
IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

[DOI: 10.2197/ipsjtsldm.13.2]

Regular Paper

Shift Register Initialization in Scalar Replacement
for Reducing Code Size

Kenshu Seto1,a)

Received: June 9, 2019, Revised: September 5, 2019,
Accepted: October 27, 2019

Abstract: Scalar replacement is an effective technique to improve the performance of the RTL code generated by
high-level synthesis (HLS) from C programs with intensive array accesses. In scalar replacement, data accessed from
arrays are stored into shift registers, and later array accesses on the same data are replaced with the accesses to the
shift registers instead of the arrays. Namely, scalar replacement replaces array accesses with shift register accesses.
Since arrays in C programs are usually mapped to RAMs with limited numbers of ports, reducing array accesses with
scalar replacement leads to the memory access reduction, which in turn improves the performance of the resulting
RTL code. In real-life C programs, sometimes, shift registers must be initialized conditionally using multiple array
accesses, which increases the number of array accesses in main loops. To reduce the conditional array access in the
main loops, the previous scalar replacement method proposed the use of a loop transformation called loop peeling.
Loop peeling brings significant increase in code size, leading to the negative impacts on performance or circuit area
of the synthesized hardware. In this paper, we propose a new method to initialize shift registers without loop peeling.
The proposed method works as a preprocessing of the input C program prior to scalar replacement. With experimental
results, we demonstrate the proposed method reduces the numbers of execution cycles of the synthesized hardware
compared to the previous method.

Keywords: high-level synthesis, memory access optimization, scalar replacement

1. Introduction

High-level synthesis (HLS) [1], [2] generates RTL code auto-
matically from C programs, so HLS leads to significant reduction
of the design time of digital circuits. Unfortunately, the appli-
cation of HLS to unoptimized C programs sometimes generates
RTL code whose quality in terms of area or performance is in-
sufficient, so users of HLS usually have to optimize the input C
programs manually to enhance the quality of the generated RTL.
The manual code optimization is time consuming, since the users
have to study the complex optimizations sufficiently and manu-
ally apply the optimizations to the C programs in a careful man-
ner. Without sufficient understanding of the optimizations, the
users lose the chance of optimizations and get the low quality
RTL code. Thus, the automatic code optimization will greatly
help improve the usefulness of HLS.

Memory access optimizations are often necessary to generate
high-quality RTL code with HLS. In HLS, arrays in C programs
are often implemented as RAMs. RAMs typically have at most
2 ports. So, memory accesses are usually performance bottle-
necks in C programs with not a few memory accesses, such as
the programs for image filtering or stencil computations. In order
to address the bottlenecks, optimizations that address the limited
memory bandwidth are necessary. Such optimizations include ar-
ray partitioning (or memory partitioning) [3], [4], [5], and scalar

1 Tokyo City University, Setagaya, Tokyo 158–8557, Japan
a) kseto@tcu.ac.jp

replacement [6], [7], [8]. Array partitioning increases the mem-
ory bandwidth of RAMs by partitioning the RAMs into smaller
RAMs. Scalar replacement resolves the limited memory access
bottlenecks by storing the accessed data from a RAM into shift
registers and by accessing the data in the shift registers instead
of the RAM. Array partitioning is an effective technique to en-
hance the memory bandwidth of on-chip RAMs but it is some-
times not applicable to off-chip RAMs that cannot be partitioned.
This work focus on the improvement of scalar replacement.

Scalar replacement usually must be applied to nested loops,
since algorithms in image processing or stencil computations are
usually represented by nested loops. The first scalar replacement
technique for nested loops was proposed in Ref. [6]. In Ref. [7],
scalar replacement based on the polyhedral model was proposed.
The method proposed in Ref. [7] can handle array accesses with
constant subscripts. Array accesses with constant subscripts are
common in image filtering applications. In Ref. [8], the work [7]
was extended to reduce the circuit area of the shift registers by
replacing shift registers with circular buffers. In scalar replace-
ment techniques [6], [7], [8], an array access that accesses data at
the earliest iterations is called generator. For the example code in
Fig. 1, the access B[i][j] is the generator. B[i-1][j-1] accesses the
same data as the generator B[i][j] does in the later iterations. Such
an access as B[i-1][j-1] which reuses data accessed by a genera-
tor is called a reuse destination, and reuse destinations are usually
removed from the main loop body by scalar replacement. Unfor-
tunately, B[i-1][j-1] also accesses data that are not accessed by

c© 2020 Information Processing Society of Japan 2

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

Fig. 1 Example code used throughout this paper.

the generator B[i][j]. In this case, the access B[i-1][j-1] cannot be
completely removed from the main loop body after the scalar re-
placement, since the initialization of shift registers with the array
access B[i-1][j-1] is necessary in the main loop body. To reduce
the array accesses in the main loop body as much as possible after
scalar replacement, the previous algorithm [6] proposed the use of
loop peeling, which is a loop transformation that removes parts of
the iterations of a nested loop outside of the main loop. Unfortu-
nately, loop peeling significantly increases the code size, and the
increased code size likely increases the circuit area or degrades
the circuit performance after HLS. In this work, we present a
scalar replacement technique that does not use loop peeling even
when reuse destinations access data that are not accessed by the
generator.

