
IPSJ Transactions on System LSI Design Methodology Vol.13 35–38 (Feb. 2020)

[DOI: 10.2197/ipsjtsldm.13.35]

Short Paper

A Logic Optimization Method by Eliminating Redundant
Multiple Faults from Higher to Lower Cardinality

PeikunWang1,a) AmirMasaud Gharehbaghi2,b) Masahiro Fujita2,c)

Received: June 4, 2019, Revised: August 26, 2019,
Accepted: October 27, 2019

Abstract: In this paper, we propose a logic optimization method to remove the redundancy in the circuit. The incre-
mental Automatic Test Pattern Generation method is used to find the redundant multiple faults. In order to remove
as many redundancies as possible, instead of removing the redundant single faults first, we clear up the redundant
faults from higher cardinality to lower cardinality. The experiments prove that the proposed method can successfully
eliminate more redundancies comparing to the redundancy removal command in the synthesis tool SIS.

Keywords: logic optimization, redundant multiple faults, incremental fault selection method

1. Introduction

Logic optimization methods have been studied since 1980’s
which resulted in SIS [1] logic synthesis tool and later in ABC [2]
logic synthesis and verification tool. Redundancy removal com-
mand in logic synthesis tool SIS [1] can optimize the circuit by
eliminating the single redundant faults. Authors in Ref. [3] try
to remove the single redundancies in the circuit by repeatedly
adding redundancy and then removing other redundancies. Au-
thors in Ref. [4] utilize multiple faults to simplify circuit log-
ics by generating a new circuit with the function approximate
to the original circuit. In other words, the circuit function may
be changed. However, none of these methods consider the op-
timization by removing the redundant multiple faults in the cir-
cuit without the function change, which can potentially eliminate
more redundancies and make circuit more compact.

In this paper, we propose a new logic optimization method by
identifying the redundant multiple stuck-at faults (MSAF) and
removing their related gates. The fault selection method intro-
duced in Refs. [5], [6], [7] is applied to find the redundant multi-
ple faults. According to the experimental results, by eliminating
the MSAF from higher cardinality to lower cardinality, the pro-
posed method can remove more redundant logic comparing to the
methods that only eliminate single stuck-at faults (SSAF).

The rest of the paper is organized as follows. Section 2 presents
the fault selection method to find multiple faults. Section 3 ex-
plains the proposed fault removal method. Section 4 illustrates
the experimental results. Section 5 concludes the paper and dis-
cusses the future work.

1 Electrical Engineering and Information Systems, The University of
Tokyo, Bunkyo, Tokyo 113–0032, Japan

2 VLSI Design and Education Center, The University of Tokyo, Bunkyo,
Tokyo 113–0032, Japan

a) paykoon@cad.t.u-tokyo.ac.jp
b) amir@cad.t.u-tokyo.ac.jp
c) fujita@ee.t.u-tokyo.ac.jp

2. Finding the Redundant Multiple Faults

The naive way to find redundant faults is traversing the entire
fault list and checking one by one. However, it cannot handle
multiple faults due to the large number of fault combinations. In-
spired by the research [5], [6], [7], instead of checking all multi-
ple faults, we want to check the fault propagation path to find the
redundant multiple fault, which can greatly reduce the time, as
shown in the experimental results of Refs. [5], [6], [7]. Here we
take Fig. 1 as an example. We assume that there are two SSAF f1
and f2. f1 cannot be propagated to the output since f2 blocks its
propagation path. If f2 is a redundant fault or f1 blocks the path
of f2 as well, Double Stuck-at Faults (DSAF) { f1, f2} is selected
as a potential redundant fault. In addition, the DSAF consists of
two redundant single faults is also classified as the potential re-
dundant fault. Then, we can pick up the redundant DSAF by per-
forming fault simulation and test generation. This process is very
fast since the size of the potential redundant fault list is drastically
smaller than all the faults. Therefore, starting from a compact test
set for the single fault, we can incrementally find the redundant
multiple faults in an acceptable running time for fairly large cir-
cuits.

