
ploits various types of parallelism, it cannot achieve high mul-
tiplier utilization in the first layer because of the fixed dataflow
and scheduling. To resolve this problem, flexible scheduling, aka
flexible parallelism, is required to improve multiplier utilization
with other types of parallelism according to the layer specifica-
tion. The second problem addresses the difficulty in effectively
employing calculation-skip maximization and parallel calculation
maximization techniques, specifically flexible parallelism, at the
same time. For example, parallelizing multiplications comprising
one output may occupy more multipliers, but it cannot fully lever-
age zero-skipping without complicating data control because the
scheduling is regulated by the pre-defined dataflow. As a conse-
quence, the dataflow to exploit flexible parallelism may reduce
calculation-skip ability.

We propose a parallelism-flexible convolution core for sparse
CNN *1 for accelerating convolutional layers. This paper includes
the following contributions:
( 1 ) we introduce a flexible parallelism concept to maximize

multiplier utilization;
( 2 ) we propose a parallelism-flexible convolution core for sparse

CNN that efficiently exploits weight sparsity by skipping
zero-operand computation;

( 3 ) we extend the determination of parallelism in effect and de-
gree of parallelism, P, to maximize multiplier utilization in
all convolutional layers of the sparse CNN;

( 4 ) to show the effectiveness of our method, we implemented
and evaluated the parallelism-flexible convolution core for
sparse CNN on Intel’s Arria10 and Stratix10 FPGAs.

Parallelism in effect and degree of parallelism refer to types of
parallelism that the proposed convolution core exploits in com-
puting a certain layer and degree of inter-output parallelism (the
number of OFMs to be computed simultaneously), respectively.

The rest of this paper is organized as follows. Section 2 de-
scribes CNN and the prior arts of CNN accelerators. Section 3
introduces flexible parallelism, and explains architecture organi-
zation and operations of the proposed parallelism-flexible convo-
lution core in leveraging both multiple types of parallelism and
sparsity. In Section 4, we present the effectiveness of the pro-
posed convolution core and make a comparison with prior FPGA-
based CNN accelerators. We conclude this paper in Section 5.

2. Related Studies

First, this section explains the terminology, algorithm, and par-
allelism of CNN. Then, it describes prior arts of CNN accelera-
tors by four acceleration techniques.

2.1 Preliminary of CNN
2.1.1 Terminology of CNN

A CNN consists of four kinds of layers: (1) convolutional
layer, which functions as a feature extractor; (2) pooling layer,

*1 A part of this work is proposed in Ref. [15].

Fig. 1 The computation of a convolutional layer and its parallelism.

which subsamples the extracted features; (3) normalization layer,
which normalizes feature correlations; (4) fully-connected layer,
which produces non-linear activations for regression or classifi-
cation problems. This paper focuses on accelerating the multi-
channel two-dimensional convolution of the convolutional layers,
which is computation-intensive and time-consuming.

Figure 1 illustrates the terminology of a convolutional layer,
where H and W are height and width of an IFM, Ci is the number
of input channels, S is stride (the number of pixels to shift the ker-
nel in convolution), K is kernel size (a kernel includes Ci ×K ×K

weights), X and Y are height and width of an OFM, and Co is the
number of output channels, which is equal to the number of ker-
nels. Each activation of the OFMs is computed by a deep nested
loop according to the following equations:

Avo(x, y) = f (Fvo(x, y)) (1)

Fvo(x, y) = bv +
Ci∑

t=1

K∑

m=1

K∑

n=1

kt
v(m, n) × Ft

i (x × S + m, y × S + n)

(2)

where Avo(x, y) is the activation at position (x, y) of the OFM v,
f is an activation function, Fvo(x, y) is the result of convolution
at position (x, y) between the IFMs and kernel v, bv is a bias of
kernel v, kt

v(m, n) is the weight at position (m, n) in channel t of
kernel v, and Ft

i (x × S +m, y × S + n) is the activation at position
(x × S + m, y × S + n) of IFM t.
2.1.2 Parallelism in CNN

There are four types of parallelism incorporated with con-
volutional layers: inter-layer, inter-output, intra-output, and
operation-level parallelism. Inter-layer parallelism is the par-
allelism that executes the convolution of multiple layers in a
pipeline manner. The latter three types comprise an intra-layer
parallelism, in which the MACCs within the same layer are com-
puted in parallel. The inter- and intra-output parallelism are
the parallelism between multiple OFMs (the Co axis in Fig. 1)
and output activations within an OFM (the X-Y plane in Fig. 1),
respectively. The operation-level parallelism is the most fine-
grained type that parallelizes the multiplications of the same out-
put activation. It occupies most multipliers when accelerating a
typical dense CNN, in which all weights are non-zero.

The dominant type of parallelism of each layer varies through-
out the CNN by layer specification, such as size and number of
OFMs. When the size of OFMs is large, the intra-output paral-
lelism is efficient in terms of multiplier utilization. However, mul-
tiplier utilization decreases as the OFMs become smaller. In this
case, inter-output parallelism can complement the small amount
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of intra-output parallelism, hence, increase multiplier utilization.

2.2 Prior Arts of CNN Accelerator
This section explains the prior-art accelerators in terms of four

techniques that they exploit to achieve real-time performance.
2.2.1 Data-reuse Maximization

Recent CNN accelerators exploit the weight sharing property
and data locality within a convolutional layer to maximize data-
reuse. They reuse IFMs, kernels, and OFMs in on-chip memory
to reduce high-latency and energy-consuming external memory
access through dataflow pattern and data tiling. Hence, data reuse
improves performance and reduces power consumption.

Efficient dataflow promotes data reuse in four major patterns.
First, weight-stationary dataflow pattern maximizes weight reuse
in the PEs, and shifting IFMs and OFMs to the neighboring
PEs [16], [17], [18], [19]. Second, the output-stationary dataflow
pattern maximizes output data reuse by accumulating the OFMs
locally in the PEs, while circulating the weights and/or IFMs
during the computation [6], [20], [21], [22]. Third, global reuse
dataflow pattern reuses both weights and IFMs from the global
on-chip memory [7], [23], [24], [25]. Fourth, row-stationary
dataflow maximally reuses weights, IFMs, and OFMs locally in
a row unit [5].

Data tiling partitions and processes IFMs in small tiles [7],
[23], [26] to reuse IFMs with all kernels. The SCNN [8] maps
data tiles onto its PEs in order to reuse both IFMs and OFMs
locally without inter-layer external memory access.

The proposed convolution core exploits data tiling and output-
stationary dataflow pattern to distribute kernels and reuse IFMs
and OFMs locally. Both techniques enable calculation-skip with-
out complex dataflow control to access IFMs or sparse weights,
while the execution time is reduced by the degree of sparsity.
2.2.2 Data Precision Minimization

Data precision minimization is achieved through a quantization
method that reduces the number of required bits for CNN compu-
tation without the loss of accuracy. Several techniques quantize
arithmetic precision of kernels, IFMs, and OFMs from floating
point to a few bits of fixed-point precision [9], [10], [12], [14],
[27]. This optimization lowers both computational resource per
one MACC and storage requirement of the customized hardware.
The proposed convolution core computes CNN with 16- and 32-
bit fixed-point precision for multiplication and accumulation of
MACC, respectively.
2.2.3 Calculation-skip Maximization

Calculation-skip maximization omits zero-operand MACCs
from the sparsity in IFMs and weights of the kernels. It reduces
the number of MACCs involved with non-zero weights and can
accelerate CNN inference computation by the degree of sparsity.
Sparsity in IFMs comes from activation functions such as Recti-
fied Linear Units. Weight pruning process introduces sparsity in
weights by zeroing out weight values with the trade-off between
the number of remaining weights and recognition accuracy. Many
state-of-the-art studies have shown that more than 80% of weight
sparsity is possible without jeopardizing the accuracy [11], [12].