In Section 2, we briefly review the preliminaries for scalar re-
placement and the polyhedral model. In Section 3, we discuss
the problem of the previous scalar replacement with a simplified
example in Fig. 1. In Section 4, we propose a technique to solve
the problem explained in Section 3. Section 5 demonstrate the
impact of the proposed technique, followed by the conclusions in
Section 6.

2. Preliminaries

In this section, we briefly review the definitions on scalar re-
placement and the polyhedral model [10]. These definitions are
used in this paper. For more details on the definitions, please re-
fer to Refs. [7], [8].

Definition 2.1 (Reuse source and destination) When an ar-
ray element accessed by an array access s is accessed in later
loop iterations by an array access d, we say that the array access
d reuses the data accessed by the array access s. We call s a reuse
source and d a reuse destination. An array access can be both a
reuse source and a reuse destination at the same time.

Definition 2.2 (Generator) When an array access is a reuse
source but is not a reuse destination, the access is called a gen-
erator. A generator starts to access each array element and the
data accessed by the generator will be reused later by its reuse
destinations.

Definition 2.3 (Reuse vector) A reuse vector 〈d1, d2, . . .〉
represents the numbers of iterations (or simply, iterations) be-
tween the access to an array element by a reuse source s and the
later access to the same element by a reuse destination d. In the
reuse vector, d1, d2, . . . corresponds to iterations for outermost
loop, 2nd outermost loop, . . . , respectively.

Definition 2.4 (Reuse distance) A reuse distance is calcu-
lated from a reuse vector, 〈d1, d2, . . .〉 by the following formula
(1) where Ik represents the number of loop iterations for the k-th
loop from the outermost loop, and n represents the depth of the
nested loop. A reuse distance means the number of innermost

loop iterations after which the reuses from a reuse source s to a
reuse destination d occur.

n−1∑
l=1

{(n∏
k=l+1

Ik

)
× dl

}
+ dn (1)

Definition 2.5 (Iteration vector) A vector�i whose elements
are values of loop induction variables from the outermost loop to
the innermost loop in a nested loop is called an iteration vector.

Definition 2.6 (Domain of array access) A set of iteration
vectors, Da, that contains all iterations in which an array access
a in a nested loop is executed is called the domain of the array
access a.

Definition 2.7 (Domain of loop) A set of iteration vectors,
DL, that contains all iterations in which a nested loop is executed
is called the domain of the nested loop L. For Fig. 1, the domain
of the nested loop is {(i, j) | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4}

Definition 2.8 (Subscript vector of array accesses) We de-
fine a vector �s = (s1, s2, . . .) whose elements are subscript values
of an array as a subscript vector. The number of dimensions of a
subscript vector for an m-dimensional array equals to m, and the
i-th element of a subscript vector corresponds to the i-th subscript
from the leftmost array subscript. A subscript vector represents
subscript values of an array access a at a specific iteration vec-
tor�i ∈ Da. For example, the subscript vector of the array access
B[i-1][j-1] at�i = (i, j) = (1, 1) is �s = (s1, s2) = (0, 0).

Definition 2.9 (Subscript space of array access) We call the
set of all subscript vectors of an array access a a subscript
space of the array access a and denote it by S a. For exam-
ple, the subscript space of the array access B[i-1][j-1] in Fig. 1
is S B[i-1][j-1] = {(s1, s2) | 0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3}.

Definition 2.10 (Access function of array access) The
access function Fa of an array access a is a function Fa : �i ∈
Da → �s ∈ S a. In other words, the access function of an array
access a represents a mapping from each iteration vector�i in Da

to a subscript vector �s of the array access.
Definition 2.11 (Reuse relation between array accesses)

The reuse relation Rs,d from a reuse source s to a reuse desti-
nation d is a set of pairs (�is, �id) of iteration vectors �is ∈ Ds and
�id ∈ Dd where the array access d at the iteration vector �id ∈ Dd

accesses the same array element which was previously accessed
by the array access s at the iteration vector �is ∈ Ds.

