IPSJ Transactions on System LSI Design Methodology Vol.12 46-49 (Feb. 2019)

[DOI: 10.2197/ipsjtsldm.12.46]

Short Paper

An OpenCL-based Software Framework for a
Heterogeneous Multicore Architecture on Zynq-7000 SoC

1,2) 1

Takarumi MIYAZAKI SHUNSUKE TAKAI

ITTETSU TANIGUCHI

2,b) Lo

Hirovukt Tomryama

Received: May 31, 2018, Revised: September 7, 2018,
Accepted: October 22, 2018

Abstract: This paper presents an OpenCL-based software framework which we have developed for a heterogeneous
multicore architecture on Zyng-7000 SoC. In this work, the heterogeneous architecture is designed with two hard-
macro Cortex-A9 cores and two soft-macro MicroBlaze cores. A major advantage of our OpenCL framework is that it
can execute OpenCL kernel programs in three ways. Experiments show the usefulness of the OpenCL framework.

Keywords: heterogeneous multicore, OpenCL, FPGA, hard core, soft core, Zyng-7000 SoC

1. Introduction

Many of recent FPGA devices, such as Xilinx Zynq-7000 se-
ries, are pre-equipped with multiple CPU cores as hard-macros.
Such devices are often called programmable systems-on-chip
(PSoCs). In many cases of embedded system design with PSoCs,
most functionalities are implemented in software running on the
hard-cores, while some computationally-expensive functionali-
ties are implemented in hardware accelerators on the FPGA fabric
of PSoCs. Another design alternative for performance improve-
ment with PSoCs is to develop heterogeneous multicores by im-
plementing soft-cores (such as Xilinx MicroBlaze and Intel Nios-
2) on the FPGA fabric in addition to the pre-equipped hard-cores.

The goal of this work is development of a parallel computing
software framework for heterogeneous multicores on FPGAs. In
this work, we have developed an OpenCL-based software frame-
work for a heterogeneous multicore architecture on Xilinx Zynq
SoCs. The contribution of this work is that our OpenCL frame-
work supports three methods for load balancing on the heteroge-
neous cores. To our knowledge, this is the first study which de-
velops an OpenCL-based software framework for heterogeneous
multicore architecture on Zynq SoCs.

2. Preliminaries

2.1 Zynqg-7000 SoC

A Zyng-7000 SoC consists of two parts, i.e., Processing System
(PS) and Programmable Logic (PL). The PS part is implemented
as hard-macros and includes dual Cortex-A9 cores and a set of
peripherals. The PL part is an FPGA fabric. Application soft-

Graduate School of Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga 525-8577, Japan

Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565-0871, Japan

@ takafumi.miyazaki@tomiyama-lab.org

Y i-tanigu @ist.osaka-u.ac.jp

9 ht@fc.ritsumei.ac.jp

© 2019 Information Processing Society of Japan

ware and OS run on PS, and customized logics are implemented
and executed on PL.

In this work, we use Digilent’s ZYBO board, which is
equipped with Zynq XC7Z010.

2.2 OpenCL

OpenCL is a standardized software framework for heteroge-
neous parallel-computing systems. OpenCL assumes two kinds
of processing elements, i.e., host and device. A device consists of
multiple compute units (CUs). In case of GPGPU, the host core
corresponds to a main CPU, while the CUs correspond to GPU
cores. An OpenCL program consists of two kinds of program
fragments, i.e., a host program running on a host core and kernel
functions running on device cores. A kernel function is typically
executed on device cores in a data-parallel manner. The data is
partitioned into a number of small pieces, called work-items. The
device cores execute the same kernel function on different work-
items.

3. The Heterogeneous Multicore Architecture

We have designed a heterogeneous multicore architecture
which has totally four CPU cores by implementing dual MicroB-
laze soft-cores in PL in addition to dual Cortex-A9 hard-cores in
PS. The overall block diagram of our architecture is shown in the
right side of Fig.1. The host in Fig. 1 includes dual Cortex-A9

PS PL
Host Device
[_cortex-A9 | cortex-A9] CcU #0
[L1 cache || L1 cache | [MicroBlaze |
=
[L2 Cache [© E [L1 cache |
| @ | Local Memory |
&
CU #1
| -_

Host Memory
(Off-chip DDR3 DRAM)

Global Memory

Fig. 1 An overview of a heterogeneous multicore architecture for Zyng-
7000 SoC.

