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Abstract: Machine learning models have been applied to a wide range of computational lithography applications
since around 2010. They provide higher modeling capability, so their application allows modeling of higher accuracy.
Many applications which are computationally expensive can take advantage of machine learning models, since a well
trained model provides a quick estimation of outcome. This tutorial reviews a number of such computational litho-
graphy applications that have been using machine learning models. They include mask optimization with OPC (optical
proximity correction) and EPC (etch proximity correction), assist features insertion and their printability check, litho-
graphy modeling with optical model and resist model, test patterns, and hotspot detection and correction.
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1. Introduction

Figure 1 illustrates basic elements of optical lithography sys-
tem. Illumination is modeled by partial coherence factor . In
partially coherent imaging, which improves the minimum resolv-
able pitch [1] and is a preferred imaging method, the mask is il-
luminated by light traveling in various directions. The smaller o
is, the higher the degree of illumination coherence. Projection, or
exposure, is represented by numerical aperture NA = nsinf. A
critical dimension, usually a half of minimum pitch, corresponds
to a minimum feature size attainable by a particular technology:
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where A is a wavelength of light source, and k; (often called k1
factor) is a measure of illumination complexity and is given by
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Fig. 1 Elements of optical lithography system.
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For smaller CD, one obvious option is to advance to a light

ky (@)

source of smaller wavelength, i.e., KrF with 248 nm to ArF with
193 nm, which is most popular now, to even more advanced EUV
with 13.5 nm. Second option is to reduce k;, which implies larger
o to be adopted. This is achieved through off-axis illumination
(OAI), which involves the light source of annular, cross-pole, or
quasar shapes. The last option is higher NA: this is through a
medium with higher refractive index, e.g., water (n = 1.33) in-
stead of air (n = 1.0), or projection lens of larger sin 6 value.

The k1 factor generally decreases with technology nodes [2].
The 500 nm and 350 nm nodes are imaged with k; > 0.65 with
standard lithography. The 250 nm and 180 nm nodes approach
ky of 0.5, and require the introduction of resolution enhancement
techniques (RET). In 130 nm and 90 nm nodes, which are well
below k; = 0.5, RETs are in widespread use. Theoretical limit of
ky is 0.27; the nodes with k; smaller than that can only be imaged
through multiple patterning technology.

1.1 Machine Learning for Computational Lithography

Computational lithography involves the use of computers to
improve the resolution achievable through optical lithography.
A key is lithography simulation, which is based on lithography
models. A number of RET techniques have been introduced
and used together with lithography simulation. They include
optical proximity correction (OPC) adopted since 130 nm, sub-
resolution assist feature (SRAF) since 90 nm, phase shift mask
(PSM) and off-axis illumination (OAI) since 65 nm, double pat-
terning since 20 nm, and directed self-assembly and triple pat-
terning since 10 nm.

Computational lithography has relied on compact modeling for
long. A resist model, for instance, captures development process,
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and is given by a weighted sum of convolutions between light
intensity and Gaussians. Machine learning model offers higher
modeling capability than simple polynomial, so its application
provides compact modeling with higher accuracy.

Many lithography applications are computationally expensive,
because they are iterative and often involve lithography simula-
tions. A well trained machine learning model provides a quick
estimation of outcome, and benefits these applications.

A number of lithography applications, which have been using
machine learning models, are reviewed in this tutorial: mask op-
timization including OPC and EPC in Section 2, SRAF insertion
and printability check in Section 3, lithography modeling in Sec-
tion 4, test patterns in Section 5, and hotspot detection and cor-
rection in Section 6.

2. Mask Optimization

Figure 2 (a) shows a patterning process in optical lithography.
Photomask pattern goes through a lithography process to form a
pattern on photoresist, which is called resist- or aerial-image. Re-
sist development and etch follow to finally form a wafer pattern.

Mask synthesis and optimization steps are illustrated in
Fig.2(b), which can be considered as a reverse process of
Fig.2 (a). Ideally, the final wafer pattern should be the same as
designers’ layout. The goal of etch proximity correction (EPC),
also called retargeting, is to synthesize an aerial image, which
will yield the target wafer pattern even under non-ideal develop-
ment and etch process. The goal of optical proximity correction
(OPC) then is to synthesize a mask pattern, which produces the
target aerial image (set by EPC) under light interference.

