
IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009)

Regular Paper

An Asynchronous IEEE-754-standard Single-precision

Floating-point Divider for FPGA

Masayuki Hiromoto,†1 Hiroyuki Ochi†1

and Yukihiro Nakamura†2

Synchronous design methodology is widely used for today’s digital circuits.
However, it is difficult to reuse a highly-optimized synchronous module for a
specific clock frequency to other systems with different global clocks, because
logic depth between FFs should be tailored for the clock frequency. In this
paper, we focus on asynchronous design, in which each module works at its best
performance, and apply it to an IEEE-754-standard single-precision floating-
point divider. Our divider is ready to be built into a system with arbitrary clock
frequency and achieves its peak performance and area- and power-efficiency.
This paper also reports an implementation result and performance evaluation
of the proposed divider on a Xilinx Virtex-4 FPGA. The evaluation results
show that our divider achieves smaller area and lower power consumption than
the synchronous dividers with comparable throughput.

1. Introduction

Most digital circuits today are designed as synchronous sequential circuits,
because synchronous systems are easy to be specified, and design methodology
for synchronous circuits is widely studied. In fact, various convenient CAD tools
for developing synchronous systems are available these days.

However, the synchronous system has several problems 1). One is large power
consumption caused by many Flip Flops (FFs) connected to a global clock tree
which must be distributed all over the chip with high frequency. This can rep-
resent even 45% of total power consumption in some cases 2). Increasing clock
skew, which can be seen in today’s miniaturized process technologies, is another
problem, leading to degradation in circuit speed and yield. For these problems,

†1 Graduate School of Informatics, Kyoto University
†2 Research Organization of Science and Engineering, Ritsumeikan University

some solutions have been proposed, such as a circuit technology that absorbs pro-
cess variation after fabrication 3) and its design methodology 4), or an approach
of globally-asynchronous locally-synchronous design 5).

Yet another problem is design reusability. To develop the best possible syn-
chronous circuit in terms of performance, area, and power consumption for a
given process technology, it is indispensable to optimize it depending on the
target clock frequency. It includes not only logic-level optimization, but also
architecture-level optimization. To achieve the best result, logic levels between
FFs should be adjusted to fit the clock period. Assume that there is a mod-
ule which has been developed for a particular system. To reuse it for another
system where available clock frequency is different from the original system, we
must re-optimize (or even re-design) the module to fit the given clock period.
For example, it is clear that a module optimized for a 100 MHz system is not
reused for a 150 MHz system since it does not work properly (Fig. 1). It must be
also noted that a module optimized for a 150 MHz system is not suitable to be
reused in 100 MHz system since its throughput and area would be improved by
reducing excessive stage registers. To modify the position of stage registers, the
design should be modified in RTL description phase, but considerable iteration
between RTL description phase and post-place timing analysis phase is needed
to optimize throughput. Ochi, et al. 6) developed a library of IEEE-754-standard
single-precision floating-point dividers which consists of designs of several target
frequencies for a specific process. It is beneficial to library users if there is a de-
sign tailored for the desired clock frequency, but very large man-hours is required
to develop such libraries.

To resolve the above problems of synchronous systems, we introduce an asyn-
chronous scheme. Using an asynchronous scheme, we can expect following en-
hancements:
(1) Low power consumption.
(2) Clock-skew-free design.
(3) Applicability for systems of any global clock frequency.
(1) is because a global clock tree which wastes power is removed. For this
advantage, some LSIs for portable devices partly adopt asynchronous circuits to
meet the strong demand for low power consumption. (2) is also a benefit of

103 c© 2009 Information Processing Society of Japan

104 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Fig. 1 Reusability of synchronous IP cores.

Fig. 2 Reusability of asynchronous IP cores.

clockless system. This suppresses long wires for a widely spread global clock tree
which causes clock skew. (3) is because each module may work independently of
a global clock, and inter-module interface is also realized by handshaking without
synchronization using a global clock. Unlike synchronous IP cores, asynchronous
IP cores can be built into systems of different clock frequencies as shown in Fig. 2.
We call this portability as ‘reusability’ in this paper. Moreover, each module can
take its optimal circuit to achieve the best performance.