3. The Problem of the Previous Shift Register
Initialization

In this section, we illustrate the problem of the previous scalar
replacement techniques [6], [7], [8], in particular, in the shift reg-
ister initialization. In order to describe the problem, we briefly
review scalar replacement with the simple code in Fig. 1. For
the code in Fig. 1, scalar replacement tries to reduce the number
of the array accesses to the array B from two to one. In Fig. 1,
the generator is B[i][j] and the reuse destination is B[i-1][j-1].
The reuse destination B[i-1][j-1] accesses the data accessed by
the generator B[i][j] one iteration later in loop i and one iteration
later in loop j. In other words, the reuse vector from the generator
B[i][j] to the reuse destination B[i-1][j-1] is 〈1, 1〉. By assigning
the reuse vector 〈1, 1〉 to the formula (1) in Definition 2.4, the

c© 2020 Information Processing Society of Japan 3

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

Table 1 The reuse information table for Fig. 1 used in Ref. [7].

Access Array Reuse Reuse Scalar
type access vector distance variable

1 Generator B[i][i] N/A N/A B reg 0
2 Reuse B[i-1][j-1] 〈1, 1〉 5 B reg 5

Fig. 2 Code after the previous scalar replacement [6] (before loop peeling).

reuse distance from the generator B[i][j] to the reuse destination
B[i-1][j-1] is calculated to be 5. The table that summarizes nec-
essary information for scalar replacement (called reuse informa-

tion table) is shown in Table 1. Figure 2 shows the code after
applying the previous scalar replacement and shift register ini-
tialization [6] to the code in Fig. 1. Since the reuse distance is 5,
we prepare shift registers of length 5 consisting of B reg 1, . . . ,
B reg 5. The input of the shift registers, B reg 0, is initialized to
the accessed data by the generator B[i][j] as shown in the line 3
of Fig. 2.

As shown in the lines 4 and 5 of Fig. 2, we also need to initial-
ize the B reg 5 in the shift registers to the data accessed by the
reuse destination B[i-1][j-1]. This is because the reuse destination
B[i-1][j-1] accesses the data that are not accessed by the genera-
tor B[i][j] when i is 1 or j is 1. For example, the reuse destination
B[i-1][j-1] accesses B[0][0] when i is 1 and j is 1, however, the
generator B[i][j] does not access B[0][0] for any iteration vector
in the domain DB[i][j] of the generator where DB[i][j] = {(i, j) | 1 ≤
i ≤ 4 ∧ 1 ≤ j ≤ 4} and S B[i][j] = {(i, j) | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4}. In
order to appropriately initialize the shift register B reg 5 when i

is 1 or j is 1, the lines 4 and 5 of Fig. 2 are added in the main loop
body. Unfortunately, the addition of the line 5 in Fig. 2 increases
the number of the array accesses to the array B by 1 in Fig. 2. As-
suming that the array B is mapped to a 1-port RAM, the initiation
interval (II) of the innermost loop in Fig. 2 after loop pipelining is
not reduced, so that we cannot expect the reduction of the number
of execution cycles although scalar replacement is performed.

In order to remove the array accesses incurred by the addi-
tional initialization of the shift registers from the main loop body,
the previous work [6] proposed the application of a loop transfor-
mation called loop peeling to the loop body. The code shown in
Fig. 3 is the result of applying loop peeling to the code shown in
Fig. 2. By peeling out both the outer loop iteration for i = 1 and
the inner loop iteration for j = 1 from the loop body in Fig. 2, we
can eliminate the conditional array access in the lines 4 and 5 in
Fig. 2 and the resulting main loop body in lines 20 to 27 of Fig. 3
has only one access to the array B in line 21. Assuming that the
array B is mapped to a 1-port RAM as before, the initiation in-
terval (II) of the innermost loop from the lines 20 to 28 in Fig. 3
after loop pipelining is reduced to one from two, so that we ex-

Fig. 3 Code after the previous scalar replacement [6] (after loop peeling).

Fig. 4 Subscript spaces for B[i][j] and B[i-1][j-1] and the “simple hull” of
the union of the subscript spaces for B[i][j], B[i-1][j-1].

pect the reduction of the number of execution cycles after scalar
replacement. Unfortunately, after the loop peeling, the code size
of Fig. 3 is increased by more than 2 times to 29 lines from 13
lines of Fig. 2. Significant increases in the code size of input C
programs usually lead to the degradation in the performance or
the circuit area of synthesized hardware by HLS.

4. The Proposed Shift Register Initialization

In this section, we propose a new method to reduce the code
size of shift register initialization for scalar replacement. As
in Refs.[7], [8], the input C programs for the proposed method
are assumed to be stencil computations [5] in Static Control Part
(SCoP) format [9]. We also assume that each target C program
consists of a fully nested loop where all statements are contained
in the innermost loop and no statement exists outside the inner-
most loop. We also assume that each target array is accessed only
inside the loop body, that each target array has at most one write
access and at least one read access in the loop body, and that the
increment value of each loop induction variable is 1. In addi-
tion, we assume that each target array has only one generator and
that loop bounds are represented not by parameters unknown at
compile-time but by constant values.

