
IPSJ Transactions on System LSI Design Methodology Vol.13 69–71 (Aug. 2020)

[DOI: 10.2197/ipsjtsldm.13.69]

Short Paper

R-GCN Based Function Inference for Gate-level Netlist

Motoki Amagasaki1,a) Hiroki Oyama1 Yuichiro Fujishiro1 Masahiro Iida1

Hiroaki Yasuda†1 Hiroto Ito†1

Received: December 4, 2019, Revised: March 11, 2020,
Accepted: April 23, 2020

Abstract: Graph neural networks are a type of deep-learning model for classification of graph domains. To infer
arithmetic functions in a netlist, we applied relational graph convolutional networks (R-GCN), which can directly treat
relations between nodes and edges. However, because original R-GCN supports only for node level labeling, it cannot
be directly used to infer set of functions in a netlist. In this paper, by considering the distribution of labels for each
node, we show a R-GCN based function inference method and data augmentation technique for netlist having multi-
ple functions. According to our result, 91.4% accuracy is obtained from 1,000 training data, thus demonstrating that
R-GCN-based methods can be effective for graphs with multiple functions.

Keywords: graph neural network, R-GCN, function inference

1. Introduction

Recently, many studies have investigated extension of deep
learning methods to graph data. Graph neural networks
(GNNs) [1] are a type of learning model for classification of graph
domains. A typical GNN model is graph convolutional networks
(GCNs), which apply convolutional operations to graphs. In
Refs. [2], [3], a semi-supervised learning GCN is used to catego-
rize a citation dataset. In these graphs, research papers are treated
as nodes and citation relations as edges. However, because GCN
performs a convolutional operation based on the graph Fourier
transform, only an undirected graph can be used as input.

To eliminate such restrictions on graph convolution, Refs. [4],
[5] proposed relational graph convolutional networks (R-GCN),
which can directly treat relations between nodes and edges.
R-GCN convolves input and output relations with neighboring
nodes by defining a graph convolutional operation using only
connection information for nodes and edges. This allows han-
dling complex relations between nodes such as directed graphs,
self-loops, and multiple edges that were not possible with previ-
ous GCNs.

In this study, we focus on the graph classification ability of R-
GCN and propose a function inference method for a gate-level
netlist described in Verilog Hardware design language (HDL).
Originally, specification sheets and RTLs are usually managed
together in SoC design. However, RTL does not exist when de-
signed directly at the schematic or gate level. These are problems
if designers want to know the functions of these circuits. In addi-
tion, if the gate-level netlist is large, it is not easy for designer to
know the functions. For these reason, in order to mitigate these

1 Graduate School of Science and Technology, Kumamoto University,
Kumamoto 860–8555, Japan

†1 Presently with Mitsubishi Electric Engineering Company Limited
a) amagasaki@cs.kumamoto-u.ac.jp

problems, we proposed a method to estimate a known function
sets (addition, subtraction, multiplication, and multiplexer) for a
gate-level netlist. Our goal is to infer functions when specifica-
tions for the gate-level netlist are unclear. However, since R-GCN
only labels each node, it cannot be used to infer function sets in a
netlist. To solve this problem, we propose a classification method
and data augmentation technique for graphs having multiple func-
tions.

2. Function Inference based on R-GCN

2.1 Problem Definition
The target netlist has an arithmetic function composed of adder,

subtractor, multiplier, and multiplexer (MUX) functions. These
are mapped in standard cells, and each function has a hierarchy
with an individual instance. For example, a netlist composed of 7
functions has 7 instances.

2.2 Network Structure
R-GCN defines a graph-convolutional operation based on only

the connection relations between nodes and edges in Eq. (1).
R-GCN can thus treat more complex graphs, such as directed
graphs, multiple edges, and self-loops.

hi
(l+1) = σ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

r∈R

∑

j∈Ni
r

1
ci,r

Wr
(l)h j

(l) +W0
(l)hi

(l)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (1)

In Eq. (1), hi
(l+1) is the state of node i in hidden layer (l + 1)

of the neural network. R denotes the set of relations in the graph,
Ni

r denotes the set of neighbor indices of node i under relation
r ∈ R, and Wr

(l) denotes the weight matrix of neighboring nodes
with relation r to node i in hidden layer l of the neural network.
σ is an element-wise activation function. Ci,r is a normalization
constant indicating the total number of edges for each relation.
The relation indicates the edge attribute. Equation (1) takes a lin-

c© 2020 Information Processing Society of Japan 69

IPSJ Transactions on System LSI Design Methodology Vol.13 69–71 (Aug. 2020)

Fig. 1 Input matrix for R-GCN.