In this paper, we mainly focus on (3) above, aiming to provide excellent IP
cores of operation units independent of a global clock. High performance and

good reusability of asynchronous IP cores have been proven by some previous
works 7)–9), which present large asynchronous processor cores. There are also
contributions on asynchronous arithmetic functions targeted to ASICs, includ-
ing dividers 10),11) and multipliers 12),13). However, to our best knowledge, there
is no contribution on asynchronous arithmetic IP cores designed for commercial
FPGAs. FPGAs are very useful for rapid prototyping of digital systems, and
there is a strong demand on high-performance and portable IP cores for arith-
metic functions and other basic elements useful for developing custom hardware
engines on FPGAs.

Therefore, as a first step of developing an asynchronous IP core library for
FPGAs, here we pick up IEEE-754-standard single-precision floating-point di-
viders by Ochi, et al. 6) and develop an asynchronous version based on them.
Our proposed divider has the following features:
• It is tuned to achieve the best performance on FPGAs.
• It does not need dedicated external clock oscillator or PLL.
• It adopts asynchronous interfaces to be built into systems using an arbitrary

clock frequency.
This paper is organized as follows. In Section 2, asynchronous systems and

floating-point division are reviewed. In Section 3, the proposed asynchronous
floating-point divider is introduced. Section 4 shows experimental results, and
Section 5 provides conclusions.

2. Preliminaries

2.1 Asynchronous Systems
In this paper, a synchronous system is defined as a digital system whose circuits

are all synchronized with unique global clock, and an asynchronous system is
defined as one which has no global clock.

In synchronous systems, all registers transfer data simultaneously with a sin-
gle global clock as shown in Fig. 3. On the other hand, in asynchronous sys-
tems, each module needs to determine timing to transfer data from/to each
other because there is no global timing signal. There are two major methods
for asynchronous data communication: a bundled-data method, which uses an-
other wire of timing signal in addition to data bus, and a dual-rail encoded

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

105 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Fig. 3 Data transfer in synchronous system.

Fig. 4 Data transfer in asynchronous system.

data method, which uses a pair of 1-bit wires to distinguish “0”, “1”, and “in-
valid” states 1),14). For circuit efficiency, we adopt the bundled-data method for
single-precision floating-point dividers in which long-word data are mainly com-
municated, since the bundled-data method requires less additional wires than the
dual-rail encoded data method.

The handshake protocol with a bundled-data method is illustrated in Fig. 4.
The module A sends a request signal (req) accompanied with data, and when the
module B receives the req signal, the data from module A is stored to a register
and an acknowledge signal (ack) is sent back to the module A. A delay element
is introduced so that req signal arrives at the module B after the data.

2.2 Single-precision Floating-point Division
2.2.1 Arithmetic of Single-precision Floating-point
In this paper we use IEEE-754-standard single-precision floating-point for-

mat 15). It consists of a 1-bit field s for sign, an 8-bit field e for exponent, and a
23-bit field f for mantissa. In a most typical case (0 < e < 255), it represents a
real number as follows:

Fig. 5 A block diagram for floating-point division.

R = (−1)s × (1.f) × 2(e−127). (1)

In addition to the above case whose absolute value ranges widely from 2−126 to
(1−2−24)×2128, the format is also able to represent exceptional values, including
zero, infinity, NaN (Not a Number), and denormalized numbers.

2.2.2 Procedure for Single-precision Floating-point Division
A block diagram of floating-point division is shown in Fig. 5. First, given

divisor and/or dividend are normalized if they are denormalized numbers. Next,
division for mantissa parts and subtraction for exponent parts are performed
to generate a quotient. Finally, the results are again normalized and rounded.
In addition to the operations above, sign-bit generator for the quotient and a
handler for various exceptions are also required.