2.1 OPC

Most popular OPC method is model-based OPC (MB-OPC).
It relies on iterative mask correction and lithography simula-
tion. Each edge of initial mask pattern is divided into a num-
ber of segments (Fig. 3 (a)), through a step called fragmentation.
Each segment is individually moved by the amount called mask
bias through correction step (Fig.3 (b)). Lithography simula-
tion follows to estimate the contour of aerial image, which is
then compared to target aerial image at each fragmentation point
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Fig. 2 (a) Photolithography process and (b) mask synthesis process.
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(Fig.3(c)). The result is a number of EPE (edge placement er-
ror) values. MB-OPC is run with the given number of iterations
of correction and simulation or until the target EPE (either maxi-
mum or average) is achieved.

MB-OPC is computationally expensive. With smaller feature
size, it requires larger runtime due to more iterations to meet
smaller EPE target and increased simulation time to model more
complex light interference. The number of critical layers that
should go through OPC also increases. The OPC runtime at 5 nm
with 66 critical layers is 5.6 of runtime at 28 nm with 18 critical
layers [3].

2.1.1 Fast OPC with ML Models

A number of OPC methods using machine learning models
(ML-OPC) have been proposed to provide a quick OPC solu-
tion. The idea is illustrated in Fig. 4. A few features are extracted
from the target segment to be corrected and its surroundings in
the range of optical influence. The features are provided to the
input layer of machine learning model, which has been trained
beforehand. The values propagate through the hidden layers in
the network until they reach the output layer. One node in the
output layer with value 1 yields a predicted mask bias in case
of classification, or a single node in the output layer may return
mask bias value in regression model.

This approach is very fast, e.g., more than 10 times [4] faster
than MB-OPC, because correction is done just once and no litho-
graphy simulations are performed. Accuracy, however, is limited
even though the model is trained well, e.g., its maximum EPE
is about 4 times larger than that of MB-OPC. For practical ap-
plication, ML-OPC may be considered as a generator of initial
OPC solution, which is provided to MB-OPC to deliver the final
OPC result with just a few iterations. This hybrid approach is still
faster than MB-OPC alone, e.g., about 3 times [4], and is being
considered as an approach for commercial use [3].
Implementation Details: A key in ML-OPC implementation is a
choice of features that should be extracted from a target segment.
Discrete cosine transform signals have been used [5] as inputs of
simple linear regression model. Local layout densities are pop-
ular features to represent a layout, which have been used with a
hierarchical Bayesian model [6]. It has been shown that using po-
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Fig.3 OPC steps: (a) after fragmentation, (b) correction of mask pattern,
and (c) lithography simulation result (Contour) compared to target
pattern to calculate EPE.
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Fig.4 ML-OPC using MLP (multilayer perceptron) model [4].
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lar Fourier transform (PFT) signals can substantially reduce the
number of features[7]. As will be shown in Section 4, a PFT
signal, which is a convolution of PFT basis function (or optical
kernel function) and local layout centered at target segment, is a
component in light intensity calculation and thus well represents
light interference around the segment.

A simple MLP, illustrated in Fig. 4, has been used as mask bias
prediction model. More recently, a number of MLP instances that
are connected through recurrent hidden layers, which is equiv-
alent to recurrent neural network (RNN), are shown to provide
higher accuracy [8]. This is because a target segment is corrected
while its neighbor segments are corrected together in RNN, which
better reflects the actual correction step (as in MB-OPC) as op-
posed to a simple MLP model where only a target segment is
corrected.

Another issue in efficient implementation of ML-OPC is model
training. Given a set of training segments with their reference
mask bias values (through MB-OPC runs, for example), the goal
is to train the model, i.e., determine the network structure and
network parameters such as edge weights and node biases, such
that the prediction of mask bias is as accurate as possible. A key
in this process is sampling training segments, because using all
segments from sample layouts is a waste of time and may cause
overfitting of the model toward the segments which occur more
frequently. Since sample layouts may not contain all segments
that may arise in actual OPC process, generation of synthetic pat-
terns, discussed in Section 5, may help extend the coverage of
machine learning model.

2.2 EPC

During etch process, as shown in Fig. 5, some patterns expe-
rience over-etch due to photoresist erosion, which causes nega-
tive etch bias; some others are affected by under-etch due to ex-
cessive deposition, which causes positive etch bias. The goal of
EPC is to modify a known target wafer pattern to compensate for
etch biases, i.e., to synthesize an aerial image that can yield the
designers’ layout on the wafer even under over- and under-etch
phenomena (see Fig. 2).