ear sum of all neighboring nodes of node i and then adds its state
W0

(l)hi
(l). Figure 1 shows an example R-GCN matrix. The rela-

tions are defined as input side Ain, output side Aout, and self Aown.
Size of Matrix Ain, Aout, Aown are the number of nodes in netlist

× the number of nodes in netlist, respectively. Feature matrix X

has elements for the type of gate cell, and feature of each node is
expressed as a one-hot vector with the corresponding gate as 1.
Thus, size of Matrix X is the number of nodes in netlist × type of

gate cell. R-GCN realizes convolution of nodes considering these
relations. When calculating 1st hidden layer, matrix h in Eq. (1)
can be replaced with matrix X. r ∈ R and j ∈ Ni

r in left term are
denoted relationship of Ain, Aout. Because Aown is identity matrix,
there is W0

(l)hi
(l) only in right term.

In this paper, the standard cell and primary input–output in a
netlist are represented as a node and its connection as an edge.
However, because R-GCN performs labeling for each node, the
netlist function cannot be estimated. The netlist we use is instan-
tiated by functional unit. Therefore, each function is determined
by majority vote between nodes of the same instance.

2.3 Training and Data Augmentation
To perform high accuracy and obtain generalized performance,

we modify the calculation of the loss function during learn-
ing. The loss in our R-GCN uses cross-entropy error E =

− 1
N

∑N
k=1 tk log zk. N is the total number of nodes in the netlist,

k is the current node, tk is the label data of node k, and zk is the
inference result for each node k.

There are multiple functions in the netlist, so it is not enough to
learn only individual functions in the training phase. Therefore,
to increase precision for multiple functions, data augmentation
is performed by adding various functions to the input and output
parts of target function to be trained. In training with multiple
functions, loss is calculated by focusing on only nodes in the tar-
get function. For example, added functions for data augmentation
are not subject to loss calculations. As a result, we expect that
accurate inference is performed for nodes located at boundaries
between functions.

3. Evaluation

3.1 Evaluation Method
R-GCN based function inference is performed for netlists with

adder, subtractor, multiplier, or MUX functions. We use a netlist
with 1 to 4 functions as learning data and evaluate the classifi-
cation success rate of netlists with at most 7 functions as test
data. Success is defined as more than half of the nodes in an
instance being correctly classified. When there are multiple func-

Table 1 Dataset for evaluations.

Training data Validation data Test data
Number of data 631 631 1,000

Table 2 Hyperparameters.

Parameters Value
Epoch 200

Early stopping 20
Number of standard cells 127

Dropout rate 0.655492692944
Optimization algorithm Ndam

Learning rate 0.000243964937345
Number of hidden layers 5
Neurons in hidden layers 135

Activation function ReLU

Table 3 Evaluation results.

Success Failure Accuracy (%)
Test data 914 86 91.4

Table 4 Average success rates.

Classification result Success rate (%)
Success 96.7
Failure 10.3

tions, classification is considered successful only if all functions
in the netlist are correctly classified. We prepared ripple-carry
adder, carry look-ahead adder, and carry-select adder circuits for
addition and subtraction. Multiplier circuits use array-type and
Wallace tree–type algorithms.

3.2 Evaluation Conditions
Data circuits are prepared in gate-level HDL synthesized by

Synopsis Design Compiler for area- and delay-oriented optimiza-
tion. Table 1 shows numbers of data used for R-GCN training
and evaluation. The netlist used for learning and verification in-
cludes at most 4 functions, and created a combination of all adder,
subtractor, multiplier, and multiplexer patterns. Test data were
1,000 netlists with at most 7 functions and random combinations
of features. To optimize hyperparameters for learning R-GCN,
we used the automatic parameter optimization tool Optuna [6].
Table 2 shows the hyperparameters used. We used Keras 1.2.1
as the learning framework, and created the R-GCN input ma-
trix from the gate-level HDL using a custom-developed converter,
“logic2vec” [7].

3.3 Evaluation Results
Table 3 shows classification results and success rates for

netlists with at most 7 functions. We found approximately 91.4%
accuracy, as shown in Table 3. Table 4 shows average classifica-
tion success rates for each success and failure pattern. In “Suc-
cess” and “Failure” in Table 3, the node ratio that showed the cor-
rect answer per function was calculated, and the average value of
validation data was defined as “the average success ratio”. From
Table 4, we can see that 96.7% of nodes determined the correct
label for successful function. In contrast, only 10.3% of failing
functions were classified as successful. The circled part in Fig. 2
represents individual instance parts, and the color of each node
shows the classification result. Most of the misclassified netlists
were due to the misclassification of MUX as multiplier. In other

c© 2020 Information Processing Society of Japan 70

IPSJ Transactions on System LSI Design Methodology Vol.13 69–71 (Aug. 2020)

Fig. 2 Example of failed classification for 7 functions.

cases, adders were misclassified as subtractors. This occurred be-
cause the MUX had few nodes, and was therefore misjudged as a
part of the neighboring multipliers. Also, subtractors and adders
have highly similar structures. Figure 2 shows actual results for
netlists that failed to be classified.