2.3 Algorithm for Division of Mantissa
This part describes an algorithm for integer division that is required for calcu-

lation of mantissa parts.
There are two major types of division algorithms, digit-recurrence algorithms,

such as restoring method and iterative algorithms, such as Newton’s iteration
method. In this paper we take the restoring division method in digit-recurrence
algorithms since it requires less circuit area than the other methods. Let X, Y ,
and Q be a dividend, a divisor, and the quotient. Let

Q =
n−1∑

j=0

qj2−j , (2)

where n is the number of digits. Let Rj+1 be the intermediate remainder after
qj is determined.

When j = 0, if X ≥ Y , then let q0 = 1 and R1 = X − Y , otherwise, let q0 = 0

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

106 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Fig. 6 An example of restoring division algorithm.

and R1 = X. When j ≥ 1, repeat the following operation: if 2Rj − Y ≥ 0,
then let qj = 1 and Rj+1 = 2Rj − Y , otherwise, let qj = 0 and Rj+1 = 2Rj .
A calculation example is shown in Fig. 6, where the intermediate remainders
are surrounded with dotted circles and the sign bits are with dotted boxes. Let
Y = 01011 and X = 01111. A negative for Y is represented as −Y = 10101 with
two’s complement. First, since the sign bit of the result for X − Y is 0, set 1 to
q0 and let R1 = X −Y . Next since the sign bit of the result for 2R1 −Y is 1, set
0 to q1 and let R2 = 2R1. The subsequent process is similar to above.

Hardware resources needed to realize restoring division circuit are mainly a
subtracter for calculation of 2Rj − Y , 2-input multiplexers to select values for
Rj , and registers to hold intermediate data.

3. Asynchronous Design of Single-precision Floating-point Divider

3.1 Architecture Overview
This section introduces the proposed asynchronous floating-point divider based

on the asynchronous systems and restoring divider described in the previous
section.

When the floating-point divider as shown in Fig. 5 is implemented in hardware,
the mantissa divider requires the largest portion of circuit area and calculation
time. We focus on this mantissa divider and propose a smaller and more energy
efficient module by using asynchronous scheme; in the concrete, we let the man-
tissa divider work independently from an external global clock but let be driven
by an internal local clock which is the most suitable for the module. The other
pre-/post-processing modules for normalization and rounding are connected to

Fig. 7 An overview of the proposed asynchronous floating-point divider.

each other with asynchronous bundled data method. This architecture realizes
fast processing of a mantissa divider independently of the global clock and high
reusability to be built into synchronous systems. An overview of the proposed
asynchronous floating-point divider is shown in Fig. 7. The module can be built
into external asynchronous or synchronous systems since the interfaces are also
implemented using asynchronous handshakes. Note that the output interface
does not implement a full handshake protocol in order to keep compatibility
with synchronous dividers developed by Ochi, et al. 6). The detail is described in
the last part of Section 3.3.

The module for mantissa division consists of a local clock generator, a counter
which counts 24 times for digit-recurrence division, and subtract-and-shift units.
The mantissa divider in Fig. 7 performs calculation as follows: First, the mantissa
divider receives a request signal from pre-processing module and starts a ring
oscillator to generate local clock. Then the clock is delivered to the counter and
subtract-and-shift units, and digit-recurrence division is performed for predefined
repeat count. At the same time, the mantissa divider sends an acknowledge signal
to the pre-processing module to let it perform pre-processing for the next data.
When finishing mantissa division, the module sends result data with a request
signal to the next post-processing module and stops the ring oscillator. The
post-processing module sends an acknowledge signal to the mantissa divider after
receiving the data, and then perform post-processing to calculate final results.

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

107 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Table 1 Experimental results on mantissa dividers of N -stage subtract-and-shift units.