Here, we explain the main idea of the proposal with Fig. 4. In
Fig. 4, the set of black circles and the set of white circles represent
the subscript spaces of the array accesses B[i][j] and B[i-1][j-1],
respectively. The subscript spaces depict which data in the ar-

c© 2020 Information Processing Society of Japan 4

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

Fig. 5 Overall flow of the proposed method.

ray B are accessed by the generator B[i][j] and B[i-1][j-1]. As
seen from Fig. 4, the generator B[i][j] does not access the data
with s1 = 0 or s2 = 0 which are accessed by the reuse desti-
nation B[i-1][j-1]. To solve the problem, we propose to add a
new generator B[i][j] at the top of the loop body as a dummy
statement and to make the new generator access all the data ac-
cessed by all the reuse destinations by extending the domain of
the loop from DL = {(i, j) | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4} to
D′L = {(i, j) | 0 ≤ i ≤ 4 ∧ 0 ≤ j ≤ 4} as shown in Fig. 8. To
prevent the change in the program semantics, the original loop
body is enclosed with a conditional statement, as shown in line 4
of Fig. 8, that guarantees that the original loop body is executed
in the original domain of the loop DL. Although the new gen-
erator temporarily increases the number of array accesses, scalar
replacement which will be applied later will eliminate array ac-
cesses as shown in Fig. 9. Although the loop bounds are slightly
increased, the proposed method does not incur additional array
accesses for shift register initialization which have to be removed
with loop peeling.

Figure 5 shows the overall flow of the proposed method. The
overall flow consists of two phases, the “Preprocessing” phase
and the “Scalar replacement” phase. The “Preprocessing” phase
accepts input C code as shown in Fig. 1 and generates prepro-
cessed C code as shown in Fig. 8. The “Scalar replacement”
phase accepts the preprocessed C code and generates the opti-
mized code after scalar replacement as shown in Fig. 9. In Fig. 5,
we use the existing scalar replacement method [8] for the “Scalar
replacement” phase. In the following, we will explain the “Pre-
processing” phase.

The “Preprocessing” phase consists of the following steps and
for Steps 1 to 4, we use the same techniques as explained in the
previous work [7], [8], so please refer to Refs. [7], [8] for details.
Step 1. Build the polyhedral model for array accesses.
Step 2. Perform reuse analysis with the polyhedral model.
Step 3. Build a reuse graph for each array.
Step 4. Find the unique generator for each array.
Step 5. Compute extended domains of the loop.
Step 6. Generate the preprocessed C code.
In order to perform the C code generation in Step 6, we need
to compute the extended domains of the loop in Step 5 with the
polyhedral model, reuse analysis results and the generator infor-

Fig. 6 Procedure for computing extended domains of a loop for all new
generators and for each new generator.

Fig. 7 Procedure for generating preprocessed C code.

mation obtained from Steps 1 to 4. The detailed algorithms for
Steps 5 and 6 are illustrated in Figs. 6 and 7, respectively.

The inputs to the algorithm in Fig. 6 is: (1) Da: domains for
each array access a (defined in Def. 2.6), (2) Fa: access functions
for each array access a (defined in Def. 2.10), (3) Rg,a: reuse re-
lations from the generator g to the array accesses a for each array
(defined in Def. 2.11) and (4) gA: generators for each array A. The
outputs of the algorithm in in Fig. 6 are D′A and D′L that are used
in the algorithm in Fig. 7. D′A represents the extended domain of
the loop for the newly added generator of the array A to access all
the data accessed by all the reuse destinations of the array A. D′A
is used to generate the conditions of the if statements for genera-

c© 2020 Information Processing Society of Japan 5

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

Fig. 8 Code after the proposed preprocessing for shift register initialization.

tors when multiple generators are added in the loop body. Since
only one generator B[i][j] is newly added in the line 3 of Fig. 8,
such a if statement is not added in the case of Fig. 8. D′L repre-
sents the extended domain of the loop considering all the newly
added generators and D′A ⊆ D′L holds. D′L is used to modify the
loop bounds as shown in the lines 1 and 2 of Fig. 8. Please note
that the domain of a loop is defined in Def. 2.7.

In the line 1 of Fig. 6, D′L is initialized to the domain of the
original loop DL. The line 2 iterates over all the target arrays A

in the input C code. In the line 3, extendedFlag is initialized
to False. extendedFlag means weather it is necessary to extend
the domain of the loop for the current array A. The lines 4 to
7 are checking if there exists an array access a to the array A