46

IPSJ Transactions on System LSI Design Methodology Vol.12 46-49 (Feb. 2019)

cores, and the device consists of dual MicroBlaze cores which
are connected to an AXI4 bus.

As shown in the left side of Fig.1, the host contains dual
Cortex-A9 hard-cores. A Cortex-A9 core has an L1 cache and
two Cortex-A9 cores share an L2 cache. The L1 cache is com-
posed of an instruction cache (32 KB) and a data cache (32 KB).
The size of the L2 cache is 512 KB. Programs and data for the
host are stored in a host memory implemented by off-chip DDR3
DRAM. The size of the DRAM is 512 MB.

As shown in the left side of Fig. 1, there are two Compute Units
(CUs) in the device. A CU is composed of a soft-macro MicroB-
laze core, an L1 cache and a local memory. The L1 cache is com-
prised of an instruction cache (32 KB) and a data cache (32 KB).
The size of a local memory is 32 KB.

The on-chip global memory is accessible by both Cortex-A9
and MicroBlaze cores. The global memory is used for commu-
nication between the host and the device. The size of the global
memory is 32 KB.

4. The OpenCL-based Software Framework

We have ported PetaLinux on the host of our heterogeneous
multicore architecture. The Linux is booted from SD card on the
FPGA board. Also, we have developed an OpenCL-based frame-
work. We have significantly modified and extended the RuCL
framework [1], [2] in order to fully utilize the parallelism of our
heterogeneous architecture. Specifically, our new OpenCL-based
framework supports three methods to execute OpenCL programs.
Programmers can select one of the three methods at the compila-
tion stage.

As explained in Section 2.2, an OpenCL program is composed
of a host program and kernel programs. In our framework, the
host program runs on the host part of the architecture. The ker-
nel programs are executed in either of the three ways, which are
named Only_MicroBlaze, Only_Cortex and Cortex_MicroBlaze.

@®: Only_MicroBlaze
@: Only_Cortex
®+@: Cortex_MicroBlaze

Host
Ccu

Host @ N
- ==
' Thread ' Kernel
]]
]]
i 5) Kernel i
r= |
: Thread ! cu
i t->)
L) Kernel Kernel

Thread

Fig. 2 An overview of three execution methods.

m Only_MicroBlaze mOnly_Cortex = Cortex_MicroBlaze

120

104.78

=)
S

%
S

&
S

Execution time [sec]
D
=}

)
S
L

S
i

(a) Black-Scholes

The three methods are illustrated in Fig. 2.

4.1 The Only_MicroBlaze Method

With the Only_MicroBlaze method, kernel programs run on
two CUs (MicroBlaze cores), and work-items are statically dis-
tributed to the two CUs. In our system, Linux is not running on
the CUs. Instead, our in-house runtime software is linked to the
OpenCL kernel code. The runtime software receives activation
signals from the host program, executes the kernel programs, and
sends completion signals to the host. Communication and syn-
chronization between the host and CUs are performed through
the off-chip DRAM.

Conceptually, the Only_MicroBlaze method is similar to popu-
lar OpenCL frameworks for GPGPU in the sense that kernel pro-
grams are executed on CUs only and are not executed on the host
CPUs.

4.2 The Only_Cortex Method

With the Only_Cortex method, both a host program and kernel
programs are executed on the host (i.e., dual Cortex-A9 cores).
CUs do not execute any kernel program. The pthread library is
used to execute the kernel programs in parallel on the host. Since
our architecture has two Cortex-A9 cores, our OpenCL frame-
work creates two kernel threads. Work-items are statically allo-
cated to the two threads.

4.3 The Cortex_MicroBlaze Method

With the Cortex_MicroBlaze method, both the host and the
CUs run kernel programs. Work-items are dynamically allocated
to two Cortex-A9 cores and two MicroBlaze cores.