N 1 2 3 4 6 8 12 24

Local clock frequency [MHz] 160.6 91.6 68.9 50.9 34.2 27.9 18.6 8.66
Clock cycles for a data 25 13 9 7 5 4 3 2
Circuit area [Slices] 146 129 165 179 229 303 416 839
Power [mW] 409 446 469 494 571 694 846 1511
Energy for a data [pJ] 64.7 64.3 62.3 69.0 84.8 199.9 138.1 351.0
Throughput [MFLOPS] 6.42 7.04 7.65 7.27 6.83 6.97 6.20 4.33
Throughput by area [MFLOPS/Slices] 0.0440 0.0546 0.0464 0.0428 0.0298 0.0230 0.0149 0.0052

3.2 Mantissa Divider
This part discusses the mantissa divider, which is the largest part of proposed

asynchronous floating-point divider in Fig. 7 including implementation and per-
formance evaluation.

3.2.1 Design Exploration of Mantissa Divider
In the restoring division algorithm, subtract-and-shift operations must be per-

formed with repeat count equal to the desired number of digits of the quotient,
e.g., 24 if single-precision floating-point format is intended. If N -stage subtract-
and-shift units are used at the cost of circuit area so that N subtract-and-shift
operations can be done per iteration, number of iteration will be reduced to 24/N
times. Thus there is a trade-off relation between circuit area and throughput. In
order to explore an optimal point of the design, we implemented and evaluated
eight versions of mantissa dividers with N of 1, 2, 3, 4, 6, 8, 12, and 24.

The mantissa divider is driven by a local clock generated by a ring oscillator in-
side the module. For best performance, the ring oscillator is designed to generate
the highest frequency of the local clock which can drive N -stage subtract-and-
shift units properly.

3.2.2 Implementation Results
The eight versions of mantissa dividers were designed and described in HDL.

Simulation, synthesis, layout and routing were performed to estimate their per-
formance. We used Mentor Graphics ModelSim SE 6.0c for simulation and Xilinx
ISE 8.1i for synthesis and implementation, and assumed the target device as Xil-
inx Virtex-II FPGA (XC2V1000). The power consumption was estimated by
gate-level simulation using post place-and-route netlists and their timing infor-
mation and analysis of the result with a power analyzer bundled with ISE.

Fig. 8 Throughput by area of mantissa dividers of N -stage subtract-and-shift units.

Table 1 summarizes the experimental results on mantissa dividers of N -stage
subtract-and-shift units. The divider with larger N requires a lower number of
iterations but longer clock periods of local clock. Therefore, the throughput of
each design is almost identical to each other.

The circuit area increases as N increases except N = 1. The design with N = 1
consumes a large area because it requires high frequency of the local clock and
it leads to an increase of circuit area in order to enhance the driving power of
the ring oscillator. Therefore, the design of N = 2 achieves the best performance
and is a well-balanced design in terms of throughput by area, which is shown in
Fig. 8.

On the other hand, energy consumption per division is relatively small for
N = 1, 2, 3 designs and becomes larger as N increases. This seems because a
design with large N has combinational circuits with large depth which increases
unnecessary switching activities.

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

108 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Fig. 9 Block diagram of proposed asynchronous floating-point divider.

Although the design with N = 3 achieve an energy consumption a little less
than N = 2, we adopt N = 2 design that shows the highest throughput by area
to mantissa divider of the proposed asynchronous divider.

3.3 Detailed Architecture
Figure 9 shows a block diagram of proposed asynchronous floating-point di-

vider. This divider can be built into synchronous systems with any clock fre-
quencies.

In Fig. 9, counter register, divisor register, remainder register, and quotient
register are driven by a local clock generated by a ring oscillator inside the mod-
ule, while input/output registers for a divisor and a dividend are synchronized
with the external global clock. The area surrounded by dotted line is a mantissa
divider described in the previous part, and it is connected to pre-/post-processing
modules with bundled data method.