that accesses data that are not accessed by the generator gA. The
main part of the checking is the line 5 where “Range” is the func-
tion that returns the destination of the reuse relation Rg,a. Da �
Range(Rg,a) means that there exists an iteration in Da where the
array access a cannot reuse the data accessed by the generator gA.
In general, Range(Rg,a) ⊆ Da holds. When every reuse destina-
tion of an array A reuses only the data accessed by the generator
gA, we do not need the preprocessing for the array A, so we set
D′A to NULL in the lines 8 and 9. Otherwise, the lines 11 to 16
are executed to compute D′A. In the line 11, UA is initialized to
the empty set. UA represents the union set (space) of the subscript
spaces S a of all the array accesses a to an array A. The subscript
space of an array access is defined in Def. 2.9. In the line 13, the
subscript space S a of an array access a is computed by applying
the array access function Fa of a to the domain Da of a. From
the lines 12 to 14, the union set UA is computed from all the S a.
For example, the union set UB of the subscript spaces S B[i][j] and
S B[i-1][j-1] of B[i][j] and B[i-1][j-1] in Fig. 4 is the set consisting
of a black circle or a white circle. The line 15 in Fig. 6 computes
the “simple hull” HA of the union set UA. “simple hull” opera-
tion [11] makes the generated code simple enough to apply scalar
replacement.

For example, the “simple hull” HB of the union set UB of
the subscript spaces of B[i][j] and B[i-1][j-1] in Fig. 4 is the
square-shaped set including both of the subscript spaces S B[i][j]

and S B[i-1][j-1]. In Fig. 4, HB includes the subscript vectors of
(s1, s2) = (4, 0), (0, 4) while UB does not. In the line 16, FgA

−1

represents the inverse function of FgA where FgA is the access
function of the generator gA. By applying FgA

−1 to HA, we obtain
D′A. In the line 18, D′L is updated by unioning D′A when D′A is not
NULL. Finally in the line 19, we compute the “simple hull” of
the unioned set D′L over all the target arrays in the input C code.

Figure 7 shows the algorithm that generates preprocessed C
code. The parts of the inputs to the algorithm in Fig. 7, namely
D′A and D′L, are the results of Fig. 6. Other than D′A and D′L, the

Table 2 The reuse information table for the code in Fig. 8.

Access Array Reuse Reuse Scalar
type access vector distance variable

1 Generator B[i][j] N/A N/A B reg 0
2 Reuse B[i][j] 〈0, 0〉 0 B reg 0
3 Reuse B[i-1][j-1] 〈1, 1〉 6 B reg 6

inputs to the algorithm are (1) Input C code which will be mod-
ified by this algorithm, (2) Text strings genstrA for each gener-
ator and (3) DL: The domain of the original loop in the input
C code. The line 1 in Fig. 7 iterates over each loop dimension
of the fully nested loop in the input C code from the outermost
loop. d = 1 and d = n dim represent the outermost loop (1-st
loop) and the innermost loop (n dim-th loop), respectively where
n dim denotes the depth of the nested loop. The lines 2 and 3
update the lower bound and upper bound of d-th loop, respec-
tively. project(D′L, d) is a function that performs the projection of
the (multi-dimensional) set D′L onto a given dimension d. The re-
sult of project(D′L, d) is a one-dimensional set. The min and max
functions in the lines 2 and 3 return the minimum and maximum
values of the one-dimensional (integer) set. The lines 7 to 8 add
new generators, such as the one in the line 3 of Fig. 8. The line 4
of Fig. 7 iterates over the target arrays and the arrays that do not
require addition of the new generators are skipped as shown in
the lines 5 to 6. When multiple new generators for different ar-
rays A1, A2, . . . must be added, the extended domains of the loop
D′A1
,D′A2
, . . . for these new generators are usually different, so if

statements must be usually added to the statements of the new
generator to reflect the different extended domains as shown in
the line 8 of Fig. 7. The conditions condA of the if statements
are computed in the line 7. Instead of using D′A directly, we per-
form “gist” operation [11] on D′A with respect to D′L in order to
simplify condA. In case of the code in Fig. 8 where only one gen-
erator B[i][j] are newly added, D′A and D′L are equal, so gist(D′A,
D′L) evaluates to True. As a result, the if statement is not neces-
sary as shown in the line 3 of Fig. 8. genstrA in the line 8 of Fig. 7
is the text string for the generator of the array A. For example, in
the case of Fig. 1, the text string for the generator of the array B
is B[i][j]. The line 10 in Fig. 7 adds the if statement that encloses
the loop body, as shown in the lines 4 and 6 in Fig. 8. After the
proposed preprocessing, the loop bounds are extended as shown
in the lines 1–2 in Fig. 8. To make the preprocessed code in Fig. 8
equivalent to the original input C code in Fig. 1, we have to en-
close the original loop body (the line 5 in Fig. 8) with the if state-
ment in the lines 4 and 6 in Fig. 8. The if statement constrains
the original loop body to execute only in the original domain of
the loop DL. The line 9 of Fig. 7 generates the condition condbody

of the if statement. Again, “gist” operation is applied to DL with
respect to D′L to simplify the condition condbody.