Unlike dense CNN, accessing weights and IFMs of sparse
CNN has irregular patterns that may incur complex control. Re-

cent accelerators exploit weight sparsity or activation sparsity or
both. The ones that exploit weight sparsity usually use kernels
in sparse format to extract non-zero weights and skip MACCs
having zero-valued weights efficiently with the output-stationary
dataflow pattern [26], [28]. The architectures that leverage both
weight and IFM sparsity usually include a zero-detection mech-
anism to dynamically skip zero-operand multiplication [8], [13].
As a result, these architectures achieved performance improve-
ment over the dense CNN accelerator. The proposed convolution
core assumes a sparse CNN model and leverages weight sparsity
from a compressed CNN model in a straightforward way.
2.2.4 Parallel Calculation Maximization

To maximize parallel calculation, CNN accelerators sched-
ule MACCs from various types of parallelism onto their vast
amount of multipliers. The reconfigurable processor array maps
intra-output parallelism onto its PEs [6]. Many high-performance
architectures schedule multiple types of parallelism, i.e., intra-
output, inter-output, and operation-level parallelism, onto multi-
pliers by rows, columns, or groups of PEs [7], [14], [29]. How-
ever, they cannot achieve high performance in terms of giga oper-
ations per second (GOPS) in every layer because the scheduling
is fixed, while the dominant parallelism in each layer usually
varies across the CNN with different layer specifications, such
as the size and number of OFMs.

To further increase parallel calculation in every layer, the archi-
tecture should schedule MACCs onto the multipliers flexibly ac-
cording to the dominant parallelism of each layer. The FlexFlow
architecture [30] adjusts its scheduling of multiple types of par-
allelism to improve multiplier utilization layer by layer. Even
though it achieves near peak performance, it neither supports
the compressed CNN model nor exploits sparsity efficiently be-
cause it exploits operation-level parallelism. It is difficult to skip
zero-operand MACCs while exploiting multiple types of paral-
lelism, especially operation-level parallelism, without either com-
plex dataflow control mechanism or wasting a vast number of
multiplier cycles. That is because irregular sparsity pattern trick-
ers non-deterministic weight, IFM, and OFM access.

3. Parallelism-flexible Convolution Core for
Sparse CNN Accelerator

First, this section explains the format of the compressed CNN
model that packs a sparse CNN. Then, the proposed CNN accel-
erator is described. Finally, it proposes the concept of flexible
parallelism and the parallelism-flexible convolution core, which
effectively leverages weight sparsity and flexibly alternates the
scheduling of multiple types of parallelism layer by layer.

3.1 Compressed CNN Model
To reduce the required bandwidth in reading CNN model to

CNN accelerator and simply exploit weight sparsity, kernels of a
sparse CNN model from quantization and weight pruning is com-
pressed into a channel-major modified compressed sparse col-
umn format [13] layer by layer. Each channel of kernels in each
convolutional layer is compressed as a non-zero weight vector,
w, which includes non-zero weight elements, and a leading-zero
vector, z, which includes the number of zero-valued weights pre-
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ceding the non-zero weight at the same vector index as w.
For example, a convolutional layer that contains three kernels,

each of which includes two channels of 3 × 3-weights, is com-
pressed as shown in Fig. 2. The notation wi represents the ith non-
zero weight. The kernels are compressed channel by channel.
The non-zero weight vector of channel 1, wc1, includes non-zero
weights in order as shown by the bold arrow (written in chan-
nel 1 of kernel 1) from kernel 1 to kernel 3. The corresponding
leading-zero vector, zc1, includes the number of leading zeros of
w1, w2, w3, and so on, respectively. The number of leading zeros
is counted continuously regardless of different kernels. For that
reason, the number of leading zeros of w8 is 3 since there is one 0
after w7 in kernel 2 and two 0 before w8 in kernel 3. The weights
of channel 2 are compressed similarly.

3.2 Overview of CNN Accelerator
Figure 3 (a) illustrates an overview of the proposed CNN ac-

celerator, which includes five key components. The memory con-
troller reads and writes data from/to external memory, such as
DRAM, through a DDR memory interface with a 512-bit data
bus. It forwards incoming data, including compressed CNN
model, layer specification, parallelism in effect and degree of
parallelism (denoted as Parallelism eff. in the figure; see Sec-
tion 3.3.3 for detail), and IFMs, to the CNN controller. Sec-
tion 4.2.1 discusses the bandwidth in more details. To perform
convolution in a layer-wise manner, the CNN controller controls
the execution of the accelerator from the layer specification and
parallelism in effect, forwards the compressed CNN model to
the convolution core, and manages the incoming IFMs using line

Fig. 2 An example of compressing a convolutional layer to a compressed
CNN model.

Fig. 3 Architecture of the proposed CNN accelerator. (a) An overview architecture; (b) Architecture of
the proposed parallelism-flexible convolution core for sparse CNN.

buffer. The convolution core performs convolution and stores the
intermediate results in the partial sum buffer in Fig. 3 (b). The
pooling and f unit include multiple arithmetic logic units
(ALUs), which subsample and apply activation function to the
OFMs, and activation buffer, which stores the output activations.
Finally, the activations are either moved to external memory or
reused as IFMs of the next layer.

Since convolutional layers consume most CNN computation
time, this paper focuses on the convolution core that accelerates
the convolutional layers. It efficiently leverages both multiple
types of parallelism and weight sparsity of the compressed CNN
model according to the size of OFMs. The proposed convolution
core is applicable to various sizes of IFMs, sizes of OFMs, num-
bers of input channels, numbers of output channels, kernel sizes,
and strides. Other CNN processing, i.e., activation function, pool-
ing layers, and fully-connected layers, are lightweight, and hence
they can be computed on either general purpose processors or
specialized hardware such as EIE [13].

3.3 Convolution Core
To overcome the problems in exploiting multiple types of par-

allelism and its integration with calculation-skip, the proposed
convolution core flexibly adjusts its dataflow and scheduling to
multiple types of parallelism, i.e., intra- and inter-output paral-
lelism, with various degrees of parallelism layer by layer, and
eliminates the operations related to zero-valued weights through
output-stationary dataflow pattern. Compared to the conventional
accelerators, the proposed convolution core uses the parallelism
controller and the weight broadcaster to enable such abilities.
The weight broadcaster and parallelism controller compensate
the decreased multiplier occupancy due to reduced intra-output
parallelism by broadcasting different kernels and assigning re-
peated OFM coordinates to the PE grid, respectively, to increase
inter-output parallelism according to the degree of parallelism,
P. At the same time, the weight broadcaster distributes only
non-zero weights and their indices, which are calculated from
the leading-zero vector, to the PE grid. The irregular access to
IFMs due to weight sparsity is made simple with local indexing
to the addresses in local input buffer near PEs. Hence, the output-
stationary dataflow pattern that is regulated by our parallelism
controller and the weight broadcaster efficiently integrates both
flexible parallelism and calculation-skip.
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Fig. 4 The flexible parallelism concept. (a) Exploitation of intra-output parallelism; (b) Exploitation of
intra- and inter-output parallelism.

