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Abstract: The end of Moore’s Law and von Neumann bottleneck motivate researchers to seek alternative architec-
tures that can fulfill the increasing demand for computation resources which cannot be easily achieved by traditional
computing paradigm. As one important practice, neuromorphic computing systems (NCS) are proposed to mimic bi-
ological behaviors of neurons and synapses, and accelerate computation of neural networks. Traditional CMOS-based
implementation of NCS, however, are subject to large hardware cost required to precisely replicate the biological prop-
erties. In very recent decade, emerging nonvolatile memory (eNVM) was introduced to NCS design due to its high
computing efficiency and integration density. Similar to the circuits built on other nanoscale devices, eNVM-based
NCS also suffers from many reliability issues. In this paper, we give a short survey about CMOS- and eNVM-based
NCS, including their basic implementations and training and inference schemes in various applications. We also dis-
cuss the design challenges of these NCS and introduce some techniques that can improve the reliability, precision,
scalability, and security of the NCS. At the end, we provide our insights on the design trend and future challenges of
the NCS.
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1. Introduction

The modern computer architecture defined by von Neumann in
1945 (a.k.a. von Neumann architecture) separates memory and
processing unit, leading to extra data movement cost between
these two components during execution. This issue, which is
often referred to as “von Neumann bottleneck [1]” or “memory
wall”, is becoming very severe when Moore’s Law is approach-
ing its end: the increasing of memory bandwidth is far behind
the up-scaling of on-chip computing capacity. von Neumann ar-
chitecture has been also proven inefficient to perform cognitive
applications, such as neural network and graph-computing, the
computation of which heavily replies on topological data move-
ment. Researchers are actively looking for alternative (i.e., non-
von Neumann) architectures to fulfill the increasing demand for
computation resources that cannot be easily achieved by tradi-
tional computing paradigms. Inspired by human brains, many
circuits and systems were invented to mimic the biological prop-
erties of neurons and synapses, and build a hardware-coded neu-
ral network. Such a design was firstly named by Carver Mead
in 1990s as neuromorphic computing [2], which is anticipated to
be computing efficiently due to its high parallelism and simple
realization of basic units.

Although the actual mechanism of a human brain is very com-
plex [3], it can still be simplified as a connecting model of neu-
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rons and synapses [2]. Once a neuron receives sufficient excita-
tion, i.e., the neuron is activated, it will transmit its output signal
to the following neuron via a synapse. The signal can be am-
plified by the weight of the synapse during the transmission. Al-
though the function of the neuron or the synapse is simple, a large
number of neurons that are connected through many synapses
is able to construct a neural network which can perform very
complex functions such as image classification, pattern recogni-
tion, natural language processing, etc. Traditional CMOS-based
implementations of neuromorphic computing system (NCS) use
SRAM to store the weights of the synapses and need very com-
plex CMOS circuitry to realize neuron designs (e.g., the integrate-
and-fire circuit) [4], [5], [6], [7], [8]. Substantial power and com-
puting improvements have been accomplished by CMOS-based
NCS compared with traditional von Neumann architecture when
running neuromorphic computing algorithms. However, CMOS-
based NCS generally suffer from two major design challenges:
First, the complex implementations of neurons and synapses in
CMOS-based NCS prevent the power efficiency of the system
(∼25 pJ/Op) from scaling down to the level close to a human
brain (∼10 fJ/Op); Second, CMOS-based NCS generally cannot
realize very dense connectivity between the neurons, leading to
severe constraint on the scale of the network that can be imple-
mented, i.e., 1 million neurons of a CMOS-based NCS vs. 100
billion neurons of a human brain [9]. In summary, the capacity of
CMOS-based NCS is still far away from the level that a human
brain can achieve. In the recent decade, hence, researchers start
to seek other alternative approaches to implement NCS.

The design based on emerging nonvolatile memory (eNVM)
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is a popular practice of recent NCS designs. Different from
DRAM and SRAM, eNVM is a special type of memory that
can retain data even when the power is turned off. Examples of
eNVM include phase change memory (PCM) [10], spin-transfer
torque random-access memory (STT-RAM) [11], and resistive
RAM (RRAM) [12], etc. These technologies have been proven
able to scale the size of the memory devices down to several
nanometers. A crossbar structure was also proposed to integrate
the devices in a very dense way so that every input is connected to
all the outputs [13], offering very high operational parallelism and
power efficiency. Similar to the circuits built on other nanoscale
devices, eNVM-based NCS also suffers from many reliability
issues. Therefore, many architecture- and circuit-level solu-
tions were proposed to accelerate execution of the eNVM-based
NCS [14], [15], [16], and enhance its robustness [17], [18], [19]
and security [20], [21], [22].

In this paper, we give a short survey about CMOS- and eNVM-
based NCS, including their basic implementations and training
and inference schemes in various applications. We also discuss
the design challenges of these NCS and introduce some tech-
niques that can improve the reliability, precision, scalability, and
security of the NCS. In the end, we provide our insights on the
design trend and future challenges of the NCS. Our paper is
organized as follows. Section 2 briefly introduces eNVMs and
two variations of neural networks; Section 3 presents different
CMOS-based NCS and their limitations. Section 4 introduces
eNVM-based neuromorphic designs and compares them with the
CMOS-based counterparts. Section 5 summarizes some solutions
to address the design challenges of eNVM-based NCS. Sections 6
and 7 share our insights on the future of NCS design and con-
cludes our paper, respectively.