After applying the “Preprocessing” phase to the input C code,
such as the one shown in Fig. 1, we obtain the preprocessed C
code, such as the one shown in Fig. 8. The existing scalar replace-
ment, such as Refs. [7], [8], can be applied to the preprocessed
code to perform scalar replacement. The reuse information ta-
ble [7], [8] for the code in Fig. 8 is shown in Table 2, and the
resulting code after scalar replacement using the table is shown
in Fig. 9.

c© 2020 Information Processing Society of Japan 6

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

Table 3 Comparison between the previous method [6] and the proposed method for shift register initial-
ization.

Benchmark
Code type # lines II

of execution Gate Gate counts Gate counts
programs cycles [cycles] counts of I/O RAMs including I/O RAMs

Example
previous [6] with loop peeling 30 1 1,116 (1.00) 5,299 (1.00) 98,304 103,603 (1.00)
previous [6] without loop peeling 15 2 1,986 (1.78) 5,580 (1.05) 98,304 103,884 (1.00)
proposed 14 1 1,090 (0.98) 5,182 (0.98) 98,304 103,486 (1.00)

jacobi-2d
previous [6] with loop peeling 264 1 1,989 (1.00) 25,459 (1.00) 98,304 123,763 (1.00)
previous [6] without loop peeling 71 7 6,542 (3.29) 5,995 (0.24) 98,304 104,299 (0.84)
proposed 73 1 1,346 (0.68) 19,421 (0.76) 98,304 117,725 (0.95)

seidel-2d
previous [6] with loop peeling 287 2 2,361 (1.00) 24,150 (1.00) 49,152 73,302 (1.00)
previous [6] without loop peeling 79 10 9,002 (3.81) 17,958 (0.74) 49,152 67,110 (0.92)
proposed 76 2 2,050 (0.87) 17,602 (0.73) 49,152 66,754 (0.91)

heat-3d
previous [6] with loop peeling 262 1 10,626 (1.00) 63,072 (1.00) 196,608 259,680 (1.00)
previous [6] without loop peeling 50 7 20,974 (1.97) 51,648 (0.82) 196,608 248,256 (0.96)
proposed 50 1 6,403 (0.60) 64,836 (1.03) 196,608 261,444 (1.01)

Fig. 9 Code after the proposed preprocessing and scalar replacement.

5. Experimental Results

In this section, we show the impact of the proposed shift regis-
ter initialization method presented in Section 4 on the numbers of
execution cycles and the circuit area of the generated RTL code,
compared to the previous shift register initialization method [6].

5.1 Experimental Setup
We implemented the preprocessing tool for the shift register

initialization algorithm proposed in Section 4 based on Ref. [8]
with ISL (Integer Set Library) [11]. We generated RTL code and
gate-level netlists with a commercial high-level synthesis (HLS)
tool (Stratus) and a commercial logic synthesis tool (Genus) from
Cadence, respectively. In HLS, we used the loop pipelining di-
rectives to all the innermost loops with the smallest initiation in-
tervals (IIs). The clock constraints for both the HLS and the logic
synthesis were set to 500 MHz and we used a 45 nm technology
library for the target cell library. All arrays that contain input or
output data were mapped to 1-port RAMs, and the arrays corre-
sponding to circular buffers [8] were mapped to 2-port RAMs.

We used the benchmark programs shown in Table 3 for the
experiment. Example is the code shown in Fig. 1 except that
the upper bounds of the f or loops were increased from 5 to 30.
jacobi-2d and seidel-2d are the code for a Jacobi like stencil com-
putation with a 5-point stencil pattern and the code for a Gauss-
Seidel like stencil computation with a 9-point stencil pattern, re-
spectively. All of the programs are 2-dimensional loops except
heat-3d. jacobi-2d and seidel-2d work on 2-dimensional arrays
of 32 × 32. heat-3d is a 3-dimensional stencil computation for
solving the heat equation and works on 3-dimensional arrays of
16 × 16 × 16. We applied the proposed preprocessing tool to
the benchmark programs, followed by the scalar replacement tool

proposed in Ref. [8].

5.2 Results and Discussions
Table 3 shows the experimental results. In the table, previ-

ous [6] with loop peeling, previous [6] without loop peeling and
proposed show the results of the previous shift register initializa-
tion that uses loop peeling [6], those of the previous shift register
initialization that does not use loop peeling [6] and those of the
proposed shift register initialization, respectively. All the gener-
ated RTL code satisfied the clock constraints of 500 MHz.

In Table 3, the column “# lines” shows the numbers of lines
after scalar replacement, such as those in Figs. 2, 3 and 9, for
the main computation part of the benchmark programs, and we
see that the proposed method could reduce code size significantly
compared to the code generated by the previous method with loop
peeling. The code size by the previous method without loop peel-
ing was almost the same as that by the proposed method. The
previous shift register initialization [6] required the loop peeling
of the iterations i=1 and j=1 for Example, the iterations i=1, j=1
and j=30 for jacobi-2d, the iterations i=1, j=1, j=29 and j=30
for seidel-2d and the iterations i=1, j=1, j=14, k=1 and k=14 for
heat-3d, which resulted in the significant increase in code size.
Instead of the increased code size due to the loop peeling, the
proposed method increased the loop counts of the loops due to
the extended domains of the loops. Example increased the loop
count by 1 for each loop dimension and both jacobi-2d, seidel-2d

and heat-3d increased the loop counts by 2 for each loop dimen-
sion.