The proposed divider performs calculation as follows: First, given dividend and
divisor are stored to registers synchronized by the global clock. Next they are

normalized in the pre-processing module and the mantissa part is passed to the
mantissa divider while the exponent part is sent to the subtracter. After that, the
ring oscillator in the mantissa divider starts oscillation. Since we select N = 2
design, subtract-and-shift operations are iterated 12 times to calculate quotient
of mantissas. When the division is completed, the mantissa module immediately
stops its ring oscillator, passes the result to the post-processing module, and
requests any subsequent data from the pre-processing module. Finally, the results
are normalized and rounded in the post-processing module.

The final results are passed to an external synchronous circuit with a request
signal (nreq in Fig. 9). To avoid metastability of the request signal, double latches
are inserted in the request signal path before it is sent to the external circuit.
Unlike usual interfaces with handshake methods, this divider does not receive
an acknowledge signal from the external circuit. This is because the proposed
divider is designed to be replaceable with the synchronous dividers developed
by Ochi, et al. 6), which have the same output interfaces without acknowledge
signals. Due to this specification, the external circuit is required to latch data at
the output register after nreq is asserted until the output register is overwritten
by the next result.

3.4 Design Flow
As shown in Fig. 9, this asynchronous design requires some delay elements for

a ring oscillator (clk_delay), a pre-processing module (req_delay), and a post-
processing module (nreq_delay). Since a target device is an FPGA in this paper,
the delay elements are realized with cascades of Look Up Tables (LUTs), which
are fundamental elements of an FPGA. Delay time of the delay element can be
adjusted by changing a number of cascaded LUTs.

Figure 10 is a design flow to explore the number of cascaded LUTs in each
delay element. First an initial number of LUTs in each delay element is set and
RTL codes of an asynchronous divider including the delay elements are generated.
Since it is difficult to obtain delay elements of desired delay time due to uncer-
tainness of place-and-route results by synthesis tool, we use Relative LOCation
(RLOC) constraints to arrange the LUTs in a line and make the delay time of the
LUT cascade linear with the number of LUTs. Next the RTL codes with RLOC
constraints are synthesized and mapped by a CAD tool to generate a post-place-

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

109 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Fig. 10 A design flow of the proposed asynchronous divider.

and-route netlist for timing simulation. Then the timing simulation is performed
to verify the calculation results against many test vectors. Through the simula-
tion, the delay time of each delay element is also verified that it is longer than
the data arrival time of the corresponding data path, which is obtained by static
delay analysis. If any timing errors are found, the number of LUTs related to the
timing errors is increased by one and the design flow (synthesis, place-and-route
and simulation) is repeated until all errors are eliminated. Minimum number of
necessary LUTs in each delay element is obtained by such repetition, in which
the number of LUTs is increased by one from the initial number that is small
enough to generate timing errors.

When we explore asynchronous circuits with minimum necessary delay elements
according to the design flow above, plenty of man-hours are required to change the
number of cascaded LUTs and repeat the flow manually. To design efficiently, we
developed a design environment that automatically executes the design flow from
RTL generation to timing verification just by assigning the number of cascaded
LUTs in each delay elements. This design environment repeats the design flow to

explore the minimum necessary delay elements and finally reports performance of
the obtained design such as circuit area, power consumption and throughput �1.

4. Implementation and Evaluation on FPGA

This section describes implementation and evaluation results of the asyn-
chronous divider proposed in Section 3. In addition to the performance eval-
uation, implementation on an FPGA board is also described.

4.1 Evaluation of Proposed Floating-point Divider
The proposed asynchronous floating-point divider is implemented on an FPGA

to evaluate its circuit area, power consumption and throughput, and to compare
with synchronous floating-point dividers developed by Ochi, et al. 6). The tar-
get device is Xilinx Virtex-4 FPGA (XC4VFX12), and we use Mentor Graphics
ModelSim SE 6.2e for simulation and Xilinx ISE 9.2i for synthesis and imple-
mentation.