3. Removal of the Multiple Faults

The composition of the redundant MSAF is shown in Table 1,

Fig. 1 Two faults mutually block each other [5].

c© 2020 Information Processing Society of Japan 35



IPSJ Transactions on System LSI Design Methodology Vol.13 35–38 (Feb. 2020)

whose second, third, and forth columns are the number of the
redundant DSAFs including two non-redundant SSAFs, one non-
redundant and one redundant SSAFs, and two redundant SSAFs,
respectively. The redundant DSAF consisting of two redundant
SSAFs is equal to two SSAFs as redundant faults, while the
DSAF include at least one non-redundant SSAF is different from
two redundant SSAFs. Obviously, most of the redundant DSAFs
include at least one redundant SSAF. There are two ways to re-
move the redundant multiple faults. The first way is to remove
the faults from the lower cardinality to higher cardinality. How-
ever, according to the experimental results shown in Table 1, few
redundant multiple faults such as double faults can be found if we
remove all the single faults at first, because most of the redundant
multiple faults include at least one redundant single fault. In other
words, if we clear all redundant single faults, most of the original
redundant multiple faults become non-redundant; hence, we can-
not remove them to optimize the circuit structure. In contrast, if
we remove the redundant faults from higher cardinality to lower
cardinality, we can remove the redundant single fault as well as
the non-redundant single fault that are included in the redundant
multiple faults, which means that we can make the circuit smaller
in size and more compact.

Similarly, in order to optimize more redundancies, in the logic

Table 1 Composition of the redundant DSAF.

Table 2 Number of redundant faults and gates removed by eliminating redundancy.

optimization process of the MSAFs with a same cardinality, the
MSAF with more non-redundant SSAFs is removed first. Since
many MSAFs include same redundant SSAFs, if we remove the
MSAF with more redundant SSAFs first, many of the redundant
MSAFs with non-redundant SSAFs is not redundant any more,
which decreases the number of redundancies to be removed.

4. Experimental Results

We use the Glucose 4.1 [9] as the SAT solver to generate the
test patterns and find redundant faults. We perform the exper-
iment with ISCAS 89 [10] and IWLS 2005 [11] benchmark cir-
cuits. The fault selection of the ISCAS 89 circuits starts from the
compact test set for the SSAF [12]. The single test patterns of the
IWLS 2005 circuits are generated by a commercial tool.

In Table 2, the experiment results illustrated from the second
column to the sixth column are the number of the gates and the
redundant SSAF and DSAF. The second column is the number
of gates in the circuit. The third column is the number of all re-
dundant SSAFs. The fourth column is the number of the selected
redundant DSAF if we do not remove the redundant single fault
in the circuit. The fifth column is the number of selected redun-
dant double faults after we remove all redundant single fault in
the circuit. Obviously, no redundant double faults is found if we
clear all single redundancy, because most of the redundant double
faults include at least one redundant single fault in these circuits.
The sixth column is the number of redundant DSAF that actually
used to optimize the circuit. Many redundant DSAFs may in-
clude the same redundant or non-redundant SSAF, which means
that only a portion of DSAFs can already cover all the gates we
can optimize. Consequently, the actual number of DSAF used to
eliminate the circuit redundancy is much smaller than the total
number of DSAF.