In Table 3, “II” shows the results for the initiation intervals
(IIs) after loop pipelining for the main loops (In case of Fig. 3,
the main loop means the loop from the lines 20 to 28). The IIs for
the previous method with loop peeling and those for the proposed
method were the same. The IIs for the previous method without
loop peeling, however, were significantly larger than those for the
proposed method, since the array accesses in the main loop bod-
ies were not reduced by the previous method without loop peel-
ing. So, the numbers of execution cycles for the previous method
without loop peeling were much larger than those by the proposed
method.

Comparing the results in the column “# of execution cycles” in
Table 3 for the previous method with loop peeling and the pro-
posed method, we observe that the reduction in the number of

c© 2020 Information Processing Society of Japan 7

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

execution cycles was small for the simple benchmark program
Example, however, the significant reductions of 32%, 13% and
40% were achieved for jacobi-2d, seidel-2d and heat-3d, respec-
tively. In the previous method [6] with loop peeling, loop itera-
tions are peeled out of the main loops, so that these peeled loops
cannot be executed in parallel with the main loops. As a result,
the numbers of the execution cycles by the previous method with
loop peeling were increased compared to those by the proposed
method. Although the proposed method lead to the slightly in-
creased loop counts of the nested loops, the negative impacts of
the increased loop counts was not large compared to the negative
impacts by the loop peeling used in the previous method [6].

In Table 3, I/O RAMs mean RAMs that are mapped to input or
output arrays that contain input or output data, and “gate counts”
mean the gate counts in terms of NAND2 gates. We approxi-
mated the gate counts for 1-port RAMs by 1.5 NAND gates per
1 bit, since a 1-bit memory cell of 1-port RAMs consists of 6
transistors and a NAND gate consists of 4 transistors. In this ap-
proximated gate counts for 1-port RAMs, we only considered the
gate counts for memory cells for the sake of simplicity, omitting
the gate counts for decoders and sense amplifiers. According to
Ref. [12], the density of the 1-port SRAM was twice the density
of the 2-port SRAM. So, we approximated the gate counts for
2-port RAMs used in circular buffers by 3 NAND gates per 1 bit
which is twice the 1.5 NAND gates per 1 bit. In Table 3, “Gate
counts”, the sixth column from the left, represent the gate counts
of the synthesized hardware excluding the gate counts due to the
I/O RAMs. In the table, “Gate counts of I/O RAMs” represents
the gate counts of the I/O RAMs, and “Gate counts including I/O
RAMs” is the sum of the “Gate counts” and “Gate counts of I/O
RAMs”. The column of “Gate counts” shows that the proposed
shift register initialization method could reduce the gate counts
by 2%, 24% and 27% for Example, jacobi-2d and seidel-2d, re-
spectively, compared to the previous shift register initialization
method with loop peeling. For heat-3d, the proposed shift register
initialization method increased the gate counts by 3% compared
to the previous shift register initialization method with loop peel-
ing. This is due to the increased circular buffer size caused by the
increased loop counts of the 3-dimensional loops. Even when the
gate counts of the I/O RAMs were taken into account, as shown
in the column “Gate counts including I/O RAMs”, the proposed
method could reduce the gate counts by 5% and 9% for jacobi-

2d and seidel-2d, respectively, compared to the previous method
with loop peeling. Although the proposed shift register initializa-
tion method resulted in the increased loop counts and hence the
increased numbers of shift registers, the negative impacts of the
increased shift registers were not significant compared to those
of the increased code size by the loop peeling. The increased
code size by the loop peeling resulted in significant increases in
multiplexers, which brought significantly negative impacts on the
numbers of the execution cycles and the circuit area of the syn-
thesized circuits.

In summary, we found that the proposed shift register initial-
ization method significantly reduced the code size after scalar
replacement compared to the previous shift register initializa-
tion method [6] with loop peeling. The previous method with-

out loop peeling generated the code with almost the same code
size with the proposed method, however, the numbers of execu-
tion cycles were significantly worse than those by the proposed
method. So the previous shift register initialization method re-
quires loop peeling in order to design high-performance acceler-
ators. Due to the code size reduction, the proposed method could
significantly reduce the numbers of execution cycles compared
to the previous method with loop peeling. The gate counts of
the synthesized design for jacobi-2d and seidel-2d were reduced
with the proposed method compared to the previous method with
loop peeling. The gate count of the synthesized design for heat-

3d was slightly increased with the proposed method compared to
the previous method with loop peeling. Therefore, we claim that
the proposed method is promising as a shift register initialization
for scalar replacement when we perform scalar replacement to
C programs where generators do not access all the data that are
accessed by their reuse destinations.