2. Preliminary

eNVM usually denotes the memory technologies that use re-
sistance to store information. In this section, we briefly introduce
three types of eNVMs: PCM, STT-RAM, and RRAM, including
their working mechanisms and basic implementations. We then
introduce the basics of deep neural network (DNN) and spiking
neural network (SNN), including their pros and cons for neuro-
morphic computing.

2.1 Emerging Nonvolatile Memories (eNVM)
2.1.1 Phase Change Memory (PCM)

The feasibility of PCM was first demonstrated by Charles Sie

in his dissertation [23] using chalcogenide glass. By heating the
device differently, PCM can switch between amorphous phase
(high resistance state, or HRS) and crystalline phase (low re-
sistance state, or LRS). There are two major research direc-
tions of PCM device engineering: The traditional way focuses on
searching for viable material alternatives of Ge2S b2Te5 (GST);
A later approach, which is called Interfacial Phase Change Mem-
ory (IPCM) [24], leverages GeTe−S b2Te3 superlattice to achieve
non-thermal phase changes by simply using laser pulse to change
the coordination state of the Germanium atoms. We can carefully
control the heating process of a PCM cell to obtain multiple inter-
mediate phases and hence and realize multi-level cell (MLC) de-

Fig. 1 Cross section view of a PCM cell [27].

Fig. 2 MTJ structure [28]: (a) Antiparallel (HRS). (b) Parallel (LRS).
(c) 1T1J STT-RAM cell structure.

sign that can store more than one bit on the cell. Figure 1 shows
the cross section view of a PCM cell. The PCM cell structure
typically consists of a thin layer of the chalcogenide sandwiched
between two inert metal electrodes. Some researchers argue that
all two-terminal eNVM devices, including PCM, should be con-
sidered as special types of memristors [25], [26].
2.1.2 Spin-Transfer Torque Random-Access Memory (STT-

RAM)
STT-RAM is a promising eNVM technology that features non-

volatility, fast read/write speed (< 10 ns), high programming en-
durance (> 1015 cycles), zero standby power and good scalabil-
ity [11]. STT-RAM utilizes the spin-transfer torque (STT) effect
to switch the resistance of the magnetic tunnel junction (MTJ),
which is the storage device of the STT-RAM cell. Figure 2 shows
the basic structure of MTJ and the popular one-transistor-one-
MTJ (1T1J) STT-RAM cell structure. In the MTJ, a metal oxide
barrier layer (e.g., MgO) is sandwiched between two magnetic
layers, namely, reference layer and free layer, respectively. The
magnetization of the reference layer is fixed while that of the free
layer can be switched by passing a spin-polarized current from
different directions. When the magnetization directions of the
reference layer and the free layer are in antiparallel (parallel), the
MTJ shows as an HRS (LRS). Very recently, binary stochastic
synaptic behavior has been demonstrated based on the stochastic
switching nature of the MTJ devices at low voltages and program-
ming time-scales [29].
2.1.3 Resistive Random Access Memory (RRAM)

RRAM is one type of eNVMs that is built on dielectric solid-
state materials and is often referred to as “memristors”. Based on
the formation and annihilation of a conducting region between
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Fig. 3 Metal-oxide memristor [17].

two metallic electrodes separated by an insulating layer, RRAM
devices can be generally categorized into two families: 1) oxide-
based devices whose resistance change is caused by the displace-
ment of anions into a transition metal oxide, and 2) conductive
bridge devices whose resistance change is realized by injecting
cations from one active electrode into an electrolyte with a large
ionic conductivity and low electronic conductivity. In general,
the LRS of a RRAM device is reached through the formation of
a conductive pathway between the two electrodes while the HRS
(also called “insulating state”) is obtained when that pathway is
disrupted. The resistance switching process of RRAM devices
can be extremely fast (e.g., sub-nanosecond). Many devices also
present good retention time (> ten years) and high endurance (>
megacycles). Figure 3 depicts an ion migration filament model
of a H f Ox memristor [30]. A H f Ox layer is sandwiched between
two metal electrodes TE (top electrode) and BE (bottom elec-
trode). The oxygen ions migrate from the electrode (oxide) inter-
face and recombine with the oxygen vacancies to form a conduc-
tive filament between TE and BE.

2.2 Neuromorphic Computing Models
2.2.1 Spiking Neural Network and Spike-timing-dependent

Plasticity
In a nervous system, neurons pass electrical and chemical sig-

nals to other neurons through synapses. Spike-timing-dependent
Plasticity (STDP) is a biologically-observed process for strength-
ening or weakening these synapse connections [31], which can be
considered as an implementation of Hebbian learning [32]. STDP
depends on the relative timing between action potentials (spikes)
within the input (pre-synaptic) and output (post-synaptic) neu-
rons. In long-term potentiation (LTP), synapses are persistently
strengthened by causal spiking, i.e., the pre-synaptic spike occurs
before the post-synaptic spike. In long-term depression (LTD),
anticausal spiking decreases the synaptic strength. This synap-
tic plasticity, i.e., the change of synaptic weights, contribute to
the essential of how the brain implements learning and inference.
Artificial implementation of this spike-based synaptic plasticity
is often referred to as Spiking Neural Network (SNN).