3.3.1 Flexible Parallelism Concept
To maximize parallel calculation (multiplier utilization) in ev-

ery convolutional layer throughout the CNN, flexible parallelism
changes dataflow and scheduling of the convolution layer by
layer. Figure 4 illustrates an example of the MACC scheduling.
A PE bank means a group of PEs that convolute the IFM pixels
with the same kernel. The scheduling when the architecture ex-
ploits only intra-output parallelism as parallelism in effect with
P = 1 is shown in Fig. 4 (a). All PEs convolute IFM’s sliding
windows with the same kernel to compute distinct OFM pixels
simultaneously and convolute with all kernels consecutively to
compute all OFMs. The scheduling when the architecture ex-
ploits both intra- and inter-output parallelism simultaneously, aka
multi-parallelism, as parallelism in effect with P > 1 is shown
in Fig. 4 (b). PEs within a PE bank compute distinct OFM pixels
with the same kernel at the same time to realize intra-output par-
allelism, while different PE banks compute distinct OFMs with P

different kernels to realize inter-output parallelism and each PE
bank computes OFMs with Co

P kernels sequentially. Depending
on P, several PE banks convolute distinct OFM pixels with the
same kernel to increase intra-output parallelism when P is small,
and convolute IFM with more distinct kernels to increase inter-
output parallelism when P is large.

The parallelism in effect and degree of parallelism are deter-
mined in advance in order to maximize multiplier utilization (see
Section 3.3.4). In addition, if the size of OFMs or P is large, IFMs
and OFMs are partitioned into tiles (data tiling) so that multipli-
ers and buffer can accommodate parallel MACCs and data, re-
spectively. For example, assuming that there are 50 PEs. If an
OFM consists of 100 output activations, the OFM is partitioned
into two tiles to be able to map on 50 PEs in case of P = 1. As P

grows larger, the OFM is further partitioned into four tiles in case
of P = 2 and so on. The PEs process one tile at a time.
3.3.2 Operations of the Convolution Core

The OFMs of each layer are computed as shown in Algo-
rithm 1. First, IFMs and OFMs are divided into T equal data tiles.
Then, the algorithm loops through all Ci IFMs of each tile in the
second loop in order to maximally reuse each IFM. To implement
multi-parallelism, the proposed convolution core flexibly unrolls
the third and fourth loop layer by layer according to P. Unrolling
the third loop parallelizes the convolution of P different kernels
to realize inter-output parallelism. Hence, P different OFMs are

Algorithm 1 Processing of a convolutional layer on the proposed
convolution core
1: for s from 1 to T do � Loop all Tiles

2: for t from 1 to Ci do � Loop all IFMs

3: for u from 1 to P do � Loop all degree of parallelism

4: for Fo(x, y) ∈ Ts do � Loop all outputs in tile

5: for Kt
v ∈ Ku do � Loop �Co

P � kernels

6: for kt
v(m, n) ∈ Kt

v and kt
v(m, n) > 0 do

7: � Loop all non-zero weights in kernel

8: Fvo(x, y)+ = kt
v(m, n) × Ft

i (x × S + m, y × S + n)

9: end for

10: end for

11: end for

12: end for

13: end for

14: end for

computed on PEs in P different PE banks simultaneously. Each
PE is assigned to compute �Co

P � kernels. The fourth loop iterates
all outputs at different OFM coordinates, Fo(x, y) of tile Ts. Un-
rolling this loop and mapping each output on different PEs real-
ize intra-output parallelism. Next, in line 5, the algorithm iterates
over each kernel, Kt

v, in the set of kernels assigned to sequen-
tially compute within one PE in the third loop, which is denoted
as Ku. Finally, the most inner loop sequentially accumulates the
result at coordinate (x, y) of OFM v, Fvo(x, y), with the multipli-
cation results of the non-zero weight elements, kt

v(m, n), and the
corresponding IFM, Ft

i (x × S + m, y × S + n).
3.3.3 Architecture Organization

The architecture of the proposed convolution core is illustrated
in Fig. 3 (b). It receives compressed CNN model, Parallelism Eff.,
and IFMs as input. The layer specification includes the size and
number of kernels, IFMs, and OFMs. Parallelism Eff. includes
parallelism in effect and degree of parallelism.
Parallelism Controller

The parallelism controller is responsible for alternating the
dataflow on the convolution core. It is composed of a broadcast
controller and a data sequencer. Both work according to the par-
allelism in effect and the degree of parallelism, P.

The broadcast controller forwards P to the weight broadcaster
to control the dataflow of kernels. It forwards 1 as P if the par-
allelism in effect is intra-output parallelism and P, where P > 1,
if the parallelism in effect is multi-parallelism with the degree of
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Fig. 5 Example of weight arrangement of four kernels in weight memory, so
that BCUs can broadcast weights from different kernels at the same
time.

parallelism P.
The data sequencer alternates the dataflow of IFMs through

the assignment of OFM coordinates to be computed by each PE.
For intra-output parallelism (P = 1), the data sequencer assigns
different coordinates to all PEs. For multi-parallelism, the data
sequencer assigns different OFM coordinates to PEs in �M

P � PE
banks, where M is the number of PE banks, and duplicates the
same coordinates for P times. For example, assuming that P = 2,
the OFM coordinates assigned to PE bank #1 to PE bank #( M

2 )
are different, but are the same as the ones assigned to PE bank
#( M

2 + 1) to PE bank #M. If data tiling is necessary, the data
sequencer repeats the coordinate assignment process for all tiles
after the convolution of the previous tile has completed.
Weight Broadcaster

The weight broadcaster is composed of a weight memory, an
index memory, a broadcast manager, and multiple broadcast units
(BCUs). First, the compressed CNN model of each layer is
loaded into the weight memory and index memory (Weight mem.
and Index mem. in Fig. 3 (b), respectively) channel by channel.
Next, upon the completion of storing IFM into the local input
buffer, the broadcast manager reads w and z of a channel from
the memories and distributes them to BCUs according to P. Fi-
nally, each BCU decompresses the compressed CNN model from
w and z and broadcasts them consecutively to a PE bank.

For ease of distributing the compressed CNN model to BCUs
in order to exploit multi-parallelism, w and z are re-ordered in ad-
vance according to P in such a way that weights and indices from
P different kernels can be read at the same time. When P = 1,
all BCUs broadcast the same weight value, so the weights and
indices in one channel of all kernels are ordered contiguously.
On the other hand, when P > 1, the weights and indices from
different kernels that must be broadcasted at the same time are
ordered in the same memory word. Figure 5 illustrates an ex-
ample of weight arrangement in the weight memory and weight
distribution to BCUs when assuming that there are four BCUs,
one memory word stores four weights, and P equals to 1, 2, and
4. The weights are re-ordered and distributed as follows:
• When P = 1 : the first memory word contains k1#1, k1#2,

k1#3, and k1#4. First, the weight k1#1 is distributed to all
BCUs, then, followed by k1#2, and so on.

• When P = 2 : the first memory word contains k1#1, k3#1,
k1#2, and k3#2. First, the weight k1#1 is distributed to

Fig. 6 Architecture of a PE bank. (a) an overview architecture of a PE bank;
(b) data layout of the local input buffer (IN BUF).

BCU#1 and BCU#2 and the weight k3#1 is distributed to
BCU#3 and BCU#4 at the same time, then followed by k1#2
and k3#2, and so on.

• When P = 4 : the first memory word contains k1#1, k2#1,
k3#1, and k4#1. The weight k1#1, k2#2, k3#3, and k4#4 are
distributed to BCU#1 through BCU#4, respectively.

Consequently, multiple kernels can be convoluted simultaneously
when P > 1. Hence, the weight broadcaster can alter the dataflow
of kernels to enable multi-parallelism.