A key in EPC is etch bias model. A number of test patterns
are created on a wafer, and etch bias is recorded for each pattern
through CD measurement. The results may be summarized as
a set of rules (in RB-EPC), e.g., etch bias table with line width
and line spacing as parameters. The results may be fitted into a
function of a few empirical parameters (in MB-EPC):

Etch bias = Cy+CDen+C,Vis+C3Blo+CsDen’+---, (3)

where Den is the density of the layout within a density kernel re-
gion; Vis is the area of the open space that is not hidden by the
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Fig.5 Negative and positive etch bias [9].
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edges that are neighbors of a point of interest (i.e., space beyond
the nearest edge is ignored); Blo is the area of the nearest polygon
that overlaps with the blocked kernel, as shown in Fig. 6 [10]. The
coeflicients C; and the number of terms in this function are deter-
mined empirically through regression. MB-EPC can deal with a
greater range of patterns than RB-EPC does, but it still fails to
achieve a satisfactory on-chip variation (OCV). It is estimated
that OCV in 20nm DRAM devices is still 15% of gate size after
MB-EPC has been applied [10].

2.2.1 EPC Using ML Models

Instead of Eq. (3), machine learning may be introduced to build
an etch bias model. A simple MLP has been shown to offer much
smaller RMS error of etch bias prediction [9]: 9.1 nm for rule-
based, 2.9 nm for model-based, but 1.9 nm with MLP. A key is
the choice of input parameters. Figure 6 indicates that local lay-
out densities are important; in fact, they affect the quantity of
etching particles, their incident angle and direction; they can be
measured as illustrated in Fig.7. Optical kernel signals are also
important, since they affect the photoresist sidewall angle. Exper-
iments indicate that using only layout densities for MLP causes
3.5nm error in etch bias prediction, but including additional op-
tical kernel signals brings the error down to 1.9 nm [9].

It is also noted that regression network, MLP with single out-
put node to report etch bias, is better choice for smaller etch bias
range when etch process is weak; classification network, MLP
with multiple decision output nodes with each node associated
with a small range of etch bias, is well suited for larger etch bias
with strong etch process.

Once etch bias model is set up, actual correction can be per-
formed through iteration as illustrated in Fig.8. Some initial
aerial image is assumed (L1), etch bias model is applied (L3)
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Fig. 6 Kernels for MB-EPC.

Region of densify measurement

Measurement poi
Litho pattern layout @

Segment of interes{—/ \

Fig.7 Extraction of local layout densities.
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Input: A design layout Dy,
Output: A litho pattern layout Loy

Ll: L+ Dy

L2: repeat for max_iterations

L3: A set of biases < ANN(a set of segments from L)
L4: D« ETCH(L, a set of biases)

L5: A set of EPEs < Measure_EPE(D;,, D)

Lé6: if EPEn, < € then Exit loop

L7: L+ CORRECT(L,—o.x a set of EPEs)

L8: return Ly, + L
Fig. 8 Pseudo code of ML-EPC [9].
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Fig. 9 LIM of (a) single contact and (b) a group of contacts [11].

to estimate wafer image (L4) which is compared to target image
(L5), and the process is repeated with some (systematic) modifi-
cation being applied to aerial image (L7).

3. Assist Features

Assist feature, or sub-resolution assist feature (SRAF) or scat-
tering bar, is a key resolution enhancement technique (RET) in
low k; lithography. SRAFs are extra patterns added to the mask,
not intended to be printed on the wafer, which help nearby main
patterns to be printed with higher fidelity and improved process
window. Intuitively, sparse lines exhibit broader linewidth vari-
ations than dense lines, so adding assist features to both sides of
sparse lines creates a dense environment [1].

SRAFs are usually inserted before OPC and are refined while
main patterns are corrected through OPC. Rule-based methods
(RB-SRAF) have been used since 90 nm node. A few empirical
rules are established (e.g., the number of assist wires for each
distance between adjacent metal wires) and are applied, either
manually or automatically. They require long development time
and are only limited to simple assist features. Model-based meth-
ods (MB-SRAF) have been widely used since 20 nm node. They
rely on repeated SRAF insertion and its evaluation through litho-
graphy simulations; they are accurate but very time consuming.
Inverse lithography technology (ILT) is more advanced method,
which explicitly solves the problem of mask optimization; it is
even more computationally expensive.