6. Conclusions

Scalar replacement is a compiler optimization that is used to
reduce array accesses in the input C programs for high-level syn-
thesis, and shift registers are introduced after the application of
scalar replacement. When reuse destinations access data that are
not accessed by the generator, it is necessary to initialize the shift
registers appropriately with extra array accesses. The previous
method to initialize the shift registers [6] performs loop peeling
to remove the extra array accesses from the main loop and to
reduce the initiation intervals (IIs) of the pipelined loops. We
discussed that the loop peeling increases the code size of the in-
put C programs and negatively impacts the numbers of execution
cycles and the gate counts of the synthesized hardware. In this
paper, we proposed a new method for initializing the shift reg-
isters introduced by scalar replacement. The proposed method
works as a preprocessing of the input C program prior to scalar
replacement. The proposed method adds additional generators in
the input C programs and these additional generators accesses all
data that are accessed by their reuse destinations. Experimental
results demonstrated that the proposed method for the shift regis-
ter initialization successfully reduced the size of C programs that
are synthesized by HLS without increasing the IIs. Compared
to the previous method with loop peeling, the proposed method
reduced the numbers of the execution cycles significantly and,
for some cases, the proposed method reduced the gate counts of
the synthesized hardware. We claim that the proposed shift reg-
ister initialization method is promising when we perform scalar
replacement to the input C programs where generators do not ac-
cess all the data that are accessed by the reuse destinations.

References

[1] Gajski, D.D.: High Level Synthesis: An Introduction to Chip and Sys-
tem Design, Kluwer Academic Publishers (1992).

[2] Vivado Design Suite User Guide: High-Level Synthesis (UG902), Xil-
inx (2017).

[3] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Automatic Memory Parti-
tioning and Scheduling for Throughput and Power Optimization, ACM
Trans. Design Automation of Electronic Systems (2011).

[4] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Theory and algorithm for
generalized memory partitioning in high-level synthesis, International

c© 2020 Information Processing Society of Japan 8

IPSJ Transactions on System LSI Design Methodology Vol.13 2–9 (Feb. 2020)

Symposium on Field-Programmable Gate Arrays (FPGA) (2014).
[5] Cong, J., Li, P., Xiao, B. and Zhang, P.: An Optimal Microarchitec-

ture for Stencil Computation Acceleration Based on Nonuniform Par-
titioning of Data Reuse Buffers, IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, Vol.35, pp.407–418 (2016).

[6] So, B. and Hall, M.W.: Increasing the Applicability of Scalar Replace-
ment, Compiler Construction (CC) (2004).

[7] Seto, K.: Scalar Replacement with Polyhedral Model, IPSJ Trans. Sys-
tem LSI Design Methodology, Vol.11 (2018).

[8] Seto, K.: Scalar Replacement with Circular Buffers, IPSJ Trans. Sys-
tem LSI Design Methodology, Vol.12 (2019).

[9] Bastou, C.: A Polyhedral Representation Extractor for High Level
Programs, available from 〈http://icps.u-strasbg.fr/people/bastoul/
public html/development/clan/docs/clan.pdf〉 (accessed 2019-06).

[10] Bastoul, C., Cohen, A., Girbal, S., Sharma, S. and Temam, O.: Putting
Polyhedral Loop Transformations to Work, International Workshop on
Languages and Compilers for Parallel Computers (LCPC) (2003).

[11] Verdoolaege, S.: Integer Set Library: Manual (2019).
[12] Nii, K., Yabuuchi, M., Tsukamoto, Y., Ohbayashi, S., Oda, Y., Usui,

K., Kawamura, T., Tsuboi, N., Iwasaki, T., Hashimoto, K., Makino,
H. and Shinohara, H.: A 45-nm Single-port and Dual-port SRAM
family with Robust Read/Write Stabilizing Circuitry under DVFS En-
vironment, Symposium on VLSI Circuits Digest of Technical Papers,
pp.212–213 (2008).

Kenshu Seto received his B.S. in electri-
cal engineering, M.S. and D.Eng. in elec-
tronics engineering from the University of
Tokyo in 1997, 1999 and 2004, respec-
tively. From 2004 to 2006, he was a re-
searcher at VLSI Design and Education
Center (VDEC), the University of Tokyo.
He joined the department of electrical and

electronic engineering, Tokyo City University (renamed from
Musashi Institute of Technology) in 2007. His primary research
interests include high-level synthesis and compiler techniques for
System-on-Chips (SoCs).

(Recommended by Associate Editor: Ittetsu Taniguchi)

c© 2020 Information Processing Society of Japan 9