One of the most active fields in neuromorphic computing re-
search today is implementing SNNs on CMOS- and eNVM-based
circuits. In addition to instantiating neurons and synapses, an
SNN often include temporal information in its information en-
coding and processing schemes [33]. For example, a neuron in an
SNN does not fire output signal at end of each propagation cy-

cle as that in classic multilayer perceptron (MLP) networks, but
rather fires only when its membrane potential reaches a threshold
value. This transmitted signal may also increase or decrease the
potentials of the receiving neurons following the rule of STDP.
The state of a neuron in an SNN is defined as its current ac-
tivation level, which is often modeled by differential equations.
Various coding methods have been proposed to encode the input
using the amplitude and the appearance frequency of the spikes
or the temporal relation between the spikes [34], [35]. SNNs are
energy-efficient if the spikes are sparsely generated.
2.2.2 Deep Neural Network and Backpropagation

A DNN is an artificial neural network with multiple layers be-
tween the input and output layers. A DNN is able to find the un-
derlying relationship between the input and the output of a large
volume of data, which usually cannot be explicitly expressed in
a mathematical way. Hence, DNNs are particularly capable to
model a complex nonlinear relationship. Feedforward network is
a typical type of DNNs in which data flows from the input layer to
the output layer without loops. Unlike the asynchronous spikes in
an SNN, neurons in a DNN output real numbers in a synchronous
manner. Neurons in the input layer are fully-connected with the
ones in the output layer through synapses which carry synaptic
weights. The data moves through the layers of the network to cal-
culate the probability of each output. For example, a DNN that
is trained to recognize dog breeds will process the given image
and calculate the probability that the dog in the image is a certain
breed. The user can review the results and select the probabilities
the network should display (e.g., above a certain threshold) and
return the classified label(s). During the above process, the net-
work is trained to decompose an image into features at different
granularity levels, identify the trends that shared among the train-
ing samples, and classify the test samples based on these shared
similarities.

Many Variations of DNNs, including convolutional neural net-
works, deep belief networks, and MLPs, are trained using su-
pervised learning and backpropagation [36], i.e., the backward
propagation of errors [37]. In this procedure, errors are computed
at the last layer using the loss function and propagate back to
the first layer. Weights are updated based on the optimization
rule, e.g., gradient descent method iteratively updates the weights
along the negative direction of the gradients of the errors [36]. In
the recent decade, the application of GPUs greatly shortens the
training time of DNNs.

3. CMOS-based NCS

In this section, we introduce the basics of CMOS-based NCS.
There exist two distinct philosophies in CMOS-based NCS de-
sign: the first one inherits most of the conventional processor
design practice and supports state-of-the-art deep learning algo-
rithms; the second one tries to simulate the behaviors of biologi-
cal neural networks and is often adopted in the study of computa-
tional neural science. To show the distinction between these two
design philosophies, we first introduce the basic building blocks
of synapses and neurons and then introduce the methods to con-
nect these blocks into a large scale system. Finally, we present
training and inference schemes of these systems.
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3.1 Fundamental Components
3.1.1 Synapse Structure

Von Neumann architecture and near-memory computing.
Some DNN accelerators simulate neurons and synapses using
von Neumann processors such as conventional CPU/GPUs. The
major reason is that the large size of modern DNN models, i.e.,
more than 108 weights of state-of-the-art image recognition mod-
els [38], is far beyond the capacity of existing on-chip SRAM.
Synaptic weights are stored in an off-chip DRAM and loaded to
the processor on demand. Although such a design suffers from
low computing efficiency and long memory access latency, it is
still the most popular approach to simulate large scale DNNs due
to its good scalability and ease usage.

Recent research focus in this area is designing a better memory
hierarchy that can minimize the access overhead of the synaptic
weights. For example, Chen et al. [39] utilizes a hybrid on-chip
memory design composed of embedded DRAM and SRAM to
store the synaptic weights and a multiplier array to accelerate the
computations, achieving an energy efficiency 150× higher than
GPUs. Low-level caches are directly controlled by the compiler
to maximize their utilization [40]. These designs are often re-
ferred to as “near-memory computing”. In some recent designs,
the data processing logic is customized according to the compu-
tation pattern of the targeted DNN workloads [41].

Processing-in-memory (PIM). Diffrent from von Neumann
processors, the “processing-in-memory (PIM)” implementation
allows synaptic weights to be stored, computed, and updated in-
side the memory cells, without any significant data movement.
The memory-centric design makes PIM a natural candidate for
SNN acceleration. One benefit is that for SNN learning algo-
rithms, the continuous accesses to all synaptic weights can be
implemented efficiently in PIM. The hardware architecture of
PIM is also close to the structure of a biological neural network.
Using 6-transistor SRAM cells to store digital synapses, state-of-
the-art implementation achieves a density of 2.1 million single-bit
synapses per mm2 at 14 nm technology node [8]. An alternative
approach is to use floating-gate transistors for analog synapses.
As a type of a nonvolatile memory, the weights stored in the
floating-gate transistors are updated by charging and discharg-
ing the gates through current pulses. This process can be utilized
to directly simulate the learning rule of SNNs, which makes it
especially suitable for SNN acceleration [42], [43].

In CMOS-based DNN accelerator research, the recent focus
shift to PIM is mainly triggered by energy efficiency. A SRAM-
based DNN accelerator from Biswas et al. [44] achieves up to
100× energy reduction comparing to the discrete memory and
computing implementation. However, the scalability of this de-
sign is greatly hindered by the low integration density of 6-
transistor SRAM cells [45]. The typical on-chip memory size is
a few MB, which only allows the execution of MNIST [46]-level
applications even binary neural network is applied.
3.1.2 Neurons

In computational neural science study, a variety of neuron
circuits were designed to simulate biological neuronal models.
Those neuronal models can be as simple as integrate-and-fire
which contains only accumulation and threshold detection; or

Fig. 4 The mesh network for short-range communication [8].

can be as complex as Hodgkin-Huxley model [47] which con-
tains four ordinary differential equations to capture the activa-
tion/inactivation of sodium and potassium channels. SNN accel-
erators often make a good tradesoff between expressiveness and
computational complexity of neuronal models. TrueNorth [7],
for example, uses reconfigurable circuits to support three types
of simplified neuronal models and well approximates Hodgkin-
Huxley model by combining these three models. Loihi [8] limits
its inference module to leaky integrate-and-fire model, but adds
the complex dendrite and axon models to support more flexible
learning rules.