To leverage sparsity, each BCU decompresses the compressed
CNN model by extracting only non-zero weights from w and ac-
cumulates their indices from z in order. Then, non-zero weights
and indices are broadcasted to a PE bank consecutively so that the
PEs continuously perform MACCs related to non-zero weights
while the ones related to zero-valued weights are skipped.
Processing Element Grid

A PE grid consists of multiple PE banks that perform MACCs,
and a partial sum buffer that stores accumulation results of the
previous input channels. One PE bank is connected to one BCU,
so the number of PE banks and the number of BCUs are equal.
Each PE bank receives IFMs from CNN controller, OFM coor-
dinates from data sequencer, and pairs of weight and index from
the corresponding BCU.

As shown in Fig. 6 (a), a PE bank includes G groups of PEs,
aka PE groups, that compute different OFM pixels. Every PE
group within a PE bank consumes the same pair of weight and
index but unique OFM coordinates.

A PE group consists of a forward register, an address calculator
unit, a local input buffer, a local data sequencer and PEs, which
are denoted as Fwd. register, Address Cal., IN BUF, D SEQ and
PEi in Fig. 6, respectively. The forward register receives IFMs
and forwards them to the neighbor PE group in order to reduce
physical wire delay. The address calculator determines the ad-
dress of the required IFM pixels from the OFM coordinate as-
signed to the PE group. The target IFM pixels of one channel are
stored in the local input buffer in order to reuse them for the com-
putation of all kernels. Assuming that there are N PEs in one PE
group, N consecutive OFM pixels of the same row starting from
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the assigned OFM coordinate are computed within a PE group.
The local input buffer is register array that stores K rows of N

overlapping IFM windows, where K is kernel size and S is the
stride. Specifically, it stores input pixels x to x+(N−1)×S +K−1
of row y to y+K−1 in total of K× ((N−1)×S +K) IFM pixels as
shown in Fig. 6 (b) when the assigned OFM coordinate is (x, y).
The local data sequencer selects data from the local input buffer
and passes them to PEs. Each PE is composed of a multiplier, an
adder, and an accumulation register. It multiplies the selected data
with the broadcasted non-zero weight and accumulates the result
with the partial sum result from either the partial sum buffer if
the weight is the first one of a kernel or the local accumulation
register otherwise. The accumulation result is stored in the accu-
mulation register, denoted as Acc reg in Fig. 6 (a), and it is written
to the partial sum buffer after the PE finishes the accumulation of
all weights within one channel of each kernel. These operations
are pipelined in order to compute MACC in every clock cycle and
achieve high frequency.

Figure 7 illustrates data layout in the partial sum buffer. When
P = 1, all output activations of one OFM in one tile are stored
in the same address of the partial sum buffer and the Co addresses
are required. On the other hand, when P > 1, all output activa-
tions of P OFMs in one tile are stored in the same address of the
partial sum buffer and Co

P addresses are used. Note that a tile is
smaller when P grows larger. Partial sum buffer is divided into M

banks to store the results from each PE bank. That is because PE
banks may perform convolution on different kernels, so they may

Fig. 7 The data layout in partial sum buffer assuming the number of output
activations in an OFM equals to the total number of PEs (a) when
P = 1, all output activations of one OFM are stored in the same
address and Co addresses are required; (b) when P > 1, all output
activations of P OFMs in one tile are stored in the same address and
Co

P addresses are required.

Fig. 8 Timing of data loading, computing, and stroing data of the convolution core using double buffer-
ing.

access M different addresses at the same time, while PEs within
a PE bank do the convolution with the same kernel and they store
results to the same address.

To handle irregularity in accessing IFM pixels caused by
weight sparsity, the irregular data access is made local in the PE
groups. The local data sequencer selects IFM pixels in the local
input buffer using the index of each non-zero weight for address-
ing. Since the local input buffer is register array, the irregular
access is simple and fast. The PE computes only the MACCs re-
lated with the non-zero weights. The accumulation result of the
previous channels is read from the partial sum buffer when the
first non-zero weight of a kernel is received. The accumulation
result up to the current channel is written to the partial sum buffer
after the MACC of the last non-zero weight of a kernel.

Double Buffering To hide the latency of data transfer from
external memory, weight memory (Weight mem.), index memory
(Index mem.), local input buffer (IN BUF), and partial sum buffer
are implemented with double buffer. Figure 8 illustrates data
load, compute, store timing of the proposed convolution core.
First, the compressed CNN model and IFMs of input channel 1
of the first tile are pre-fetched from external memory to weight
mem.#0 and IN BUF#0, respectively. Then, the PE grid performs
MACCs on the pre-fetched data and stores the results in partial
sum buffer#0. At the same time, the compressed CNN model
and IFM pixels of input channel 2 of the first tile are loaded into
weight mem.#1 and IN BUF#1, respectively. While the PE grid
is computing the last channel of the tile, the first input channel of
IFM of the next tile is loaded into the next available IN BUF and
the first input channel of compressed CNN model is re-loaded to
the next available Weight mem. The results of the second tile will
be stored in partial sum buffer#1 so that the results of the first tile
in partial sum buffer#0 are transferred to the external memory or
fed back to the CNN controller as IFMs of the next layer.
3.3.4 Determination of Parallelism in Effect and Degree of

Parallelism
The parallelism in effect and degree of parallelism, P, of a layer

are determined in advance based on layer specification, the num-
ber of BCUs, and the number of PEs in layer-wise as the value
that maximizes PE utilization, U. In this context, PE utilization
is the percentage between the total number of MACCs of a sparse
layer and the total available PE cycles, and is defined as follows:

U =
X × Y ×Co × K × K ×Ci × R × 100

N ×G × M × E
, (3)

where X, Y , Co, K, Ci are as in Fig. 1, R is ratio of the number of
non-zero weights and the number of all weights, N, G, M refer to
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architecture’s parameters in Section 3.3.3, and E is the estimated
number of cycles in computing a convolutional layer as follows:

E = �Co × K × K ×Ci × R × T
P

� + H × T ×Ci, (4)

T = �� X
N
� × Y

G × �M
P �
�, (5)

The first term of E is the theoretical time for computing the layer
with P, and the second term is the total overhead for decompress-
ing and broadcasting the compressed CNN model.

The overhead, H, incurs once for one loop of all IFMs (see
Algorithm 1) as illustrated in Fig. 8, and it is constant regardless
of layer specification. The existence of the overhead term means
that larger P incurs more decompressing overhead even though
inter-output parallelism improves multiplier utilization theoreti-
cally.

4. Evaluation

To demonstrate the merits of the proposed parallelism-flexible
convolution core for sparse CNN, we evaluate performance, re-
source usage on FPGA and power consumption. This section ex-
plains the experimental methodology, and presents the results and
the comparison with prior arts of CNN accelerator on FPGA.

4.1 Experimental Methodology
4.1.1 Workload

In the experiment, we measure the performance in computing
the convolutional layers of VGG-16 [2]. It is chosen because of
three reasons. First, VGG-16 possesses different dominant paral-
lelism within the same network because it includes convolutional
layers with various size of IFMs, size of OFMs, number of in-
put channels and number of output channels. For example, the
dominant parallelism of the shallow layers, such as conv1 1 or
conv1 2, is intra-output parallelism because their size of OFMs is
as large as 224×224 pixels. On the contrary, the inter-output par-
allelism is dominant in the deep layers like conv5 1, conv5 2, and
conv5 3 because the number of kernels is larger than the size of
OFMs. Second, VGG-16 serves as the backbone of many CNNs,
such as SSD [31]. Third, VGG-16 is sparsified by several tech-
niques and its state-of-the-art sparsity is published in Ref. [12].