3.1 SRATF Insertion Using Guidance Map

A faster MB-SRAF has been proposed [11]. A key concept is
a light interference map (LIM), where a layout is overlaid with
an array of values indicating the potential amount of light inter-
ference. LIM of a single contact c is illustrated in Fig.9 (a). R,
is a region with larger values; if some patterns are introduced
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in that region, light intensity at ¢ increases due to constructive
interference. The opposite is true in R; region, where values
are smaller due to destructive interference. LIM in Fig.9 (a) is
obtained through repeated lithography simulations while some
small pattern is moved around c¢. LIM of a number of contacts
is simply a superposition of LIMs as shown in Fig. 9 (b).

LIM is convenient for SRAF insertion as illustrated in Fig. 10 :
(1) Binary versions of LIM are obtained by using different thresh-
old values as shown in (b). If the value in the original LIM is
larger than threshold, it is assumed 1 in binary LIM; it is assumed
0 otherwise. (2) Each binary LIM is discretized for easier SRAF
insertion, as shown in (c). (3) One binary LIM (e.g., S5th one)
is picked for initial SRAF insertion. (4) A lithography simula-
tion is performed on the initial SRAF insertion, shown in (d), in
which red contours are lithography images of contacts as well
as SRAFs. (5) If an SRAF is associated with lithography image
(its light intensity exceeds 100% of image threshold), it will be
patterned; it is therefore replaced by its smaller version in binary
LIM one level above. If the intensity of an SRAF is below 80% of
image threshold (and so it is not associated with lithography im-
age), it is replaced by its bigger version in binary LIM one level
below. Refinement procedure (4) and (5) repeat until the intensity
of all SRAFs lies between 80% to 100% of image threshold. The
number of lithography simulations is 5 times at most, which is
usually much smaller than the number associated with standard
MB-SRAF.

SRAF guidance map (SGM) has been proposed for fast
MB-SRAF[12]. Its concept is similar to LIM: SGM value indi-
cates the sensitivity of improving process windows on the desired
pattern.

3.2 SRATF Insertion Using ML Models

Deep CNN (convolutional neural network) has been applied
for quick prediction of SRAF guidance map [13]. Runtime of
SRAF insertion is reported to be reduced to 1/7 of standard inser-
tion method using CTM (continuous transmission mask), which
is conceptually similar to SGM.

The method has also been applied to ILT. Standard ILT in-
volves 100 iterations of CTM refinement followed by 50 itera-
tions of actual ILT process. Deep CNN allows a quick estimation
of CTM without iterations, which is then followed by 50 iter-
ations of ILT process. Runtime is reduced by about 34%. Data
augmentation is important to extend the coverage of training data.
Flipping, rotation, and translation are applied to initial training
data for this purpose. Synthesis of test patterns covered in Sec-
tion 5.2 is another possibility.

3.3 SRATF Printability Check

SRAFs are not intended to be printed on the wafer. Patterned
SRAFs are considered as defects and become yield detractor.
Printability check is thus an essential component of SRAF.

Lithography simulation is usually performed assuming bot-
tom of resist height when main patterns are simulated. More
pessimistic approach is necessary to simulate SRAF patterns,
because miss prediction (predicted as non-printing for actually
printed SRAFs) should be avoided more than false alarm (pre-
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Fig. 10 SRAF placement using LIM: (a) initial LIM of a contact layout, (b) binary LIMs with different
threshold, (c) discretized binary LIMs, (d) initial SRAF placement, and (e) refined final SRAF

placement [11].
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Fig. 11 Lithography model.

dicted as printing for actually non-printed SRAFs). One approach
is to assume over-exposure condition while the same bottom of
resist height is assumed for SRAFs; another is to assume the
top or near the top of resist height with nominal exposure con-
dition [14].

Machine learning approach has also been studied[15]. For
each candidate pixel of SRAF, a machine learning model is ap-
plied to predict its printability. A simple MLP network has been
tried with PFT signals and local layout densities (see Section 2)
as network input parameters. Printability of SRAF is determined
from the printability of its member pixels. Since SRAFs are
not printed most of the time, balancing the number of reference
printed SRAFs and non-printed SRAFs for model training is im-
portant.