Implementation of these neuron models can be either mixed-
signal or fully digital. For example, Neurogrid [6] directly uses
wire capacitance to simulate the integration. Digital design is
more commonly used in recent SNN accelerator designs due to
its better flexibility and higher performance. Both TrueNorth and
Loihi have fully digital synapses and neurons.

On the other hand, although DNNs achieve very high accuracy
in many pattern recognition and cognitive tasks, the underlying
neuron model is relative simple. Following the McCulloch-Pitts
neuron model [48], a typical NCS first computes dot-product of
an input vector and a weight vector, and then applies a nonlinear
activation function to the output. The corresponding hardware
implementation has three stages: 1) multiplier array for element-
wise multiplication, 2) adder tree for sum-of-product reduction,
and 3) lookup table or analog circuit for nonlinear activation. In
some works that are based on binary weights (+1/−1), the multi-
pliers can be removed [49].
3.1.3 Network Architecture

As a bio-inspired network, SNNs may require accurate con-
trol at single neuron level. Ideally, the accelerator should sup-
port arbitrary communication between millions of neurons, in-
troducing great challenge to the architecture design. The main
strategy is to use hierarchical networks [50] that allow high local
bandwidth and long-range reachability. Each network level han-
dles the communication between thousands of nodes. In short-
range communication, Benjamin et al. uses tree routing network
for multicasting [6]. Merolla et al. manage the neurons in blocks
and propose a locally synchronous and globally asynchronous de-
sign [7]. As shown in Fig. 4, Loihi uses unicast mesh network and
simulates multicast communication by time multiplexing [8]. A
neuron will sequentially connect with its targets in several time
step (indicated as red arrows), and a synchronization barrier will
be triggered thereafter (indicated as the blue mesh). Long-range
communication is typically conducted by auxiliary communica-
tion modules. Neural spikes are packed into packages and trans-
mitted through a network interface [51].

In contrast to SNNs, DNNs are based on more coarse-grained
networks. A DNN usually contains only tens to hundreds com-
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putation nodes (or layers), each of which contains thousands to
millions of operations. DNN accelerators usually process only
one or a few nodes at each time, regardless of the overall network
topology. Each node usually has a very regular computation pat-
tern like matrix multiplication and convolution. As such, DNN
accelerators use a synchronous on-chip network to perform single
layer execution. For example, Google TPU uses systolic array to
accelerate matrix multiplications [40] and Eyeriss uses a special-
ized row-stationary architecture to accelerate convolutions [41].
Multi-chip parallelization is based on data parallelism, i.e., all
accelerators execute the same model on different data. The major
component of the communication between accelerators is model
synchronization and is independent to DNN’s network topology.
Zou et al. [52] proposed a tree network for accelerator intercon-
nection.

3.2 Training and Inference Schemes
3.2.1 SNNs

In SNNs, rate coding is often used to convert discrete spikes
into continuous values. The average rate of neuronal spikes rep-
resents the output value, and the convergence of spiking rate takes
multiple cycles of computation. Although the inference operation
of SNNs is not as straightforward as that of DNNs, the training
of SNNs can be implemented more efficiently using more local
learning rules. Spike-timing-dependent Plasticity (STDP) is a
classical learning rule for SNNs, i.e.,

Δwi j =
∑

k,k′
F
(
tik − t jk′

)
, (1)

F(Δt) =

⎧⎪⎪⎨⎪⎪⎩
A+ exp (−Δt/τ+) Δt > 0
−A− exp (Δt/τ−) Δt < 0

(2)

As shown in Eq. (1), for neuron i and j, the synaptic weight wi j is
updated according to the timing difference between pre-synaptic
spikes tik and post-synaptic spikes t jk′ . Equation (2) gives an ex-
ample update rule using exponential functions. Notice that each
weight update only relies on the information of its adjacent neu-
rons. Such bio-inspired local learning rule introduces much lower
hardware overhead of the training circuits than that of the BP al-
gorithm used in DNN training [53].

Although it is hardware friendly, the SNN trained by STDP
normally cannot achieve the same level of accuracy of the DNN
trained by BP [54]. There have been extensive works searching
for better biologically feasible alternatives of BP. The segre-
gated dendrites (SD) model [55] simulates neocortical pyramidal
neuron that has two segregated compartments. Park et al. show
that a SD-based neuromorphic chip can achieve near-DNN ac-
curacy while keeping a low training overhead, i.e., 7.5% energy
consumption overhead comparing to more than 50% overhead in
previous works [56].
3.2.2 DNNs

Gradient descent is a popular way to train DNNs. Through
BP, all synaptic weights are directly updated to minimized the
final loss. For example, we assume a 3-layer DNN F(x) =
fw1 ( fw2 ( fw3 (x))) where x as input and wi as the layers’ weights.
Given a loss function L(F(x)), the gradients of wi are computed
through the chain rule:

∂L
∂w1
=
∂L
∂ fw1

∂ fw1

∂w1
, (3)

∂L
∂w2
=
∂L
∂ fw1

∂ fw1

∂ fw2

∂ fw2

∂w2
, (4)