We generated a sparse VGG model by removing small-valued
weights according to the sparsity reported in Ref. [12]. The model
was compressed into the compressed CNN model using 16-bit for
weight and 4-bit for index. The arithmetic precision is 16-bit for
multiplication and 32-bit fixed-point for accumulation.
4.1.2 Architecture Configuration

The proposed convolution core is implemented on Intel’s Ar-
ria10 GX1150 and Stratix10 GX2800 FPGA with parameters as
shown in Table 1. A forward register is inserted every one other
PE groups in order to save registers. The multipliers of two PEs
are mapped onto one DSP since Intel’s DSP contains two 18x19-
bit multipliers. Specifically, a PE is implemented with one 18x19-
bit multiplier, one 32-bit adder, and one 32-bit register for accu-
mulating the results.

In the evaluation, the proposed convolution core execute the
convolution layer by layer. The compressed CNN model, IFMs,

Table 1 Parameters of the implemented convolution core.

Parameter Value
M 16
G 4
N 16
Total PE (multiplier) 1,024

Fig. 9 The estimated PE Utilization when P = 1, 2, 4, 8 for conv1 1,
conv2 1, conv3 1, conv4 1, and conv5 1 of VGG-16.

Table 2 The parallelism in effect and degree of parallelism for convolu-
tional layers of VGG-16.

Layer Parallelism in effect Degree of parallelism (P)
conv1 1 ∼ conv1 2 Intra-output parallelism 1
conv2 1 ∼ conv2 2 Multi-parallelism 2
conv3 1 ∼ conv3 3 Multi-parallelism 4
conv4 1 ∼ conv4 3 Multi-parallelism 8
conv5 1 ∼ conv5 3 Multi-parallelism 4

and OFMs of each layer were transferred between the FPGA and
external memory.

The proposed convolution core performs convolution accord-
ing to the determination of parallelism in effect and degree of
parallelism, P, as described in Section 3.3.4. This experiment
considers P as 1, 2, 4, 8 or 16. Figure 9 shows the relationship
between P and the estimated PE utilization of VGG-16’s conv1 1,
conv2 1, conv3 1, conv4 1, and conv5 1 layers. The other lay-
ers exhibit similar relationship as the layer computing the same
size of OFMs. The overhead of decompressing the compressed
CNN model, H, is 16 cycles in our implementation that is de-
signed to achieve high frequency. As a result, increasing P incurs
more overhead cycles, hence PE utilization may degrade. For
conv1 1, intra-output parallelism occupies all PEs since the size
of OFMs is large. The utilization is less than 100% due to the de-
compressing overhead. For conv2 1, conv3 1, and conv4 1, even
though the size of OFMs is large, there exist a small amount
of idle PEs when employing only intra-output parallelism. The
size of conv5 1’s OFMs is very small compared to the number
of PEs that only intra-output parallelism is not enough to utilize
a large number of PEs. Therefore, employing multi-parallelism
by increasing P for conv2 1 through conv5 3 improves multiplier
utilization. According to the estimated PE utilization based on
Eq. (3), Table 2 summarizes parallelism in effect and degree of
parallelism, P, for exploiting flexible parallelism in the experi-
ments.
4.1.3 Evaluation Method

Performance The execution cycles and giga MACCs per sec-
ond (GMACS) were measured using RTL simulation.

Resource usage The resource usage was reported from the
HDL synthesis results using Quartus Prime software.

Power consumption The resource usage was reported from
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Fig. 10 Speedup of the proposed parallelism-flexible convolution core by layer of VGG-16 compared to
the baseline architecture.

the power analysis tool of Quartus Prime software.

4.2 Evaluation Results on VGG-16
The results, i.e., speedup, multiplier utilization, and effective

GMACS, show that the proposed convolution core has achieved
high performance with a small amount of FPGA resource for con-
trolling flexible parallelism and weight sparsity. The power con-
sumption shows that the proposed convolution core is efficient for
edge processing and embedded systems.
4.2.1 Performance

To illustrate the effectiveness of flexible parallelism and weight
sparsity, we compared the performance of the proposed convo-
lution core that exploits only flexible parallelism, only weight
sparsity, and both techniques with our baseline architecture. The
baseline architecture is the architecture that exploits only intra-
output parallelism and does not skip zero-operand MACCs.
Speedup The speedup of the proposed convolution core over the
baseline architecture in computing VGG-16’s convolutional lay-
ers is shown in Fig. 10. The results of the baseline architecture
are denoted by Baseline, and the results of the proposed convo-
lution core that employs only flexible parallelism, only weight
sparsity, and both techniques are denoted by Proposed-Flexible,
Proposed-Sparse, and Proposed-Both, respectively.

By exploiting flexible parallelism, the performance of
Proposed-Flexible achieves 1.42x speedup over the Baseline in
the total of all layers. For layer group conv1 x, the Proposed-
Flexible does not gain speedup because the intra-output
parallelism already occupies all PEs. On the other hand, the
intra-output parallelism in layer conv2 1 through conv5 3 leaves
some PEs idle. By occupying them with inter-output parallelism,
the Proposed-Flexible gains speedup over the Baseline. In layer
group conv2 x, conv3 x and conv4 x, there are only a 5%, 23%
and 23% of idle PEs in computing as a dense CNN, respectively,
so the Proposed-Flexible gains 1.13x speedup in average. Layer
group conv5 x takes advantage of the flexible parallelism the
most because there are as much as 81% of idle PEs when only
intra-output parallelism is exploited. It gains 3.96x speedup
compared to the Baseline. Such speedup is achieved because
the proposed convolution core can flexibly alternate the dataflow
to various degrees of parallelism of multi-parallelism that is the
most beneficial for each convolutional layer.

The performance of Proposed-Sparse achieves 2.96x speedup
in the total of all layers over the Baseline. By leveraging weight
sparsity, it can reduce the execution cycles by the degree of spar-
sity and gain speedup in every layer. Hence, skipping zero-
operand MACC is highly effective in acceleration.

The Proposed-Both achieves 3.73x speedup in the total of all
layers since it leverages flexible parallelism and weight spar-

Fig. 11 Active multiplier utilization of the proposed parallelism-flexible
convolution core by layer of VGG-16 compared to the baseline ar-
chitecture.

sity with simple dataflow control. The speedup of layer group
conv1 x comes from weight sparsity only, while the speedup of
other layers comes from both techniques. In layer group conv5 x,
the speedup mainly comes from flexible parallelism. The maxi-
mum speedup of 11.95x is achieved in layer conv5 2. However, it
is noticeable that the Proposed-Both gains less speedup than the
Proposed-Sparse in some layers, such as layer group conv4 x.
Furthermore, considering 1.42x and 2.96x speedup in the total
of all layers from both techniques, we expected a higher total
speedup at 4.17x. Such speedup was not achieved because of two
reasons: (1) the imbalance workload of sparse CNN leaves some
PEs idle in order to wait for the others to finish their workload
of the same channel when inter-output parallelism is leveraged;
(2) the decompressing overhead exists and becomes larger when
the exploitation of higher P requires data tiling. We discuss these
insufficiencies in Section 4.5.
Active Multiplier utilization To confirm that the proposed con-
volution core can improve PE utilization in computing sparse
CNN, active multiplier utilization, which is defined as the per-
centage of the number of MACCs incorporated with non-zero
weights and the total available multiplier cycles, was examined.
Since a PE includes one multiplier and one adder in the proposed
convolution core, multiplier utilization and PE utilization is the
same in this context.

Figure 11 shows active multiplier utilization, which is calcu-
lated as in Eq. (3) with E as the number of execution cycles from
the simulation. The active multiplier utilization results of the
Baseline and the Proposed-Flexible are quite low in all layers be-
cause they compute a sparse CNN in the same way as a dense
CNN. In other words, they compute zero-operand MACCs.