4. Conclusion

We obtained 91.4% accuracy in function inference using R-
GCN for gate-level netlists with multiple functions. In future
work, we will stratify inferred functions and experiments using
large application level inference.

References

[1] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P.S.: A
Comprehensive Survey on Graph Neural Networks, arXiv preprint
arXiv:1901.00596 (Aug. 2019).

[2] Kipf, T.N. and Welling, M.: Semi-Supervised Classification with Graph
Convolutional Networks, Proc. International Conference on Learning
Representations (ICLR) (Feb. 2017).

[3] Chen, Z., Kolhe, G., Rafatirad, S., Homayoun, H., Zhao, L. and Lu,
C.T.: Estimating the Circuit Deobfuscating Runtime based on Graph
Deep Learning, arXiv preprint arXiv:1902.05357 (Feb. 2019).

[4] Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R., Titov, I. and Welling,
M.: Modeling Relational Data with Graph Convolutional Networks,
arXiv preprint arXiv:1703.06103 (Mar. 2017).

[5] Thomas Kipf: Keras-based implementation of Relational Graph Convo-
lutional Networks, available from 〈https://github.com/tkipf/relational-
gcn〉 (accessed 2019-10).

[6] Preferred Networks, Inc.: Optuna - A hyperparameter optimization
framework, available from 〈https://optuna.org/〉 (accessed 2019-10).

[7] Fujishiro, Y., Oyama, D., Amagasaki, M., Iida, M., Yasuda, T. and Ito,
H.: Gate Level Netlist Function Classification Method Based on R-
GCN, IEICE Technical Report, VLD2019-30, Vol.119, No.282, pp.7–
12 (Nov. 2019) [In Japanese].

Motoki Amagasaki received his B.E.
and M.E., degrees in Control Engineering
and Science from Kyushu Institute of
Technology, Japan in 2000, 2002, respec-
tively. He was a engineer at NEC Micro
Systems Co., Ltd. from 2002–2005. He
received his D.E. degree from Kumamoto
University, Japan, in 2007. He has been a

associate professor in the Faculty of Advanced Science and Tech-
nology at Kumamoto University since 2019. His research inter-
ests machine learning, reconfigurable system and VLSI design.
He is a member of IEICE, IPSJ and IEEE.

Hiroki Oyama was received his B.E.
degree in Computer Science from
Kumamoto University in 2018. Fur-
ther, he received his M.E. degree in
Computer Science and Electrical Engi-
neering from Kumamoto University in
2020.

Yuichiro Fujishiro was received his
B.E. degree in Computer Science from
Kumamoto University in 2019.

Masahiro Iida received his B.E. degree
in Electronic Engineering from Tokyo
Denki University in 1988. He was a re-
search engineer at Mitsubishi Electric En-
gineering Co., Ltd. from 1988 to 2003.
He received his M.E. degree in Computer
Science from Kyushu Institute of Tech-
nology in 1997. Further, he received his

D.E. degree from Kumamoto University, Japan, in 2002. He
was an associate professor at Kumamoto University until 2015,
and during 2002–2005, he held an additional post as a re-
searcher at PRESTO, Japan Science and Technology Corpora-
tion (JST). He has been a professor in the Faculty of Advanced
Science and Technology at Kumamoto University since January
2016. His current research interests include high-performance
low-power computer architectures, Neural Network Accelerator,
FPGA computing, VLSI devices and design methodology. He is
a senior member of the IPSJ and the IEICE, and a member of
IEEE.

Hiroaki Yasuda received his M.E. de-
gree from Aichi Institute Technology in
2010. He joined MITSUBISHI ELEC-
TRIC ENGINEERING CO., LTD. in
2010, and is now a engineer in Factory
Automation LSI Engineering Section.

Hiroto Ito received his B.E. degree from
Meijo University in 2008. He joined
MITSUBISHI ELECTRIC ENGINEER-
ING CO., LTD. in 2008, and is now a en-
gineer in Factory Automation LSI Engi-
neering Section.

(Recommended by Associate Editor: Nozomu Togawa)

c© 2020 Information Processing Society of Japan 71