∂L
∂w3
=
∂L
∂ fw1

∂ fw1

∂ fw2

∂ fw2

∂ fw3

∂ fw3

∂w3
. (5)

Although being effective as an optimization algorithm, BP is not
biological feasible and may introduces large hardware cost to sup-
port the training process. The main problem of BP is that its
computation is not local: calculating the gradient of one network
layer requires the activation and weight information of other lay-
ers. Therefore, to support training, the hardware must provide
some form of information passage that connects distant layers. In
the accelerators based on von Neumann architecture, this passage
is implemented using large off-chip memory. Intermediate results
(i.e., ∂L/∂ fw1 and ∂ fw1/∂ fw2 ) are stored off-chip and accessed on
demand. The direct result of such a design is that GPUs can re-
quire over 10 GB of memory to achieve enough training paral-
lelism [57]. Preforming BP on PIM architecture is almost im-
possible due to the controversy between the limited capacity of
SRAM array and the high precision required by the BP process.

4. eNVM-based NCS

In this section, we will discuss the design of eNVM-based
NCS, including the fundamental components such as neurons and
synapses, the training and inference schemes, and a detailed com-
parison with CMOS-based NCS. We will show that eNVM-based
NCS demonstrate some great potentials in various aspects. We
also discuss the challenges of eNVM-based NCS.

4.1 Fundamental Components
4.1.1 Synapses

In an eNVM-based NCS, adjusting a synaptic weight is usually
realized by programming the eNVM device between LRS (SET)
and HRS (RESET).

PCM as a synapse. Synaptic weight can be represented by the
resistance of a PCM cell, which is programmed by heating the
device in different ways. The SET process can be implemented
incrementally by applying repetitive pulses to slowly crystallize
the PCM device. The RESET process, however, involves melt
and quench and tends to be an abrupt process.

A two-PCM approach was proposed to implement STDP, i.e.,
using separate devices for LTP and LTD, respectively [58]. When
a pre-synaptic neuron spikes, it sends out a read pulse and enters
“LTP mode”. If the post-synaptic neuron spikes during this pe-
riod, the LTP synapse receives a partial SET pulse. Otherwise, the
LTD synapse is programmed. Symmetric and asymmetric STDP
were also implemented with a single PCM cell as a synapse [59],
where staircase down pulses of varying amplitudes were used for
partial SET.

STT-RAM as a synapse. STT-RAM uses the current to RE-

SET (or SET) the polarization of the free ferromagnetic layer.
During the RESET (SET) process, a positive (negative) voltage
difference is applied between the source line (SL) and the bit line
(BL) in Fig. 2. The current amplitude required to reverse the di-
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rection of the free ferromagnetic layer is determined by the size
and aspect ratio of MTJ and the write pulse duration.

Vincent et al. used STT-RAM to implement a stochastic mem-
ristive synapse by carefully choosing the current and duration
time of programming pulses to implement controlled switching
probabilities [29]. At device level, binary MTJ is the most com-
mon choice due to the mature fabrication process to control the
magnetic anisotropy [60]. Multi-bit storage cells can also be re-
alized by either producing more stable states [61] or the stack of
MTJs [62].

RRAM as a synapse. During the RESET process of a RRAM
cell, a partially ruptured conductive filament region with a high
resistance per unit length is formed aside the conductive filament
region with a low resistance per unit length. The memristor then
switches from LRS to HRS. During the SET process, the ruptured
conductive filament region shrinks, thus switching the memristor
from HRS to LRS. Note that the memristor resistance can be
programmed to any arbitrary value by applying a programming
current with different pulse widths or magnitudes. The memris-
tor resistance changes only when the applied voltage is above a
threshold.

Choi et al. reported a gradual RESET switching with increas-
ing voltages in a GdOx-based RRAM with abrupt SET switch-
ing [63]. Another approach is to combine the abrupt SET opera-
tion and binary synaptic devices to implement a stochastic learn-
ing rule [64]. Piccolboni et al. reported a H f O2-based vertical
RRAM (VRRAM) technology [65], where each synapse is com-
posed of a stack of RRAMs with one common transistor.
4.1.2 Neurons

Emulation of neuronal dynamics, including the equilibrium po-
tential, the transient dynamics, and the process of neurotrans-
mission, is the key to realizing biologically plausible NCS [66].
However, the complex neuronal dynamics must often be simpli-
fied for efficient hardware realizations [67]. The integration of
the post-synaptic potentials and the subsequent firing event are
the two most important dynamical components. Figure 5 (a) de-
picts the schematic of an integrate-and-fire (IF) design featuring
high speed and low power consumption [68]. During the opera-
tion, the BL voltage Vy continues increasing until it reaches Vth.
Then the differential pair (M1 − M4) together with the following
two cascaded inverters (M5 − M7 and M10 − M12) generates a
high voltage at Vs, which in turn enables the discharging transis-
tor M13. Consequently, Vy decreases quickly and eventually turns
off M13. As such, the firing of one output spike at Vout is com-
pleted and a new iteration of IF starts. Liu et al. implemented and
simulated the IF design with IBM 130 nm technology [68]. The
waveforms of Vy, Vs, and Vout under the fastest firing frequency
are shown in Fig. 5 (b).
4.1.3 Crossbar Structure

Dense eNVM crossbar arrays can potentially enable massively
parallel and highly energy-efficient neuromorphic computations.
An N ×N memristor-based crossbar (MBC) array is illustrated in
Fig. 6 to demonstrate its matrix computation functionality [69].
A set of input voltages V T

I = {vI,1, vI,2, · · · , vI,N} are applied to
the word-lines (WLs) of the array, and collect the current through
each bit-line (BL) by measuring the voltage across a sensing re-

Fig. 5 The integrate-and-fire circuit [68]: (a) the schematic, (b) the simula-
tion waveforms.