Compared to the Baseline, active multiplier utilization of the
Proposed-Flexible improves in layer conv2 1 through conv5 3,
where multi-parallelism is applied. In layer group conv5 x, the
utilization increases by approximately 4x as expected when ex-
ploiting multi-parallelism with P equals to 4 and the utilization
of the Baseline is under 100

P %. The improvement is less than the
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degree of P in layer conv2 1 to conv4 3 because 77% to 95% of
multipliers are occupied considering that they execute as dense
CNN, which leaves only a small room for improvement.

The active multiplier utilization rises dramatically when ex-
ploiting weight sparsity because all MACCs that take place when
using the Proposed-Sparse and the Proposed-Both are meaning-
ful. The active multiplier utilization of the Proposed-Both reaches
almost 70% in every layer and as high as 77% in total. It is higher
than the Proposed-Sparse except for the layers that achieve lower
speedup because of multi-parallelism. However, the multipliers
of Proposed-Both are not fully utilized from two causes: (1) ar-
chitectural fragmentation refers to the fact that PEs are idle be-
cause the parameters in Table 1 limit scheduling. There exist two
types of fragmentation. First, fine-grained fragmentation refers to
the case that some PEs within a PE group are idle when the num-
ber of the dimension X of OFM is indivisible by N because the
local input buffer limits that all PEs in the same PE group must
process the OFM pixels from the same row. Second, medium-
grained fragmentation refers to the situation that some PE groups
are idle when the number of OFM pixels in one tile is indivisible
by N ×G because the BCUs and PE banks are connected one-to-
one, so inter-output parallelism cannot be scheduled within the
same PE bank to occupy the idle PE groups. We explain further
in Section 4.5; (2) imbalance workload as mentioned above.
Required external memory bandwidth The logical bandwidth
of the proposed convolution core is 100 Gbps (512 bits data
bus operating at 200 MHz), which is achievable in most FPGA
boards [32], [33]. The required bandwidth of each VGG-16’s
convolutional layer is calculated as follows:

bandwidth =
total bits f rom external memory

ideal computation time
, (6)

where total bits f rom external memory includes total bits of
compressed CNN model, Bitmodel, and total bits of IFMs, BitIFM .
The Bitmodel is calculated as follows:

Bitmodel = #weightnz × T × (Bitw + Bitz), (7)

where #weightnz is the number of non-zero weights in a layer, T is
number of tiles as in Eq. (5) (because we reload the compressed
CNN model for every tile), Bitw is the number of bits per one
weight, which is 16 bits, and Bitz is the number of bits per one
leading-zero value, which is 4 bits. The BitIFM is calculated as
follows:

BitIFM = W × H ×Ci × Bitdata, (8)

where W, H, Ci are as in Fig. 1, and Bitdata is the number of
data bits, which is 16 bits. The ideal computation time is the
time for computing MACCs of the sparse CNN with 1,024 PEs
at 200 MHz. The result of the calculation shows that the required
bandwidth is 29.2 Gbps, which is low compared to the available
bandwidth. Therefore, data transfer time can be hidden by double
buffering, are hence does not affect the performance of the pro-
posed convolution core.
4.2.2 Resource Usage and Power Consumption

Table 3 shows the Arria10 GX1150 FPGA’s resource usage
of the implementation of the proposed convolution core with

Table 3 Resource Usage of the implementation of the proposed convolution
core with 1,024 PEs optimized for VGG-like convolutional layers
on Intel’s Arria10 GX1150.

Module LUTs Registers DSPs M20K

Parallelism Cntl 10,719 (2%) 16,892 (1%) 49 (3%) 0 (0%)

Broadcaster 27,725 (3%) 17,156 (1%) 1 (0%) 104 (3%)

PE Grid 202,309 (24%) 344,416 (20%) 576 (38%) 1,664 (61%)

Core (Total) 240,753 (29%) 378,543 (22%) 626 (41%) 1,768 (64%)

1,024 PEs that is optimized for VGG-like convolutional layers
(kernel size is 3 and stride is 1). The resource usage for the par-
allelism controller and the weight broadcaster (Parallelism Cntl
and Broadcaster in Table 3) is 5, 2, 3, and 3% of LUTs, registers,
DSPs, and M20K block RAMs (BRAMs), respectively. It shows
that the proposed convolution core can leverage both flexible par-
allelism and weight sparsity of sparse CNN simply by adjusting
the dataflow with a very small resource usage. The maximum
frequency of the implementation is 270 MHz.

The result shows that BRAMs, which are used up to 65%, are
the bottleneck. They are used for storing the compressed CNN
model of each layer and the partial sum of OFMs. A large BRAM
usage comes from two reasons. First, the design requires a wide
bitwidth memory. The weight and index memories for storing
the compressed CNN model consume 104 blocks of BRAMs (52
blocks each for each memory). They require wide bitwidth to
support the maximum degree of inter-output parallelism accord-
ing to the number of BCUs. The number of BRAMs can be re-
duced when the number of BCUs decreases. Likewise, the partial
sum buffer, which consumes 1,664 blocks of BRAMs (26 blocks
for each PE group), requires wide bitwidth because the bitwidth
of the partial sum is as high as 32 bits. Second, we prepared the
BRAMs for partial sum buffer for 1,024 PEs in the worst case sce-
nario that P equals to 1 in the 512-kernel layers. In that case, it
requires 32 × 1,024 bits with 512 × 2 addresses in total to accom-
modate the data with double buffer. However, flexible parallelism
technique employed by the proposed convolution core may re-
duce the required BRAMs when computing VGG-16. This issue
is discussed in Section 4.5.

The power consumption of the proposed convolution core is 25
Watts. It is considered efficient for edge processing platform or
embedded systems considering its deliverable performance.

4.3 Comparison with Prior FPGA-based CNN Accelerator
The design quality of the proposed convolution core was com-

pared with prior FPGA-based CNN accelerators. First, we make
a fair comparison in terms of performance, i.e. active multiplier
utilization and effective GMACS, to demonstrate that the pro-
posed convolution core can increase multiplier utilization, hence,
improve the GMACS performance. Then, we make a compari-
son with the prior arts at their best performance to show the effi-
ciency of the proposed convolution core. Since the definition of
PE is different among FPGA-based CNN Accelerators, we refer
to the resource for convolution as multiplier in this section. Note
that prior accelerators report giga operations per second (GOPS),
where one GMACS is equivalent to two GOPS.
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Fig. 12 Active multiplier utilization of Caffeine, NEURAghe, and the proposed parallelism-flexible con-
volution core by layer of VGG-16 (a) in computing dense CNN; (b) in computing sparse CNN.

Fig. 13 Performance in GMACS of Caffeine, NEURAghe, and the proposed parallelism-flexible convo-
lution core by layer of VGG-16.

4.3.1 Performance
To make a fair comparison, we selected prior accelerators

based on types of parallelism that they exploit and that they pro-
vide their results on VGG-16. Their descriptions are as follows:
• Caffeine [7] implements inter-output and operation-level

parallelism of multiple IFMs with the factor of 32 × 32 for
unrolling the parallelism of OFMs and IFMs in total of 1,024
multipliers. Its operation frequency is 200 MHz on Xilinx’s
Ultrascale KU060.

• NEURAghe [29] implements intra-output and operation-
level parallelism. It includes 16 SoP modules, each of
which contains 54 multipliers, in total of 864 multipliers. It
was not scaled to 1,024 multipliers due to architecture con-
straints. We scaled their reported performance that operated
at 140 MHz to the performance at 200 MHz as follows:

GMACS 200 MHz =
GMACS 140 MHz ∗ 200

140
, (9)

where GMACS 200 MHz and GMACS 140 MHz are GMACS at
200 MHz and 140 MHz, respectively.