Since the synchronous dividers developed by Ochi, et al. 6) are designed for
ASICs with 0.35 µm process technology and optimized for synchronous systems
with specific clock frequencies, 50, 75, 100, 125, and 150 MHz, they may not
be optimal designs for FPGA implementation. For fair comparison, we redesign
them to be suitable for FPGAs and prepare five versions of synchronous dividers
optimal for clock frequencies of 40, 60, 75, 110, 130 MHz by adjusting number
of stages in the subtract-and-shift units. The proposed asynchronous divider is
evaluated with these five external clock frequencies on the assumption that it is
built into synchronous systems which run at the same frequencies.

Table 2 and Table 3 show the results of the comparison between the proposed
asynchronous divider and the synchronous ones with different global clocks.

4.1.1 Circuit Area
Figure 11 shows circuit area of synchronous and asynchronous dividers. The

proposed asynchronous divider achieves smaller circuit area than the synchronous

�1 Although the designed divider can be used in a system with any global clock frequency, it
can be used only for the specific FPGA architecture and speed grade, because dedicated
delay elements are used in the bundled-data method. However, we can obtain proper delay
elements for a different FPGA architecture and speed grade by applying design flow as
shown in Fig. 10.

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

110 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Table 2 Results for performance evaluation of synchronous dividers with different global
clocks.

Global clock frequency [MHz] 40 60 75 110 130

Number of subtract-and-shift units, N 6 4 3 2 1
Circuit area [Slices] 629 550 554 516 546
Power [mW] 314.1 308.3 305.5 311.9 304.8

Dynamic [mW] 60.6 54.9 52.0 58.5 51.4
Quiescent [mW] 253.5 253.4 253.4 253.5 253.4

Dynamic energy for a data [pJ] 7.59 6.42 6.43 7.22 10.69
Throughput [MFLOPS] 8.00 8.57 8.33 7.86 4.82
Throughput by area [MFLOPS/Slices] 0.0127 0.0156 0.0150 0.0152 0.0088

Table 3 Results for performance evaluation of the proposed asynchronous divider.

Global clock frequency [MHz] 40 60 75 110 130

Number of subtract-and-shift units, N 2 (with 115 MHz local clock)
Circuit area [Slices] 409
Power [mW] 289.2 291.2 293.7 296.3 298.3

Dynamic [mW] 36.0 38.0 39.5 43.0 45.0
Quiescent [mW] 253.2 253.2 253.2 253.3 253.3

Dynamic energy for a data [pJ] 4.45 4.70 4.87 5.31 5.56
Throughput [MFLOPS] 8.10 8.10 8.10 8.10 8.10
Throughput by area [MFLOPS/Slices] 0.0198 0.0198 0.0198 0.0198 0.0198

Fig. 11 Circuit area of different floating-point dividers.

ones for any clock frequencies. This is mainly because the asynchronous design
does not require register insertion to meet timing constrains of a global clock.
Since the synchronous dividers are designed to achieve high throughput by reg-
ister balancing, the dividers for high-speed clocks (110 MHz and 130 MHz) con-

Fig. 12 Dynamic energy consumption of different floating-point dividers.

tains more FFs than the asynchronous design. For example, number of FFs in
the 110 MHz synchronous divider is 198 while in the asynchronous one is 135.
Although the asynchronous design requires additional circuit area for delay el-
ements, the proposed divider achieves smaller circuit area because the register
insertion of the synchronous designs affects the whole area more strongly than
area increase by the delay elements of the asynchronous design.

While circuit area of the synchronous dividers varies according to the target
frequency because of different number of stages in subtract-and-shift units, area
of the asynchronous one is constant since all global clock frequencies are covered
by only one design. This shows that the proposed asynchronous divider achieves
small and constant circuit area.

4.1.2 Power Consumption
As shown in Table 2 and Table 3, quiescent power makes up the greater part of

chip-level power consumption in our experiments. In fact, an XC4VFX12 device
has 5,472 slices and thus the resource utilization of each divider is only about
10%. Therefore, to clarify the characteristics of power consumption of dividers,
we calculate dynamic energy consumption per operation as shown in Table 2,
Table 3, and Fig. 12.