5. Preliminary Experiments

In order to evaluate the usefulness of our OpenCL frame-
work, we have conducted experiments using two OpenCL bench-
mark programs. The benchmark programs are Black-Scholes and
Gaussian from the BEMAP benchmark suite developed in indus-
try [3]. We ran the Black-Scholes and Gaussian with three con-
figurations of kernel execution and measured execution times.
The experiments are conducted on an actual FPGA board, i.e.,
Digilent’s ZYBO board. The heterogeneous multicore architec-
ture presented in Section 3 is implemented on the board, where
the Cortex-A9 hard-cores and MicroBlaze soft-cores operate at
650 MHz and 100 MHz, respectively. Through the experiments,
we have confirmed that our OpenCL framework with the three
execution methods works correctly for the benchmark programs

®m Only_MicroBlaze mOnly Cortex ® Cortex MicroBlaze

300

248.86

3
5 200

150

100

Execution Tim

50

13.56 1419

(b) Gaussian

Fig. 3 Comparison of three execution methods.

© 2019 Information Processing Society of Japan

47

IPSJ Transactions on System LSI Design Methodology Vol.12 46-49 (Feb. 2019)

on the actual FPGA board.

The execution time of Black-Scholes is shown in Fig. 3 (a).
This graph shows that Cortex_MicroBlaze is the fastest and
Only_MicroBlaze is the slowest. The result indicates that load
balancing between the host and the device is nicely done with the
Cortex_MicroBlaze method.

The execution time of Gaussian is shown in Fig.3(b). The
graph shows that Only_Cortex is the fastest and Only_MicroBlaze
is the slowest. In this program, Cortex_MicroBlaze is slower than
Only_Cortex. This is because of the communication overhead be-
tween the host and the device. The communication overhead is
larger than the benefit of the parallel execution on both the host
and the device.

6. Related Work

Kondo et al. developed a 128-core NoC architecture and im-
plemented it on 16 FPGA boards [4]. Mori developed and imple-
mented a 16-core NoC architecture on an FPGA [5]. Takenae et
al. developed a bus-based 32-core architecture on an FPGA [6].
Their manycore architectures are homogeneous in a sense that
the cores have the same instruction set. They implemented their
architectures on FPGA without hard-macro CPU cores.

Past studies on heterogeneous multi/manycore architectures on
FPGA with pre-equipped hard-cores include Refs. [7], [8] and
[9]. However, Refs.[7] and [8] focus on hardware architectures
and do not describe software frameworks. In Ref. [9], the authors
developed a software framework based on SysML and Java.

This paper is an extended version of our previous work in
Refs. [1] and [2]. In Ref. [1], we developed a lightweight OpenCL
framework, named RuCL, for homogeneous multicore proces-
sors for embedded systems, and tested RuCL on Altera’s Cy-
clone V SoC device which embeds two Cortex-A9 cores as hard
macros. Although the device has FPGA fabrics, we did not use
the FPGA part in Ref. [1]. In essence, the work in Ref.[1] cor-
responds to the Only_Cortex method of this paper. In Ref.[2],
we designed and implemented a heterogeneous multicore archi-
tecture on Cyclone V SoC. We implemented four Nios-2 soft-
cores on the FPGA part of the device, and connected them with
the Cortex-A9 hard-cores. Then, we extended the RuCL frame-
work for the heterogeneous multicores. With the extended RuCL,
OpenCL kernels are executed on both Cortex-9 and Nios-2 cores
for dynamic load-balancing. The work in Ref.[2] corresponds
to the Cortex_MicroBlaze method of this paper. In this paper,
we have further extended the RuCL framework in such a way
that OpenCL kernels are executed on the soft-cores only, i.e., the
Only_MicroBlaze method. Furthermore, we have integrated the
three execution methods into the single RuCL framework so that
users can choose the kernel execution method out of the three at
compilation time.

7. Conclusions

In this work, we have developed an OpenCL framework for
a heterogeneous multicore architecture on Zyng-7000 SoC, and
confirmed the usefulness of our OpenCL framework using two
OpenCL benchmark programs. In future, we plan to evaluate our
system with further benchmark programs. Considering the re-

© 2019 Information Processing Society of Japan

sults, we will improve our system in the both aspects of hardware
and software.

Acknowledgments This work is in part supported by KAK-
ENHI 15H02680.

References

[1] Takai, S., Nishiyama, N., Taniguchi, I. and Tomiyama, H.: A
Lightweight OpenCL Framework for Embedded Multicore Processors,
Proc. International Technical Conference on Circuits/Systems, Com-
puter and Communications (ITC-CSCC), pp.355-357 (2015).

