IPSJ Transactions on System LSI Design Methodology Vol.12 42-45 (Feb. 2019)

[DOI: 10.2197/ipsjtsldm.12.42]

Short Paper

Design and Evaluation of Asymmetric and Symmetric
32-core Architectures on FPGA

SEIYA SHIRAKUNI'+?)

ITTETSU TANIGUCHI

2.,b) Lo

Hirovuki Tomryama

Received: May 31, 2018, Revised: September 5, 2018,
Accepted: October 22, 2018

Abstract: Due to the advances in semiconductor technologies, recent FPGA devices are able to implement a number
of CPU cores to realize high-performance embedded systems. This paper presents a case study on design, imple-
mentation and evaluation of manycore architectures on an FPGA. Two types of 32-core architectures with different
topologies, i.e., asymmetric and symmetric architectures, are designed and implemented on an FPGA, together with
an OpenCL-based software framework. The performance of the two architectures is evaluated based on actual mea-

surement using various application programs.

Keywords: manycore architecture, FPGA, MicroBlaze, OpenCL

1. Introduction

The progress of semiconductor technologies enables to imple-
ment a large scale system on a single chip. This trend appears
in the field of not only custom systems-on-chip (SoCs) but also
field-programmable gate arrays (FPGAs). A recent FPGA device
is capable of implementing a number of CPU cores, so-called
manycores, to take advantage of parallel soft-ware execution, and
FPGAs are used as platforms for final implementation as well as
custom SoC prototyping.

Manycore architectures on FPGAs have been studied actively
in the last decade. Matthews et al. developed a multicore archi-
tecture, named PolyBlaze, consisting of up to eight cores for Xil-
inx FPGA [1]. Tumeo et al. developed an FPGA-based multicore
architecture for automotive applications [2]. Shibata et al. devel-
oped a system-level design tool for FPGA, named Advanced Sys-
temBuilder [3]. A common feature of Refs. [1], [2] and [3] is that
OS is executed on every core and the cores are evenly important.
Mori and Kise developed a sixteen-core architecture on a Xil-
inx FPGA [4]. Takenae et al. developed manycore architectures
consisting of up to 32 cores on a Xilinx FPGA [5]. One of the
differences between Refs. [4] and [5] is the location of the host
core. The SMYLEref architecture developed by Nguyen et al.
[6] takes the similar approach to the one in Ref.[5]. One of the
conceptual differences between Refs. [S] and [6] is the symmetry
of the host and slave cores. Makni et al. developed two types of
multicore architectures [7]. These architectures are proposed of
different kinds of soft cores. Miyazaki et al. proposed a heteroge-

' Graduate School of Science and Engineering, Ritsumeikan University,

Kusatsu, Shiga 525-8577, Japan

Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565-0871, Japan

¥ seiya.shirakuni@tomiyama-lab.org

Y i-tanigu @ist.osaka-u.ac.jp

9 ht@fc.ritsumei.ac.jp

© 2019 Information Processing Society of Japan

neous multicore architecture consisting of dual Cortex-A9 cores
and dual MicroBlaze cores [8].

This paper studies the accelerator-based manycore architec-
tures on FPGA. As mentioned above, there exist several re-
search efforts on this topic in the past. However, few work pre-
sented quantitative comparison with other architectural alterna-
tives based on actual FPGA implementation and measurement.

In this work, we have designed two types of 32-core architec-
tures with different topology: One is asymmetric, and the other
is symmetric. We have implemented the two architectures on an
FPGA, ported Linux on the host core, executed several applica-
tion programs on the slave cores, and actually measured their ex-
ecution times.

2. Design of 32-core Architectures

2.1 Asymmetric 32-core Architecture

Figure 1 depicts our asymmetric 32-core architecture, called
ASYM32. ASYM32 has two types of cores, i.e., a host core and
slave cores, both of which are based on the MicroBlaze architec-
ture. The host core is the main CPU core in ASYM32, which
executes the Linux operating system and most of application pro-
grams. The slave cores are used to accelerate specific applica-

Host core

_ Slave core

Off-chip DDR3 Memory

Axidlite Bus Axidlite Bus Axidlite Bus Axidlite Bus
Axidlite Bus
Debug Module | On-chip SRAM | Mutex |

Fig.1 Asymmetric 32-core architecture (ASYM32).