Fig. 6 A memristor crossbar array [69].

sistor. The same sensing resistors are used on all the BLs with
resistance rs, or conductance gs = 1/rs. The output voltage vec-
tor is V T

O = {vO,1, vO,2, · · · , vO,N}. Assume the memristor in the
connection between WLi and BLj has a memristance of mi, j. The
corresponding conductance is gi, j = 1/mi, j. Then the relationship
between the input and output voltages can be expressed by:

VO = C × VI (6)

Here, C can be represented by the memristances and the load
resistors as:

C =D ×G = diag(d1, ..., dN) ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1,1 · · · g1,N

...
. . .

...

gN,1 · · · gN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where, di = 1/(gs +
∑N

k=1 gi,k).
Sneak path is one of the major concerns in MBC design [72].

This issue refers to as the intrinsic leakage flowing through un-
selected crossbar cells and degrades the programming efficiency
and read correctness of the NCS. The one-transistor-one-resistive
device (1T1R) structure, which is shown in Fig. 7, can effectively
suppress the sneak path leakage and therefore make programming
very efficient [73].

The first hardware implementation of an integrated CMOS and
memristor crossbar was presented by Lu et al. in Ref. [74]. They
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Table 1 A detailed comparison of human brain, GPU, CMOS- and eNVM-based NCS.

System Type Neuron Synapse # neurons # synapses Power Energy/Connection Technology Trainability

Human Brain [9] Biology Diverse Diverse 100 B 1015 20 W 10 fJ 10 μm Biology
GPU [70] Digital - - - - 180 W 7 nJ 16 nm Any

Neurogrid [6] Analog
Adaptive

Quadratic IF
Shared

Dendrite
65 k 100 M 150 mW 100 pJ 180 nm No

True North [7] Digital
Adaptive

Exponential IF
4-bit Digital 1 M 256 M 72 mW 25 pJ 28 nm No

Loihi [8] Digital Leaky IF Non-fixed 131 k 126 M 73 mW 23.6 pJ 14 nm STDP

PCM [71] Analog Leaky IF
Analog
Weight

256 64 k - 0.9 pJ 90 nm STDP

Fig. 7 1T1R design in a crossbar cell [68].

demonstrated a high yielding 40×40 crossbar array controlled by
a CMOS platform. A variant of backpropagation algorithm [75]
was used to train a three-layer perceptron network with 164,885
synapses on a subset (5,000 images) of MNIST. A 32 × 32 MBC
was used to demonstrate parallel learning for pattern classifica-
tion problem [68]. This work realized a BSB recall circuit under
physical constraints and discussed about the impact of random
noises.

4.2 Training and Inference Schemes
4.2.1 STDP for SNNs

The mapping of STDP as a local learning rule in eNVM arrays
is very straightforward. It only needs to modify the resistance of
eNVM based on the timing of spikes from pre- and post-synaptic
neurons. Some studies have been performed in simulation using
parameters extracted from biological observations. For example,
Diehl et al. demonstrated 95% accuracy on MNIST by utilizing
STDP along with other biologically plausible features such as lat-
eral inhibition and adaptive spiking threshold [76].

STDP was implemented with eNVM devices in many prior
arts. Chen et al. employed the symmetric/asymmetric memristors
and the simplified neurons to perform the STDP learning ability
on a 25×25 array [77]. To implement an array design and address
the sneak-path issue, Kim et al. proposed a 2T1R synaptic cell for
STDP learning [71]. The authors demonstrated a design with 256
neurons and 64 k PCM synaptic cells, on-chip leaky integrate-
and-fire neuron, and STDP circuits for on-line and continuous
training.
4.2.2 Multiply-accumulate Operation for DNNs

Arrays of analog resistive memory are ideally suited for the
multiply-accumulate (MAC) operations which constitute the ma-
jority of computations in DNN inference and training. The multi-
ply operation is performed at every cross-point by Ohm’s law and
the current summation along each column follows Kirchhoff’s
current law. These MAC operations can be performed in parallel
at the stored location of the data with local analog computing and
hence, avoid the power consumption of data movement. Differ-
ent learning rules such as gradient descent can be implemented
on resistive crossbar arrays. Alibart et al. presented a small-
scale pattern classification task using a 2×9 crossbar array and

delta learning rule [78]. Gamrat et al. applied the spike-coding
for inference, showing competitive performance on MNIST with
pre-trained weights stored on memristive devices [79]. Training
and inference of a small one-layer DNN were implemented on a
12 × 12 memristor crossbar requiring no separate selection de-
vice [80]. Hassan et al. proposed a hybrid spiking-based multi-
layered NCS that can perform online training [81].

4.3 Comparing CMOS- and eNVM-based NCS
Table 1 shows a comparison of a typical human brain, an

Nvidia Geforce GTX 1080 GPU, CMOS- and eNVM-based NCS,
on speed, power, and other critical aspects. Some of the key com-
ponents in the comparison are summarized and discussed below:

Neuron represents the model of neurons implemented in the
system. Typically, a variation of the IF design is adopted.

Synapse can be constructed by digital devices or eNVMs. The
numbers of neurons and synapses are also listed in the table. Due
to the limitation of device reliability, eNVM-based systems usu-
ally possess fewer synapses than CMOS-based systems. And all
artificial systems have far fewer synapses than a human brain (i.e.,
106 vs. 1015).