As in Fig. 12, energy consumption in synchronous designs differs according
to the frequency of global clock since it is strongly affected by clock frequency
and circuit area. The energy consumption of the asynchronous divider increases
linearly corresponding to the clock frequency since the divider contains some

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

111 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Fig. 13 Throughput of different floating-point dividers.

interfaces driven by the global clock. However, the asynchronous divider achieves
lower energy consumption than that of the synchronous ones. This shows that
asynchronous circuits consume lower energy not only because the circuit area is
smaller than synchronous ones, but also because FFs and wires are driven only
when data is actually transferred there, while synchronous circuits always waste
energy by FFs driven by a global clock.

4.1.3 Throughput
Figure 13 shows throughput of each design. Similar to the energy consump-

tion, the asynchronous divider realizes almost constant performance indepen-
dently of external clock frequency. The synchronous designs, however, show
variation of performance according to clock frequency (especially at 130 MHz).
The reason is that in synchronous systems it is difficult to design optimal circuits
suitable for a given clock frequency since number of stages of subtract-and-shift
unit between FFs are discrete and they do not always fit the clock frequency.

The throughput of the proposed divider is comparable or higher than the syn-
chronous designs that are optimized for each clock frequency. This shows an
asynchronous circuit achieves high performance under any frequencies without
modification because each data-path is driven with its minimum delay time in-
dependent of the external clock, while synchronous circuits require optimization
according to the clock frequencies.

Throughput by area is calculated to evaluate the area efficiency of dividers.
As shown in Fig. 14, the asynchronous design is superior to synchronous ones.

Fig. 14 Throughput by area of floating-point dividers.

Therefore, the result shows the proposed asynchronous floating-point divider
achieves not only good reusability but also higher area efficiency than the syn-
chronous dividers.

4.2 Implementation on FPGA Board
The proposed asynchronous divider is implemented on an FPGA board with

other synchronous peripheral circuits to test its function on an actual FPGA. We
use Xilinx ML403 FPGA evaluation board, which mounts Virtex-4 (XC4VFX12),
the same target device as in the experiments so far.

In order to test the proposed asynchronous IP embedded into synchronous
systems, the proposed divider is implemented with synchronous circuits provided
with the FPGA board. They include many controllers and interfaces to use I/Os
on the board and PowerPC in the FPGA. We verify the proposed divider with
millions of randomly-generated test-vectors by using driver software running on
the PowerPC. As a result, the experiments show our asynchronous divider works
properly and calculates correct answers while being part of a synchronous system.

5. Conclusion

In this paper, we discussed the benefit of asynchronous implementation in terms
of IP reusability. As a case study, we developed an asynchronous single-precision
floating-point divider IP which can be built into synchronous systems under ar-
bitrary clock frequency with a single design. The proposed floating-point divider
has interfaces to communicate data to the external system and its internal divi-

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

112 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

sion module is driven by a local clock generated inside the module, which enables
fast calculation independently of the external system. We designed and imple-
mented the proposed divider on an FPGA to evaluate and compare performance
with synchronous versions of dividers. The result shows that our divider achieves
smaller circuit area and lower energy consumption than the synchronous ones
with comparable throughput. In addition to the performance evaluation, the
divider is implemented with other synchronous circuits on a real FPGA board.
This shows our asynchronous IP works correctly in synchronous systems without
any modifications for wide range of clock frequencies.

As future work, we are planning to develop a library of asynchronous IP cores
in addition to the floating-point divider.

Acknowledgments This work is partly supported by Grants-in-Aid for Sci-
entific Research (C) 18500036 from the Japan Society for the Promotion of Sci-
ence (JSPS) and by a Global Center of Excellence (G-COE) program of the Min-
istry of Education, Culture, Sports, Science and Technology of Japan. This work
is also partly supported by the VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Synopsys, Inc. and Mentor Graphics,
Inc.

References

1) Sparsø, J. and Furber, S.B.: Principles of Asynchronous Circuit Design: A Systems
Perspective, Kluwer Academic (2001).