Active Multiplier Utilization To show that the proposed convo-
lution core can efficiently utilize multipliers, we show the active
multiplier utilization in two aspects: (1) in computing a dense
CNN; (2) in computing a sparse CNN. In this context, the active
multiplier utilization is not equivalent to PE utilization since the
definition of PE varies between the chosen accelerators. For Caf-
feine and NEURAghe, the active multiplier utilization, UEst., is
calculated from the performance in GMACS as follow:

UEst. =
GMACS 200 MHz × 100

#MUL × f
, (10)

where #MUL and f are the number of multipliers and operating
frequency, respectively.

First, Fig. 12 (a) shows active multiplier utilization of the Caf-
feine, NEURAghe, and Proposed-Flexible in computing a dense
CNN to demonstrate the utilization improvement from flexible
parallelism. Note that the utilization of Proposed-Flexible here

is different from the previous section because the one in the pre-
vious section is the utilization in computing a sparse CNN as a
dense CNN, so the number of meaningful MACCs is less than a
dense CNN. The figure shows that the Proposed-Flexible utilizes
the multipliers better than both Caffeine and NEURAghe in al-
most all layers and in the total of all layers. That is because the
Proposed-Flexible alternates the parallelism in effect and P to use
the one that theoretically results in the highest active multiplier
utilization. However, the utilization of layer group conv4 x is
slightly lower than the Caffeine and NEURAghe due to the effect
of decompressing overhead and fine-grained PE fragmentation.

Second, Fig. 12 (b) shows active multiplier utilization in com-
puting a sparse CNN. Our superior active multiplier utiliza-
tion shows that most multiplier cycles are spent on meaningful
MACCs, unlike the architectures that exploit operation-level par-
allelism and waste time on zero-operand MACCs. Furthermore,
the results also imply that flexible parallelism works well with
weight sparsity since the utilization of all layers is relatively high.
GMACS In Fig. 13, the performance in GMACS is illustrated.
The Proposed-Both (Effective) refers to the equivalent effective
GMACS that the proposed convolution core can achieve from
leveraging weight sparsity. Since the proposed convolution core
skips all zero-operand MACCs, it can achieve a superior GMACS
compared to other accelerators. The effective GMACS of the pro-
posed convolution core in computing all 13 convolutional layers
of VGG-16 is 480.7 GMACS.
4.3.2 Accelerator Comparison

To understand the usability of the proposed convolution core,
we make a comparison with prior FPGA-based accelerators ac-
cording to their reported implementation. In addition to the
above-mentioned accelerators, we also compared the proposed
convolution core to the accelerators in Ref. [14] and [26] (512-
opt-pr variant). While Caffeine [7], NEURAghe [29] and the
work in Ref. [14] compute a dense CNN, the work in Ref. [26]
and the proposed convolution core can skip MACCs related to
zero-valued weights.
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Fig. 14 Speedup of the proposed parallelism-flexible convolution core by kernel size and stride compared
to the baseline architecture.

Table 4 Comparison with prior FPGA work.

[7] [29] [14] [26] ours

Device Zynq Zynq Zynq Arria10 Arria10

KU060 XC7Z045 XC7Z045 SX660 GX1150

Frequency 200 MHz 140 MHz 150 MHz 120 MHz 200 MHz

#Multipliers 1,024 864 1,152 - 1,024

(#DSPs) (1,058) (864) (780) - (626)

Power (Watt) 26 10 9.63 - 25

Effective GOPS 310 170 188 53 960

Resource Efficiency 0.31 0.20 0.16 - 0.94

Power Efficiency 12.4* 17.0* 19.50* - 38.4**
Resource Efficiency is GOPS/Multiplier and Power Efficiency is GOPS/Watt
*The power consumption is measured for the entire system of the CNN accelerator
**The power consumption is measured when there is only the convolution or core on FPGA

Table 4 presents the comparison of the proposed convolution
core with prior FPGA-based CNN accelerators. All FPGAs are
implemented for 16-bit fixed-point arithmetic precision. #Mul-
tipliers refers to the number of logical multipliers for MACCs
on the design, which is calculated based on the parameters de-
scribed in each paper. #DSPs refers to the number of DSPs uti-
lized on each accelerator as reported. Note that a Xilinx’s DSP
and an Intel’s DSP can accommodate one and two 16-bit fixed-
point MACCs, respectively. The GOPS is evaluated from 13 con-
volutional layers of VGG-16.

Compared to other CNN accelerators, the proposed convo-
lution core outperforms them in terms of effective GOPS per-
formance, effective resource efficiency and effective power effi-
ciency. It achieves 3x, 5x, 5x and 18x better performance than
the Caffeine, NEURAghe, the work in Ref. [14] and the work in
Ref. [26], which leverages sparsity, respectively. In the case of
Ref. [26], the low performance despite the fact that it can leverage
sparsity is partially due to a relatively low frequency, which might
be the results from high-level synthesis. It seems that our high ef-
fective GOPS is the result of high frequency. However, when we
scaled the NEURAghe as they claim to a larger FPGA, which
may bring the frequency up to 200 MHz and double its perfor-
mance, the proposed convolution core still outperforms in terms
of effective GOPS. Similarly, we achieved the highest effective re-
source efficiency. Our high effective power efficiency implies that
the architecture is capable of processing one image with a lower
power budget. This means that the proposed convolution core is
efficient for being a platform at the edge or on embedded systems.

4.4 Applicability to Modern State-of-the-art CNNs
Based on our survey, the convolutional layer specification of

modern state-of-the-art CNNs varies by kernel size and stride
in addition to the size of IFMs, the size of OFMs, the num-

Fig. 15 Active multiplier utilization of the proposed parallelism-flexible
convolution core by kernel size compared to the baseline architec-
ture when stride is 1. The active multiplier utilization is the same
when stride is 2.

ber of input channels and the number of output channels. Ex-
cept for AlexNet [1] which contains kernel size of 11 and stride
4 in the first layer, most modern state-of-the-art CNNs, such as
YOLOv2 [34], FCN [35] and ResNet [3], contain convolutional
layers with kernel size between 1 to 7 and stride of 1 and 2.

The concept of the proposed convolution core is effective for
not only various sizes of IFMs, sizes of OFMs, numbers of in-
put channels and numbers of output channels as shown in the
experiment on VGG-16, but it also gains speedup and multiplier
utilization despite various kernel sizes and strides. To show that
the proposed convolution core can handle a wide range of modern
CNNs, the implementation of the proposed convolution core was
extended to various kernel sizes and strides by (1) adding logic for
model decompression for various kernel size in the broadcaster;
(2) enlarging local input buffer of each PE group to accommodate
data for kernel size up to 7 and stride up to 2; (3) adding logic for
selecting IFM pixels from local input buffer according to the in-
dex of sparse weights. The kernel size up to 7 and stride up to
2 were chosen because larger kernel size and stride are rare (no
such parameter in YOLOv2, FCN or ResNet) although they can
be handled by extending the implementation in a similar manner.
In the evaluation of the extended implementation, a sparse model
of convolutional layers was generated by zeroing out small values
from a randomly generated kernels. The layer specification, i.e.
X, Y , Ci, Co and R, are fixed according to the conv5 1 of VGG-
16 because its speedup is achieved from both sparsity and flexible
parallelism. Likewise, P is chosen as 4 since it is independent of
kernel size and stride.

The speedup and active multiplier utilization are shown in
Fig. 14 and Fig. 15, respectively. Despite different strides, the
speedup and active multiplier utilization are the same because
the total number of MACCs is equal for the same size of OFMs
and kernel size. For different kernel sizes, the Proposed-Flexible,
Proposed-Sparse, and Proposed-Both achieve similar speedup
and active multiplier utilization since performance improvement
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Fig. 16 Speedup of the proposed parallelism-flexible convolution core by layer of VGG-16 in ideal exe-
cution scenario.