The energy per connection. The energy per connection is the
average energy required to pass one spike through one synapse
or to compute one floating point operation. Since synaptic pro-
cessing dominates the system’s energy cost, this portion of the
energy contributes to the majority of the energy consumption of
the system. eNVM-based NCS, on the other hand, achieves less
than 1 pJ on energy/connection, which is considerably lower than
that of CMOS-based ones.

4.4 Challenges
Although eNVM-based NCS demonstrated great potentials in

neuromorphic computing, there still exist some challenges in the
design, including:

1) Reliability. Unlike the mature Silicon CMOS technology,
one of the major drawbacks of most emerging memory technolo-
gies is their limited reliability characteristics. Many of these de-
vices suffer from large device-to-device variability in their oper-
ations and also exhibit cycle-to-cycle variability in the program-
ming of a single device. The programmed resistance levels also
suffer from drift and retention loss, which become more phenom-
enal when technology scales. For example, the randomness of
filament formation in the memrisor [82] can be magnified by the
nonlinear dynamics of memrisor switching [83]. Circuit and ar-
chitectural solutions become essential to overcome the reliability
issue of the eNVM-based NCS on top of the traditional device
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engineering solutions.
2) Integration. The integration of MBC and CMOS-based

neuron circuits also generate many unique design challenges. For
example, the interconnect IR-drop in memristor arrays severely
limits the scale of MBCs and hence hinders the design scalability.
Liu et al. showed that both reading (recall) and writing (training)
of the MBC will encounter severe reliability issues when the array
size is beyond 64 × 64 [18]. In addition, the fabrication process
of memristor devices is still under development, thus still achiev-
ing unsatisfying yield at the array level. Stuck-on and stuck-off
defects are often observed [84]. Also, due to the intrinsic mecha-
nism of the memristor, analog memristance values are vulnerable
to read disturbance, that is, the memristance could drift from its
originally programmed value after a number of accesses. There-
fore, an real-time feedback controller might be needed to trace
and control such drift.

3) Security. Neuromorphic computing are widely used in
many applications for advanced data processing, and often im-
plements proprietary algorithms. While DNNs have achieved re-
markable success in advanced intelligent applications, security-
related issues gradually become severe. For example, the learn-
ing model running on an embedded device is exposed to the risk
of being attacked by malicious users who have physical access to
the device [20]. Attackers can also send hand-crafted data into
the system and achieve anticipated purposes, e.g., to fool the
model’s predictions in testing phase using adversarial attack [85]
or to compromise the model in training phase using poisoning
attack [86].

5. EDA-based Solutions

In this section, we will discuss some EDA-based solutions to
address the design challenges of eNVM-based NCS, including
reliability, precision, scalability, and security.

5.1 Reliability and Integration
Programming a memristor to a specific state can be very chal-

lenging because real-time monitoring the memristor state is not
practical [87]. Liu et al. proposed a noise-eliminating training
method over a new crossbar structure to minimize the noise accu-
mulation during the MBC training and improve the trained system
performance, i.e., the pattern recall rate [17]. The sensitivity of
the MBC programming to the process variations and input signal
noise was quantitatively analyzed. A digital-assisted initialization
step for MBC training was also introduced to reduce the training
failure rate as well as the training time. Experiment results were
evaluated on multiple 512 × 512 MBC computing engines. Xia
et al. proposed a fault-tolerant online training method that alter-
nates between two phases [88]. The fault-detection phase used a
quiescent-voltage comparison method to obtain faulty cells dur-
ing training. The fault-tolerant phase used a threshold-training
method and a re-mapping scheme to tolerate the faults.

Another issue of MBCs is that the voltage applied to the two
terminals of a memristor is affected by the device location in the
crossbar and the resistance states of all other memristors. Liu et
al. proposed a novel system reduction scheme that significantly
lowers the required dimension of the memristor crossbars in NCS

while maintaining high computing accuracy [18]. An IR-drop
compensation technique was also proposed to overcome the ad-
verse impacts of the wire resistance and the sneak-path problem
in large memristor crossbar designs [18]. Another approach is to
partition a large network into many small ones in lower dimen-
sion [89].

The training of NCS can be further improved if the realistic
hardware limits are taken into consideration. Liu et al. presented
a quantitative analysis on the impact of device imperfections and
circuit design constraints and proposed a novel variation-aware
training scheme to enhance the training robustness of MBC-based
NCS by actively compensating the impact of device variations
and optimizing the mapping scheme from computations to cross-
bars [19]. Most eNVM devices show nonlinear and asymmetric
switching behaviors. These characteristics may prevent backpro-
pogation algorithm from locating optimal weights during train-
ing [90]. Such nonlinear behaviors also degrade the system toler-
ance to noises. Gong et al. established a practical methodology
based on Gaussian process regression to address this issue [91].
The proposed methodology is independent on switching mecha-
nisms and applicable to various eNVM devices.

5.2 Precision
The performance of eNVM-based NCS usually depends on

how accurately the state of the devices can be programmed.
Alibart et al. designed a simple write algorithm to tune device
conductance at a specific bias point within its dynamic range even
in the presence of large variations in switching behavior [92]. Ex-
cept for device engineering optimization, algorithm-level tech-
nique is also helpful to relax the requirement of the resistance
state resolution. By modifying the regularization in training, the
weight distribution can be tuned to fit the resistance values [93].
In this way, algorithm-level weights are tailored to enhance the
accuracy of eNVM-based NCS.