4. Lithography Modeling

Lithography simulation is a foundation of computational litho-
graphy. It is based on lithography model, illustrated in Fig. 11,
which describes the response of photoresist to exposure and de-
velopment. Exposure is captured by optical model, in which im-
age intensity is described by the weighted sum of convolutions
between mask image M(x, y) and optical kernel functions ¢;:

I6y) = ) Ailei @ MCxp)l, @)

where 4; is a weight value. This method is called sum of coherent
systems (SOCS) approximation [16].

Development is captured by resist model, in which image in-
tensity is modulated by resist process formula and the result is
compared to some threshold values. Specifically, photoresist pro-
cessing involves post-exposure bake (PEB) and resist develop-
ment. The solution to differential equations for PEB modeling (or
called reaction and diffusion), i.e., the quenching and diffusion of
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acid, is given by a sum of convolutions of /(x, y) and Gaussians
G, [17]:

R(x,y) = col(x,y) + 1 I(x, ) @G (01) + -+ - . &)

Development is modeled by comparing Eq.(5) to threshold
value, either constant or variable. In popular variable threshold
model [18], a threshold is given by a function of maximum in-
tensity, minimum intensity, and intensity slope in local region of
interest:

T(x,y) = Co + Cilyay + Collyin + C3lgp + CalZy + -+ . (6)

max

The weights in Egs. (5) and (6) are determined through calibra-
tion process. Some test patterns are prepared, and calibration is
performed such that the error of resist model is minimized, where
the error may be measured as the difference of CD values be-
tween simulated resist patterns and corresponding patterns from
actual measurement or from rigorous simulation. The choice of
test patterns is thus very important, which is covered in Section 5.

4.1 ML for Resist Model

A number of options can be considered [19] in applying ma-
chine learning techniques in lithography model. A polynomial
(6) for variable threshold may be replaced by machine learning
model. CNN has been used [20] for this purpose. The input is
an aerial image of a small clip and the output is corresponding
intensity threshold. Experiments indicate that RMS error in pre-
dicted CD is about 5.5 nm with variable threshold model, while
the method using CNN causes only 1.6 nm error.

A polynomial for resist model may be replaced by machine
learning model [19]. Each convolution term in Eq. (5) becomes
one input of machine learning model, and the output is R(x, y)
value. Experiments with 10nm M1 layer demonstrates the drop
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Fig. 12 Multiple resist contours at different resist heights.

of RMS error from 2.07 nm (when CM1 compact model [21] is
used, in which threshold is constant) to 1.31 nm.

The resist model and the model for threshold in Fig. 11 may
be put into a single machine learning model. A CNN has been
used to predict CD from input aerial image [19], in which the
accuracy is good but the parameters involved are too many and
difficult to optimize. Another option is to use fully convolutional
networks to predict resist contours from input aerial image [19];
in this application, reference resist contours (often extracted from
SEM image) have to be very high quality [22].

4.1.1 Estimation of 3D Resist Profile

Standard resist model assumes two-dimensional space, but re-
sist structure is often associated with non-vertical sidewalls. This
may cause non-ideal resist profile, e.g., footing, T-topping, and
top-less. Accurate prediction of 3D resist profile is therefore im-
portant. Rigorous simulation can be performed to predict 3D re-
sist profile as illustrated in Fig. 12, but this is too time consuming.

A simple MLP network with local layout densities as shown in
Fig. 7 and optical kernel signals as inputs produces accurate pre-
diction of resist height [23], or a similar network may be trained
to predict whether resist will remain after etch process.

4.2 ML for Lithography Model

A CVNN (complex valued neural network) has been applied
for both optical- and resist-model [24]. The frequency compo-
nents are limited, so small amount of training data can produce a
model of higher accuracy even though there are extra processes
of Fourier- and inverse Fourier-transform.

The CGAN (conditional generative adversarial network) model
has been tried to obtain a wafer image directly from input mask
image [25]. It has been applied to contact or via patterns, and ex-
tra CNN has also been applied to adjust the center of each pattern
for higher accuracy.