Table 5 Resource Usage of the extended implementation of the proposed
convolution core with 1,024 PEs on Intel’s Stratix10 GX2800.

Module LUTs Registers DSPs M20K

Parallelism Cntl 12,750 (1%) 20,143 (1%) 49 (1%) 0 (0%)

Broadcaster 30,804 (2%) 18,934 (1%) 1 (0%) 104 (1%)

PE Grid 328,430 (18%) 736,013 (20%) 576 (10%) 1,664 (15%)

Core (Total) 374,208 (21%) 774,782 (21%) 626 (11%) 1,768 (16%)

comes from sparsity and P, which are not affected by kernel size.
Nevertheless, as the kernel size grows, more speedup and ac-
tive multiplier utilization are achieved because they suffer less
from imbalance workload. The performance improvement in
both VGG-16 benchmark and this experiment is achieved by the
concept of the parallelism-flexible convolution core, hence, they
are not affected by the extension of the implementation.

The synthesis result in Table 5 shows the required resources.
The resources in the PE Grid increase due to the larger local in-
put buffer and IFM pixel selection from the local input buffer.
The increased resources in broadcaster and parallelism controller
come from accumulating the index of sparse weight during model
decompression and assigning OFM coordinates for a larger size
of OFMs, respectively. The extended implementation of the
proposed convolution core is synthesized for Intel’s Stratix10
GX2800 FPGA. We have tried to evaluate the extended imple-
mentation on Arria10, however, the required resources exceed
the capacity of Arria10 GX1150 FPGA, though the numbers in
Table 5 seem likely to accommodate in the capacity of Arria10.
We believe this comes from the architectural difference between
Arria10 and Stratix10; for instance, Stratix10 has special regis-
ters on routing network called HyperFlex. In other words, the
proposed architecture is able to exploit the latest feature of state-
of-the-art devices. For kernel size of 7 and stride of 2, the size of
input buffer increases by 4.8 times compared to when kernel size
of 3 and stride of 1. Consequently, the LUTs for selecting IFM
pixels from input buffer also increase despite the simple and fast
access.

As the state-of-the-art CNNs, such as YOLOv2 and ResNet,
have as much as 1k or 2k output channels in a convolutional layer,
a large number of output channels can be handled by either in-
creasing the size of output buffer or using P > 1. In the extended
implementation, we keep the output buffer size as 512 addresses
and using P > 1 because such large number of output channels
usually occurs in deep layers, where the size of OFMs is small
that degree of parallelism P is more than 1.

The results have shown that the proposed convolution core is
useful for various layer specifications. It is applicable to accel-
erating the convolutional layers for various state-of-the-art CNNs

Fig. 17 Active multiplier utilization of the proposed parallelism-flexible
convolution core by layer of VGG-16 in ideal execution scenario.

such as YOLOv2, FCN, ResNet.

4.5 Discussion
This section analyzes the insufficiencies and bottleneck of our

work. Then, it discusses possible solutions and improvement.
4.5.1 Performance

There exist three insufficiencies in the proposed convolution
core that prevent it from bringing about its peak performance.
First, idle PE cycles arise from the imbalance workload. Second,
decompressing the compressed CNN model incurs decompress-
ing overhead. Third, the architectural fragmentation constraints
the scheduling of parallelism.

The first insufficiency is that the imbalance workload of sparse
kernels increases idle PE cycles when the proposed convolution
core exploits inter-output parallelism. That is because the pro-
posed convolution core unrolls the degree-of-parallelism loop in
line 3 in Algorithm 1 to implement inter-output parallelism. If
the total number of non-zero weights in all kernels (loop in line
5 and 6) that belong to each iteration of line 3 is not equal, PEs
are idle in order to wait for PEs in other iterations to finish their
workload. To investigate the effect of the imbalance workload,
we generated an artificial sparse VGG-like CNN that the work-
load in every kernel is equal and measure the performance, which
is shown as Proposed-Both-Balance in Fig. 16. The result shows
that the overall performance is improved by 9%. In addition, the
Proposed-Both-Balance outperforms the Proposed-Sparse in ev-
ery layer, which implies that the flexible parallelism can improve
the performance of every layer. Figure 17 illustrates active mul-
tiplier utilization, which shows that the Proposed-Both-Balance
utilizes PEs better because no PE waits for the others. This prob-
lem can be solved in either hardware or software. In hardware,
the kernels should be divided into P partitions with an arbitrary
number of kernels per partition in such a way that the workload
is balanced. However, this may cause complication in storing the
results to the partial sum buffer because the partitioning may vary
in every input channel. In software, the CNN sparsification pro-
cess should constraint the number of non-zero weights of each
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kernel so that it results in a balanced workload.
Second, the existence of decompressing overhead degrades

both performance and active multiplier utilization because the
PEs are idle during those cycles. As shown in Fig. 8, the over-
head occurs once every input channel as a pipeline latency. This
means that more data tiles due to a large P incur more overhead,
which degrades the benefit of flexible parallelism. Figure 16 and
Fig. 17 show that the speedup and utilization of the ideal execu-
tion (Proposed-Both-Balance-noOverhead) improve and the ef-
fect of overhead is illustrated with the difference of Proposed-
Both-Balance and Proposed-Both-Balance-noOverhead. A 16-
cycle decompressing overhead comes from the pipeline for de-
compressing the compressed CNN model that aims to achieve
high frequency. As a consequence, decreasing this overhead may
degrade the operating frequency, which results in longer execu-
tion time despite the reduced execution cycles.

Third, the proposed convolution core suffers from the archi-
tectural fragmentation that prevents PE occupancy during convo-
lution cycles. As mentioned above, there are two types of frag-
mentation: fine-grained and medium-grained. The example of
fine-grained fragmentation is layer group conv4 x, where 28 pix-
els in one row of OFM leave four idle PEs out of 32 PEs in two
PE groups, each of which contains 16 PEs. It adds up to at least
12.5% of all PEs. They cannot be occupied due to the local input
buffer limitation. Medium-grained fragmentation occurs in layer
group conv5 x, where 14 × 14 output pixels of one OFM occupy
only 196 PEs out of 256 PEs in four PE banks. The effect is as
large as 24% of all PEs, which is the main reason for no more
than 76% of active multiplier utilization. The architecture is un-
able to schedule neither inter- nor intra-output parallelism due
to the limitation in one-to-one connection to the BCU and di-
mension of OFM. The effect of this problem can be mitigated by
choosing the parameter that is suitable for certain CNN.
4.5.2 Resource Usage

In the implementation optimized for VGG-16, the bottleneck
is BRAMs. We designed the partial sum buffer so that it supports
the worst case. However, the number of words can be reduced
by the factor of P when executing the proposed convolution core
with P > 1 in the layers that contain a large number of kernels. In
other words, the required number of words can be reduced to the
maximum of Co

P across the CNN. Hence, the reduction of BRAM
usage allows the FPGA to accommodate more PEs.

5. Conclusion and Future Work

To achieve high performance, the proposed parallelism-flexible
convolution core for sparse CNN accelerator exploits multiple
types of parallelism flexibly layer by layer to maximize multiplier
utilization and skips redundant MACCs due to weight sparsity.
The integration of both techniques with parallelism controller and
weight broadcaster that is not complicated in terms of dataflow
control and resource usage improves performance significantly
by 4x speedup over the baseline architecture and 3x in effective
GMACS over prior arts of CNN accelerator. To maximally take
advantage of the proposed convolution core, the constrained spar-
sification process remains as our future work.
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