To better alleviate the impact of device variations, binarized
neural networks (BNNs) can be implemented in eNVM-based
NCS. BNNs only allow binary synapses of +1 and −1. Compare
to floating point DNNs, BNNs avoids the complex matrix mul-
tiplications by leveraging simple binary operations [94]. Pham
et al. proposed a Memristor-CMOS hybrid circuits of BNNs,
where single-column and double-column memristor BNNs were
presented and activation function are realized using CMOS cir-
cuits [95]. Experiment results showed that the memristor BNNs
could recognize as many as 90% MNIST digits when the mem-
ristance variation is as large as 25%. Additionally, Nandakumar
et al. proposed a mixed-precision architecture that combines a
computational memory unit storing the synaptic weights with a
digital processing unit and an additional memory unit that stored
the accumulated weight updates in high precision [96].

5.3 Scalability
To further increase the design density of NCS, various works

are proposed to implement 3D structured eNVMs. Researchers
from Intel demonstrated the ability to stack multiple layers of
PCM arrays within a single die [97]. To alleviate the write over-
head of STT-RAM in a 3D multi-core environment, Mishra et
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Fig. 8 Fabrication details [101]. (a) Scanning electron microscopy top-view
image of the fabricated circuit with a zoom on a stacked device to
highlight the clean electrode edges. (b) Equivalent circuit for two
memristors in the stacked configuration, in particular, highlighting
that the middle electrode (gray) is shared between bottom (red) and
top (blue) devices. (c) Cartoon of device’s cross section showing the
material layers and their corresponding thicknesses.

al. proposed a network-level solution to prioritize cache accesses
to the idle STT-RAM cache banks [98]. Zhang et al. systemat-
ically analyzed the variation sources of multi-level cell (MLC)
STT-RAM designs and their impacts on the reliability of the read
and write operations [62]. There also have already been demon-
strations of multilayer crossbar circuits, whose primary target ap-
plication was digital memories [99], [100]. In particular, Adam
et al. [101] reported a monolithically integrated 3-D metal-oxide
memristor crossbar circuit suitable for analog neuromorphic com-
puting applications. The demonstrated crossbar was based on
Pt/Al2O3/TiO2−x/TiN/Pt memristors and consisted of a stack of
two 10 × 10 crossbars with shared middle electrodes. The results
demonstrated a significant improvement of yield and uniformity
of crossbar devices. This fabrication process could also be in-
tegrated with CMOS circuits. Figure 8 demonstrates two mem-
ristive crossbar circuits are monolithically integrated in a conven-
tional configuration, with middle lines shared between the bottom
and top crossbar circuits.

5.4 Security
Running DNN models on an embedded device has a unique

security challenge that the learning model can be replicated
by attackers who have access to the system by learning from
the input/output pairs [20]. Yang et al. [20] proposed a secure
memristor-based NCS design to thwart such replication attacks
by leveraging memristor’s obsolescence effect. The accuracy of
the system outputs for any unauthorized user was reduced. For

a legitimate user, the obsolescence effect was regulated, thereby
the accuracy of the outputs can be maintained at a high level. The
proposed methodology was compatible with mainstream classifi-
cation applications, memristor devices, and security and perfor-
mance constraints.

Very recently, adversarial attack [85] become a significant con-
cern. State-of-the-art defenses against adversarial attack involve
adversarial example detection via multi-model cross verification,
followed by adversarial example filtration. Although this proce-
dure has been proved effective, the high computational overhead
and considerable input data loss make this solution hard to deploy
in reality. To overcome the above drawbacks, Liu et al. [21] pro-
posed a novel adversarial example restoration system to restore
the adversarially perturbed input to its original state. It included
a restoration network based on residual learning and a hardware
implementation by leveraging neuromorphic technique to achieve
an effective and efficient defense. The proposed restoration sys-
tem demonstrates a high restoration rate that outperforms state-
of-the-art methods with high image quality. The restoration sys-
tem can be easily integrated into the existing NCS.

6. Future of NCS

As aforementioned, NCS can greatly benefit from eNVM tech-
nologies from many design aspects. On the one hand, the high
computing efficiency of modern NCS designs and the advance in
computing architecture motivate explorations on new algorithms
that better fit the NCS structures; on the other hand, new algo-
rithms will also promote the study of novel NCS architectures
that can run these algorithms more efficiently. NCS will also be
expected to offer much higher performance than conventional von
Neumann systems for specific tasks such as image/pattern recog-
nition/prediction and natural language processing. The recent
TrueNorth chip from IBM is a perfect illustration of such a strat-
egy where various machine learning components were integrated
exclusively using low-power CMOS technology. The energy ef-
ficiency and integration density of such chips could be enhanced
significantly by combining emerging memory based cross-bar ar-
rays with CMOS circuitry that mimics neuronal activities. More
importantly, these new devices could play a definitive role in en-
abling online learning in large cognitive computing systems. In
addition, many of these new implementations try to benefit from
the intrinsic stochasticity and variability of emerging memories.

7. Conclusion

In this paper, we introduced the CMOS- and eNVM-based
NCS from many aspects. We first presented the implementa-
tions of the fundamental components, including both neurons and
synapses. We then compared training and inference schemes of
different neuromorphic computing algorithms such as DNNs and
SNNs. The limitations of CMOS-based designs in scalability and
connectivity were discussed and the potentials of eNVM-based
designs were analyzed in details. We also discuss various design
solutions for the design challenges of eNVM-based NCS in relia-
bility, integration, and security. Finally, we provided our insights
on the future of NCS and predicted the trend of integrating CMOS
circuitry and emerging devices.
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