5. Test Patterns

Comprehensive test patterns are important for a number of
lithography applications including source mask optimization
(SMO), building hotspot library, exploration of design rules, cal-
ibration of lithography models, and more recently training a ma-
chine learning model for lithography applications. Two types of
test patterns are popular: parametric and actual. Parametric pat-
terns are represented by a few geometrical parameters such as line
width and space, as illustrated in Fig. 13. They are easy to build
and analyze, but cannot cover complex patterns. Actual patterns
are extracted from sample layouts and can cover more random
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Fig. 13 Example parametric test patterns: dense line and space (DLS) and
line-end to line-end (E2E).
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Fig. 14 (a) Area-based pattern matching and (b) matching in Fourier do-
main.
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Fig. 15 Squish pattern representation of layout pattern.

shapes, but some similar shapes may be more frequent and some
are not really important. Thus the extraction of important shapes,
e.g., extracting hotspot patterns [26], and classifying them are im-
portant.

5.1 Classification

Once test patterns are assembled, they are classified into a
small number of groups based on geometric similarity, or some
other similarity measure of interest. One or more representative
patterns is then identified from each group, and a collection of
such representative patterns will form the final set of test patterns.

A classical method of classification is area-based pattern
matching shown in Fig. 14 (a); the percentage of overlap between
the two patterns is used as a similarity measure. In some ap-
plications, not all shapes are equally important. For example of
hotspot patterns, hotspot in the center is important, and shapes
closer to the hotspot have a greater impact than those far apart
from the hotspot. The pattern may be weighted by the square
of the complex degree of coherence [27], u(x, y)*, before pattern
matching is performed. These strict pattern matching methods
do not capture the similarity when one pattern is a shifted (or
rotated or reflected) version of the other. This can be alleviated
through pattern matching in Fourier domain [26]; the two patterns
in Fig. 14 (a), which are similar by just 10%, are now very similar
in frequency domain as illustrated in Fig. 14 (b).

A layout pattern, which is in Manhattan geometry, can be rep-
resented through Hanan grid, or called Squish pattern [28]. As
shown in Fig. 15, scan lines are drawn from the extensions of all
polygon edges, which divide the pattern into grids of non-regular
interval. A binary matrix, in which 1 indicates the region occu-
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Fig. 16 Test pattern synthesis using GAN models: (a) GAN to generate DCT values and (b) CGAN to

make blurred test pattern sharper.

pied by the pattern, together with a list of grid width and grid
height information represents the pattern. The two patterns shall
be similar if their corresponding matrices are the same but grid
sizes are different within some tolerance range.

In many lithography applications, classification through strict
pattern matching is inefficient and unnecessary. In lithography
modeling, for instance, image parameter space (IPS)[29] con-
sisting of intensity slope (/y,) at pattern edge together with
maximum-intensity (/,,,) and minimum-intensity (Z,,;,) in its
close proximity is popular to define a parameter space. IPS may
be extended to include more parameters to define a higher di-
mensional parameter space. e.g., IPS sensitivity to geometry
perturbation [30] (01,,,./OM, where M is line width). Since the
choice of parameter space is only engineering, alternative method
is to introduce a machine learning to extract a number of parame-
ters [31] and use them to define a parameter space. Once test pat-
terns are identified in IPS space, any clustering algorithms can be
applied for classification purpose: partitioning methods (such as
K-means) or hierarchical methods (such as complete-link). The
parameter space is also convenient for analysis of test pattern cov-
erage.

5.2 Synthesis of Test Patterns

Pattern coverage through parametric patterns or actual patterns
is always limited. This can be alleviated through automatic syn-
thesis of test patterns. Machine learning approaches have been
applied for this purpose.

Transforming auto encoder is a type of machine learning model
suited for image translation, e.g., generating a shifted image [32].
Its key component, called capsule, consists of recognition units
and generation units. A recognition unit is made of a few con-
volution layers and fully connected layers to identify the input
image and generate a vector that characterizes the image, called
latent vector. A generation unit is made of fully connected lay-
ers followed by deconvolution layers, with its function opposite
to that of recognition unit. The idea of using transforming auto
encoder is to systematically alter the latent vector so that the out-
put pattern is slightly different from the input pattern [33]. The
pattern is represented by Squish pattern, a matrix that identifies
2-dimensional topology as shown in Fig. 15, so pattern synthesis
is realized by altering the matrix entries.