The number of removed gates by deleting the faults is shown in
seventh and eighth columns. The seventh column is the number
of gates that can be removed by optimizing the redundant single
fault using the redundancy removal command in the logic synthe-
sis tool SIS [1]. The eighth column illustrates the number of gates

c© 2020 Information Processing Society of Japan 36



IPSJ Transactions on System LSI Design Methodology Vol.13 35–38 (Feb. 2020)

removed by eliminating the selected DSAF first and then remove
the SSAF. Notice that the number of redundant SSAF and DSAF
in the third and fourth columns are larger than the removed gates
in seventh and eighth columns, respectively, because some of the
redundant SSAFs locate in the same gate. In addition, although
the number of the redundant DSAF is one or two order of mag-
nitudes larger than the SSAF, the improvement ratio is not that
much, because most of the DSAFs consist of two redundant sin-
gle faults, and only a few of the DSAFs include a non-redundant
SSAF. Therefore, in most of the cases, the removal of the re-
dundant DSAF is to remove the redundant SSAF. In the smaller
size circuits, such as S444, S832 and S1238, the number of the
removed gates by optimizing the single and double redundancy
shown in seventh and eighth columns are almost the same, since
most of the DSAFs in those circuits consist of only the redundant
SSAF. Therefore, if we eliminate all the redundant DSAFs, the
redundant SSAFs are eliminated as well. In contrast, in larger size
circuits such as systemcase, 15% more gates can be removed if
we eliminate the DSAF first, since many of the redundant DSAFs
in those circuits include the non-redundant SSAF. In addition, we
have performed the experiment by removing the double faults in
every possible combinations. However, the number of eliminated
gates are smaller than the results in Table 2. It is because that the
proposed method removes the redundant DSAF including a non-
redundant SSAF first, which guarantees that more redundancies
can be eliminated. The experimental results illustrate that the pro-
posed method is capable of optimizing the circuit and removing
more redundancies following the proposed heuristic of the fault
removal.

The total running time is shown in the ninth column. Actually,
fault selection process of the redundant MSAFs takes most of the
running time. Once we obtain the redundant fault list, the opti-
mization process can be completed very fast. Most of the circuits
can finish the entire optimization process in an acceptable time.
Notice that, the circuit such as systemcase takes more than 1 hour
to finish the redundant fault selection process, since our method
are based on SAT-solver, which is not good at handling the circuit
with a large number of XOR gates [5], [6], [7].

5. Conclusion

In this paper, we have proposed a logic optimization method by
first identifying and then removing the redundant multiple faults.
The incremental ATPG method is used to pick up the redundant
multiple faults. By eliminating the redundant faults from higher
cardinality to lower cardinality, more redundant logics can be op-
timized. The experimental results show that the proposed method
can remove more redundancies comparing to the redundancy re-
moval command of SIS, which proves the feasibility of the pro-
posed method. Moreover, the experimental results prove that the
proposed method can finish the process of the redundant fault se-
lection and removal within an acceptable time. Our future work
is to make our implementation more efficient and utilize higher
cardinality of faults, such as redundant triple faults, in the opti-
mization, and improve the processing speed of the fault selection
process.

References

[1] Sentovich, E.M. et al.: SIS: A system for sequential circuit synthesis,
Memorandum No.UCB/ERL M92/41 (1992).

[2] Brayton, R. and Mishchenko, A.: ABC: An academic industrial-
strength verification tool, International Conference on Computer
Aided Verification, Springer, Berlin, Heidelberg (2010).

[3] Entrena, L.A. and Cheng, K.-T.: Combinational and sequential
logic optimization by redundancy addition and removal, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.14,
No.7, pp.909–916 (1995).

[4] Shin, D. and Gupta, S.K.: A new circuit simplification method for er-
ror tolerant applications, 2011 Design, Automation & Test in Europe,
IEEE (2011).

[5] Wang, P. et al.: An ATPG method for double Stuck-At faults by an-
alyzing propagation paths of single faults, IEEE Trans. Circuits and
Systems I: Regular Papers, Vol.65, No.3, pp.1063–1074 (2017).

[6] Wang, P., Gharehbaghi, A.M. and Fujita, M.: Automatic Test Pattern
Generation for Double Stuck-at Faults Based on Test Patterns of Sin-
gle Faults, 20th International Symposium on Quality Electronic De-
sign (ISQED), IEEE (2019).