[2] Takai, S., Taniguchi, I., Tomiyama, H. and Parameswaran, S.: An
OpenCL Framework for FPGA-based Heterogeneous Multicore Archi-
tecture, Proc. International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC), pp.443-444 (2016).

[3] Ardila, Y., Kawai, N., Nakamura, T. and Tamura, Y.: Support Tools to
Porting Legacy Applications to Multicore, Proc. Asia and South Pacific
Design Automation Conference (ASP-DAC), pp.568-573 (2013).

[4] Kondo, M., Nguyen, S.T., Hirao, T., Soga, T., Sasaki, H. and Inoue, K.:
SMYLEref: A Reference Architecture for Manycore-Processor SoCs,
Proc. Asia and South Pacific Design Automation Conference (ASP-
DAC), pp.561-564 (2013).

[5] Mori, H. and Kise, K.: Design and Performance Evaluation of a Many-
core Processor for Large FPGA, Proc. International Symposium on Em-
bedded Multicore/Manycore SoCs (MCSoC), pp.207-214 (2014).

[6] Takenae, M., Taniguchi, I. and Tomiyama, H.: A Case Study on Ex-
ploration of FPGA-based Multicore/Manycore Architectures, Proc. In-
ternational Symposium on Low-Power and High-Speed Chips (COOL
Chips) (2016).

[7] Rettkowski, J. and Gohringer, D.: RAR-NoC: A Recofigurable and
Adaptive Routable Network-on-Chip for FPGA-based Multiprocessor
Systems, Proc. International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig) (2014).

[8] Makni, M., Baklouti, M., Niar, S., Biglari-Abhari, M. and Abid, M.:
Heterogeneous Multi-Core Architecture for a 4G Communication in
High-Speed Railway, Proc. International Design & Test Symposium,
pp.26-31 (2015).

[9] Nittala, R., Acquaviva, A. and Macii, E.: A Software Toolchain for
Variability Awareness on Heterogeneous Multicore Platforms, /EEE
Trans. Emerging Topics in Computing, Vol.5, No.1, pp.95-107 (2017).

Takafumi Miyazaki received his B.E.
degree in Electronic and Computer Engi-
neering from Ritsumeikan University in
2018. He is in Master’s degree pro-
gram in Ritsumeikan University. His re-
search interests include, but not limited to,
multicore architectures, design space ex-
ploration, parallel software for embedded
systems. He is a member of IEEE.

Shunsuke Takai received his B.E. and
M.E. degrees in electronic and computer
engineering from Ritsumeikan University
in 2015 and 2017, respectively. He cur-
rently works for Hitachi-Omron Terminal
Solutions, Corp. His research interests
include multicore architectures and paral-
lel software for embedded/cyber-physical

48

IPSJ Transactions on System LSI Design Methodology Vol.12 46-49 (Feb. 2019)

Ittetsu Taniguchi received his B.E.,
M.E., and Ph.D. degrees from Osaka
University in 2004, 2006, and 2009,
respectively. He is currently an asso-
ciate professor at Graduate School of
Information Science and Technology,
Osaka University, Japan. From 2007 to
2008, he was a Ph.D. researcher at IMEC,
Belgium. His research interests include system level design

methodology, design methodologies for cyber-physical systems,
etc. He is a member of IEEE, ACM, IEICE, IPSJ, and IEEJ.

Hiroyuki Tomiyama received his B.E.,
M.E. and D.E. degrees in computer sci-
ence from Kyushu University in 1994,
1996 and 1999, respectively. He worked
as a visiting researcher at UC Irvine, as
a researcher at ISIT/Kyushu, and as an
associate professor at Nagoya University.

Since 2010, he has been a full profes-
sor with College of Science and Engineering, Ritsumeikan Uni-
versity. He has served on program and organizing committees
for a number of premier conferences including DAC, ICCAD,
DATE, ASP-DAC, CODES+ISSS, CASES, ISLPED, RTCSA,
FPL and MPSoC. He has also served as editor-in-chief for IPSJ
TSLDM, as an associate editor for ACM TODAES, IEEE ESL
and Springer DAEM, and as chair for IEEE CS Kansai Chapter
and IEEE CEDA Japan Chapter. His research interests include,
but not limited to, design methodologies for embedded and cyber-
physical systems.

(Recommended by Associate Editor: Masayuki Hiromoto)

© 2019 Information Processing Society of Japan