More general approach toward test pattern synthesis has been
proposed [34]. A layout clip is represented by a few low fre-
quency discrete cosine transform (DCT) signals. A layout often
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Fig. 17 PVBs of two contacts.

contains some repeated patterns, and DCT captures such repe-
tition with a smaller number of frequency signals. Some ran-
dom DCT signals are generated using GAN model as shown in
Fig. 16 (a); the block generator is trained beforehand such that it
is difficult to discriminate its output from the DCT signals of clips
used for training, i.e., DCT signals are generated such that they
are realistic and close to the ones for training clips. The output
DCT signals are provided to inverse DCT process to yield the
corresponding clip image, which is blurred since only low fre-
quency components are contained in the DCT signals. The clip
is then made sharper by using CGAN model shown in Fig. 16 (b),
which is trained such that it is also difficult to discriminate the
sharpened clip from the ones that are used for training. The ap-
proach has been applied to resist modeling. When 1,000 para-
metric patterns are used for resist modeling, RMSE (root mean
square error) of CD values is 5.11 nm; when they are replaced by
500 parametric patterns, 250 actual patterns, and 250 synthesized
ones, CD RMSE becomes only 2.88 nm due to wider coverage of
test patterns.

6. Hotspot

Hotspot patterns are the ones that may cause defects such as
bridging, necking, and line-end shortening. They can be identi-
fied through process variation band (PVB). Figure 17 shows an
example. Lithography process is under the influence of key pa-
rameters: scanner focus, exposure energy, and mask manufactur-
ing error. To account for parameter variations, lithography sim-
ulation may be repeated while each parameter is set to its mean
or +30 values. A set of resulting 27 contours is PVB. When
two patterns are too close, their PVBs become thicker and so the
minimum distance between the PVBs gets smaller as illustrated
in Fig. 17. This may cause bridge. Hotspot may also be defined
in probabilistic fashion [35].

Since repeated lithography simulations to get PVBs and detect
hotspots are time consuming, a practical approach is to build a
library of hotspot patterns beforehand through pattern classifica-
tion and apply pattern matching to narrow down the region for
actual lithography simulations.
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Fig. 18 Hotspot correction using cycleGAN [38].

6.1 ML for Hotspot Detection and Correction

Hotspot detection using CNN has been proposed [36]. Since
hotspots are sparse, it is important to augment sample hotspot
patterns so that CNN is well trained. A simple flipping and rotat-
ing have been tried for this purpose, even though they will not be
enough for diverse patterns.

Automatic correction of hotspot using cycleGAN (cycle-
consistent GAN [37]) has been proposed [38]. A set of sample
hotspot patterns is X, and a set of coldspot patterns is Y as illus-
trated in Fig. 18. A hotspot pattern and coldspot pattern are not
paired, i.e., Y does not necessarily contain the corrected version
of hotspot from X, which is key advantage of using cycleGAN.
The goal is to learn mappings G : X — Yand F : ¥V — X,
together with two discriminators Dy and Dy. The objectives in
learning process are: (1) G tries to generate a pattern G(x € X)
that looks like a cold pattern in Y, against Dy that aims to distin-
guish G(x) from y € Y as much as possible. A similar objective
is applied to F and Dy. (2) For each hotspot pattern x, G and F'
together should yield the pattern similar to x, i.e., F(G(x)) =~ x.
Similarly we require G(F(y)) ~ y for each cold pattern y. Exper-
iments demonstrate an efficient correction of one or more various
hotspots (tip-to-tip, tip-to-bar, pitch variation, density of neighbor
patterns, etc.).

7. Conclusions

A number of computational lithography applications which
employ machine learning models have been reviewed. Practi-
cal success so far is observed in OPC and lithography model-
ing. OPC using machine learning can provide a good initial OPC
solution, which greatly helps reduce MB-OPC runtime. Litho-
graphy modeling has relied on empirical compact model for long;
machine learning provides extensive modeling capability, which
helps improve model accuracy.

SRAFs (insertion and printability check) and hotspot patterns
(detection and correction) are also popular applications of ma-
chine learning. Preparation of sample training data is a challenge
in these applications. Printed SRAF samples are obtained through
scanning electron microscope (SEM) images, which should be
carefully captured, measured, and classified [39]. Hotspot pat-
terns as well as printed SRAF samples are often scarce, even
though the success of machine learning model heavily relies on
the coverage of training samples. Test patterns (extraction, clas-
sification, and synthesis) are thus important topic and need more
study and development.

© 2021 Information Processing Society of Japan
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