[7] Wang, P., Gharehbaghi, A.M. and Fujita, M.: An Incremental Auto-
matic Test Pattern Generation Method for Multiple Stuck-at Faults,
The 37th International VLSI Test Symposium (VTS), IEEE (2019).

[8] Kim, Y.C., Saluja, K.K. and Agrawal, V.D.: Multiple faults: Mod-
eling, simulation and test, Proc. 2002 Asia and South Pacific Design
Automation Conference, IEEE Computer Society (2002).

[9] Audemard, G. and Simon, L.: GLUCOSE: A solver that predicts
learnt clauses quality, SAT Competition, pp.7–8 (2009).

[10] Brglez, F., Bryan, D. and Kozminski, K.: Combinational profiles of
sequential benchmark circuits, IEEE International Symposium on Cir-
cuits and Systems, Vol.3 (1989).

[11] Albrecht, C.: IWLS 2005 benchmarks, International Workshop for
Logic Synthesis (IWLS) (2005), available from 〈http://www.iwls.org〉.

[12] Eggersglüb, S. et al.: Optimization-based multiple target test gener-
ation for highly compacted test sets, 2014 19th IEEE European Test
Symposium (ETS), IEEE (2014).

Peikun Wang received his B.S. degree in
Electronic Engineering, and his M.S. de-
gree in Communication and Information
Systems from South China University of
Technology, Guangzhou, China, in 2013
and 2016, respectively. He is currently
pursuing his Ph.D. degree in Electrical
Engineering and Information Systems at

The University of Tokyo, Tokyo, Japan. His research interests
include automatic test pattern generation technology in VLSI de-
sign, and the digital hardware design based on FPGA.

Amir Masoud Gharehbaghi received
his Ph.D. in computer engineering from
Sharif University of Technology in 2007.
He is currently a researcher in the VLSI
Design and Education Center (VDEC),
The University of Tokyo, Japan. Previ-
ously, he was project assistant professor in
the Department of Electrical Engineering

and Information Systems, The University of Tokyo, Japan, and
postdoctoral researcher in the VLSI Design and Education Center
(VDEC), The University of Tokyo, Japan. His research interests
include design and verification techniques for embedded system,
IoT, and AI accelerators.

c© 2020 Information Processing Society of Japan 37



IPSJ Transactions on System LSI Design Methodology Vol.13 35–38 (Feb. 2020)

Masahiro Fujita received his Ph.D. in
Information Engineering from the Univer-
sity of Tokyo in 1985 on his work on
model checking of hardware designs by
using logic programming languages. In
1985, he joined Fujitsu as a researcher
and started to work on hardware automatic
synthesis as well as formal verification

methods and tools, including enhancements of BDD/SAT-based
techniques. From 1993 to 2000, he was director at Fujitsu Labo-
ratories of America and headed a hardware formal verification
group developing a formal verifier for real-life designs having
more than several million gates. The developed tool has been
used in production internally at Fujitsu and externally as well.
Since March 2000, he has been a professor at VLSI Design and
Education Center of The University of Tokyo. He is currently the
director of the VLSI Design and Education Center of The Univer-
sity of Tokyo. He has done innovative work in the areas of hard-
ware verification, synthesis, testing, and software verification-
mostly targeting embedded software and web-based programs.
He has been involved in a Japanese governmental research project
for dependable system designs and has developed a formal ver-
ifier for C programs that could be used for both hardware and
embedded software designs. The tool is now under evaluation
jointly with industry under governmental support. He has au-
thored and co-authored 10 books, and has more than 200 publi-
cations. He has been involved as program and steering commit-
tee member in many prestigious conferences on CAD, VLSI de-
signs, software engineering, and more. His current research inter-
ests include synthesis and verification in SoC (System on Chip),
hardware/software co-designs targeting embedded systems, digi-
tal/analog co-designs, and formal analysis, verification, and syn-
thesis of web-based programs and embedded programs.

(Recommended by Associate Editor: Satoshi Ohtake)

c© 2020 Information Processing Society of Japan 38