42

IPSJ Transactions on System LSI Design Methodology Vol.12 42-45 (Feb. 2019)

tions. No operating system runs on the slave cores. Instead, sim-
ple runtime software is executed on each slave core. Each of the
host core and the slave cores has local memory, instruction cache
and data cache, whose sizes are configurable. By default, the
host core has 16 KB local memory, 16 KB instruction cache and
16 KB data cache. Each slave core has 4 KB local memory, 1 KB
instruction cache and 1 KB data cache. The local memory is ded-
icated to the core, and is not shared with the other cores. Only the
host core has a memory management unit (MMU) in order to run
Linux.

Off-chip DDR3 DRAM, shown in the upper part of Fig. 1, is
the main memory of the entire system, and programs to be exe-
cuted by all cores and the host core’s Linux kernel are stored in
the DRAM. The Linux image file is transferred from a host PC
to the DRAM on the FPGA board through a USB cable. The host
core and the slave cores access the DRAM through their instruc-
tion and data caches. Communication between the cores can be
realized using on-chip SRAM, which is depicted at the bottom of
Fig. 1.

In ASYM32, the host core is connected to the top-level AXI4
bus, and the slave cores are hierarchically grouped into four clus-
ters, each of which consists of eight or seven slave cores.

2.2 Symmetric 32-core Architecture

Figure 2 presents the symmetric 32-core architecture, named
SYM32. SYM32 also consists of a host core and 31 slave cores.
Similar to ASYM32, the Linux operating system runs only on the
host core, and the slave cores are used to accelerate specific ap-
plications. In this way, from a viewpoint of software, the SYM32
architecture is similar to ASYM32. The essential difference be-
tween SYM32 and ASYM32 is the location of the host core. In
SYM32, the host core is located within the same cluster as slave
cores. Thirty-two cores including the host core are partitioned
into four clusters, each of which consists of eight cores.

3. Parallel Software Framework

In this work, we have ported the OpenCL-like framework
presented in Ref.[9] onto our architectures, and we extended
the slave activation mechanism. Some applications which have
poorly-scalable parallelism may not need as many as 31 slave
cores. Using a smaller number of slave cores may achieve the
higher performance. Let us assume a program which uses only
four slave cores. There exist several options to select four slave
cores out of 31. One simple way is to select four slave cores
from the same cluster. We call this the packed method. In case

Off-chip DDR3 Memory |

b . T T

Axidlite Bus Axidlite Bus Axidlite Bus Axidlite Bus

Axidlite Bus
Debug Module | On-chip SRAM | Mutex |

Fig. 2 Symmetric 32-core architecture (SYM32).

© 2019 Information Processing Society of Japan

of SYM32, when the required number of slave cores is less than
or equal to 24, slave cores are selected from clusters without the
host core. Another simple way to select four slave cores is to se-
lect one slave core from each cluster. We call this the balance
method. We implemented both of the two methods in our soft-
ware framework so that programmers can choose either one.

4. Experiments

We have implemented the ASYM32 and SYM32 architectures
on Xilinx’s Kintex-7 FPGA KC705 board, and evaluated their
performance. We used Vivado Design Suite 2016.2 as a design
toolkit.

4.1 Linux Boot Time

‘We measured the boot time of Linux on ASYM32 and SYM32
in order to evaluate the performance of the host core. Linux image
file is pre-stored in the DRAM on the FPGA board, and the host
core boots the Linux directly from the DRAM. The Linux image
is not stored in HDD, SSD or SD card, and no boot loader is nec-
essary in our study. The host core accesses the DRAM through
its instruction and data caches. Since the cache size is one of im-
portant parameters which directly affect the Linux boot time, we
changed the size of instruction and data caches of the host core.
The results are summarized in Table 1. Table 1 clearly shows
that the large caches improve the Linux boot time on both archi-
tectures. Also, the Linux boot time on ASYM32 is shorter than
that on SYM32. In SYM32, when cache misses occur, off-chip
DRAM is accessed through two AXI4 buses, resulting in longer
access latency. On the other hand, in ASYM32, the host core
and the DRAM controller are connected to the same AXI4 bus,
resulting in shorter access latency.

4.2 Execution Times of Applications

We executed three benchmark programs on the two architec-
tures. The programs are Gaussian filter, grayscale conversion and
runlength encoding from BEMAP [10]. When we executed the
programs, we change the number of slave cores activated from
one to 31 cores. In addition, we tested two execution methods,
i.e., the packed method and the balance method as described in
Section 3. Figure 3 shows the execution time of three benchmark
programs.

The graph (a) shows the execution time of the Gaussian filter.
The graph (a) shows that an increase in the activated slave cores
generally leads to performance improvement, but the amount of
improvement is small when more than four slave cores are used.
This is mainly because of the memory-intensive nature of the pro-
gram. Data is stored in the on-chip SRAM and all of the acti-
vated slave cores access the SRAM. Also, the off-chip DRAM is
also congested. The capacity of the instruction cache in the slave

Table 1 Linux boot time [seconds].

Host Cache Size ASYM32 SYM32
1KB each 35.98 37.30
4KB each 32.34 33.23
16KB each 30.31 31.16

43

IPSJ Transactions on System LSI Design Methodology Vol.12 42-45 (Feb. 2019)

160.0

—#—SYM32-packed
ASYM32-packed —e—ASYM?32-balance

—=—SYM32-balance
140.0

120.0

100.0

)
<
<

60.0

40.0

025

Execution time [milli-seconds]
Execution time [milli-seconds]

200

0.0
1 2 4 8
slave cores activated

0.00

16 31 1 2

(a) Gaussian filter

slave cores activated

(b) grayscale conversion

Execution time [milli-seconds]

4 8 16 31 1 2 4 8

slave cores activated

16

31

(c) runlength encoding

Fig.3 Performance comparison.

cores is only 1 KB, and is not sufficient to store the whole pro-
gram. Therefore, instruction cache misses occur often in the slave
cores, resulting in the poor scalability of performance. Between
ASYM32 and SYM32, and also between the packed method and
the balance one, little difference of performance is observed.

The graph (b) shows the execution time of the grayscale con-
version program. In case all of the 31 slave cores are used,
SYM32 achieves better performance than ASYM32. The reason
is as follows. After the host core activates the slave cores for par-
allel execution, the host core waits for the completion of the slave
cores. This synchronization between the host core and the slave
cores is implemented by polling specific addresses in the on-chip
SRAM. This means that, while the slave cores are running, the
host core also accesses the on-chip SRAM frequently. These
SRAM accesses by the host core often disturb data accesses from
the slave cores. This problem is more severe in ASYM32 than
in SYM32, since in ASYM32 the host core is directly connected
in the SRAM. It should be noted that, in each bus, accesses are
arbitrated in a round-robin manner. Therefore, in SYM32 with
31 active slave cores, SRAM accesses from the host core are of-
ten blocked at the lower-level bus, and therefore the slave cores
can access the SRAM faster than in ASYM32. It is also observed
in the graph (b) that, when the activated slave cores are less than
31, the balance method outperforms the packed method in most
cases. This is because memory access contention is less severe in
the balance method than in the packed method.

The graph (c) shows the execution time of the runlength en-
coding program. SYM32 using two slave cores achieves the best
performance. Compared with the Gaussian filter and grayscale
conversion programs, the runlength encoding program requires
synchronization among cores more often, which limits the paral-
lelization opportunities. Similar to the grayscale conversion pro-
gram, the balance method outperforms the packed method.

5. Conclusions

This paper presented a case study on design, implementation
and evaluation of manycore architectures on an FPGA. Two types
of 32-core architectures, i.e., asymmetric and symmetric architec-
tures, were designed and implemented on an FPGA. The experi-
mental results show both advantages and disadvantages of the two

© 2019 Information Processing Society of Japan

architectures, and balance method is better than packed method.
In addition, their effectiveness highly depends on the characteris-
tics of the programs. Our future works include automatic design
space exploration of the best architecture for given application
programs.
Acknowledgments
ENHI 15H02680.

This work is in part supported by KAK-

References

[1] Matthews, E., Shannon, L. and Fedorova, A.: Polyblaze: From One to
Many Bringing the MicroBlaze into the Multicore era with Linux SMP
Support, International Conference on Field Programmable Logic and
Applications (2012).

Tumeo, A., Branca, M., Camerini, L., Ceriani, M., Monchiero, M.,
Palermo, G., Ferrandi, F. and Sciuto, D.: A Dual-Priority Real-Time
Multiprocessor System on FPGA for Automotive Applications, De-
sign, Automation and Test in Europe (2008).

Shibata, S., Honda, S., Tomiyama, H. and Takada, H.: Advanced Sys-
temBuilder: A Tool Set for Multiprocessor Design Space Exploration,
International SoC Design Conference (2010).

Mori, H. and Kise, K.: Design and Performance Evaluation of Many-
core Processor for Large FPGA, International Symposium on Embed-
ded Multicore/Many-Core Systems-on-Chip (2014).

Takenae, M., Taniguchi, I. and Tomiyama, H.: A Case Study on Ex-
ploration of FPGA-based Multicore/Manycore Architectures, Interna-
tional Symposium on Low-Power and High-Speed Chips (2016).
Nguyen, S.-T., Kondo, M., Hirao, T. and Inoue, K.: A Prototype
System for Many-Core Architecture SMYLEref with FPGA Evalua-
tion Boards, IEICE Trans. Information and Systems, Vol.E96-D, No.8,
pp-1645-1653 (2013).

Makni, M., Niar, S., Baklouti, M., Wassim, M. and Abid, M.: A
Comparison and Performance Evaluation of FPGA Soft-cores for Em-
bedded Muti-core Systems, International Design & Test Symposium
(2016).

Miyazaki, T., Taniguchi, I. and Tomiyama, H.: A Heterogeneous
Multicore Architecture and a Parallel Software Environment for Zynq
SoC, International Symposium on Advanced Technologies and Appli-
cations in the Internet of Things (2018).

Takai, S., Taniguchi, I., Tomiyama, H. and Parameswaran, S.: An
OpenCL Framework for FPGA-based Heterogeneous Multicore Ar-
chitecture, International Technical Conference on Circuits/Systems,
Computers and Communications (2016).

Ardila, Y., Kawai, N., Nakamura, T. and Tamura, Y.: Support Tools
for Porting Legacy Applications to Multicore, Asia and South Pacific
Design Automation Conference (2013).

[2]

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

44

IPSJ Transactions on System LSI Design Methodology Vol.12 42-45 (Feb. 2019)

Seiya Shirakuni received his B.E. de-
gree in Electronic and Computer Engi-
neering from Ritsumeikan University in
- 2017. He is in Master’s degree program in
Ritsumeikan University. His research in-
‘\ v / terests include, but not limited to, many-
core architectures on FPGA and design
space exploration.

Ittetsu Taniguchi received his B.E,
M.E., and Ph.D. degrees from Osaka
University in 2004, 2006, and 2009,
respectively. He is currently an asso-

2 ,:,« ciate professor at Graduate School of

‘ J Information Science and Technology,

A \4.\ h Osaka University, Japan. From 2007 to

2008, he was a Ph.D. researcher at IMEC,

Belgium. His research interests include system level design

methodology, design methodologies for cyber-physical systems,
etc. He is a member of IEEE, ACM, IEICE, IPSJ, and IEEJ.

Hiroyuki Tomiyama received his B.E.,
M.E. and D.E. degrees in computer sci-
ence from Kyushu University in 1994,
1996 and 1999, respectively. He worked
as a visiting researcher at UC Irvine, as
a researcher at ISIT/Kyushu, and as an

associate professor at Nagoya University.
Since 2010, he has been a full profes-
sor with College of Science and Engineering, Ritsumeikan Uni-
versity. He has served on program and organizing committees
for a number of premier conferences including DAC, ICCAD,
DATE, ASP-DAC, CODES+ISSS, CASES, ISLPED, RTCSA,
FPL and MPSoC. He has also served as editor-in-chief for IPSJ
TSLDM, as an associate editor for ACM TODAES, IEEE ESL
and Springer DAEM, and as chair for IEEE CS Kansai Chapter
and IEEE CEDA Japan Chapter. His research interests include,
but not limited to, design methodologies for embedded and cyber-
physical systems.

(Recommended by Associate Editor: Hideho Arakida)

© 2019 Information Processing Society of Japan