2) Sakurai, T. and Kuroda, T.: Tutorial on Low-Power Design Methodology, Proc.
Synthesis and System Integration of Mixed Technologies (SASIMI), pp.3–10 (1996).

3) Kawanami, T., Hioki, M., Nagase, H., Tsutsumi, T., Nakagawa, T., Sekigawa,
T. and Koike, H.: Preliminary Evaluation of Flex Power FPGA: A Power Recon-
figurable Architecture with Fine Granularity, IEICE Trans. Inf. Syst., Vol.E87-D,
No.8, pp.2004–2010 (2004).

4) Katsuki, K., Kotani, M., Kobayashi, K. and Onodera, H.: Extracting a Random
Component of Variation from Measurement Results of a 90 nm LUT Array, Proc.
Synthesis and System Integration of Mixed Technologies (SASIMI), pp.197–200
(2006).

5) Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems, PhD The-
sis, Stanford University (1984).

6) Ochi, H., Suzuki, T., Matsunaga, S., Kawano, Y. and Tsuda, T.: Development
of an IP Library of IEEE-754-Standard Single-Precision Floating-Point Dividers,

IEICE Trans. Fundamentals, Vol.E86-A, No.12, pp.3020–3027 (2003).
7) Martin, A., Lines, A., Manohar, R., Nystrom, M., Penzes, P., Southworth, R. and

Cummings, U.: The Design of an Asynchronous MIPS R3000 Microprocessor, Proc.
Seventeenth Conference on Advanced Research in VLSI, pp.164–181 (1997).

8) Garside, J., Bainbridge, W., Bardsley, A., Clark, D., Edwards, D., Furber, S., Liu,
J., Lloyd, D., Mohammadi, S., Pepper, J., et al.: AMULET3i-an Asynchronous
System-on-Chip, Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp.162–175 (2000).

9) Chong, K., Gwee, B. and Chang, J.: Energy-Efficient Synchronous-Logic and
Asynchronous-Logic FFT/IFFT Processors, IEEE Journal of Solid-State Circuits,
Vol.42, No.9, pp.2034–2045 (2007).

10) Matsubara, G. and Ide, N.: A Low Power Zero-Overhead Self-Timed Division and
Square Root Unit Combining a Single-Rail Static Circuit with a Dual-Rail Dynamic
Circuit, Proc. Third IEEE International Symposium on Asynchronous Circuits and
Systems, pp.198–209 (1997).

11) Cornetta, G. and Cortadella, J.: A Multi-Radix Approach to Asynchronous Divi-
sion, Proc. Seventh IEEE International Symposium on Asynchronous Circuits and
Systems, pp.25–34 (2001).

12) Kearney, D. and Bergmann, N.: Bundled Data Asynchronous Multipliers with
Data Dependent Computation Times, Proc. Third IEEE International Symposium
on Asynchronous Circuits and Systems, pp.186–197 (1997).

13) Hensley, J., Lastra, A. and Singh, M.: A Scalable Counterflow-Pipelined Asyn-
chronous Radix-4 Booth Multiplier, Proc. 11th IEEE International Symposium on
Asynchronous Circuits and Systems, pp.128–137 (2005).

14) Myers, C.: Asynchronous circuit design, John Wiley & Sons (2001).
15) IEEE: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-

1985 (1985).

(Received May 23, 2008)
(Revised August 22, 2008)

(Accepted October 9, 2008)
(Released February 17, 2009)

(Recommended by Associate Editor: Hiroshi Saito)

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

113 An Asynchronous IEEE-754-standard Single-precision Floating-point Divider for FPGA

Masayuki Hiromoto received his B.E. degree in Electrical and
Electronic Engineering and M.S. degree in Communications and
Computer Engineering from Kyoto University in 2006 and 2007,
respectively. Presently, he is a doctoral student at the Department
of Communications and Computer Engineering, Kyoto University.
He is a JSPS research fellow and a student member of IEEE,
IEICE, and IPSJ.

Hiroyuki Ochi received the B.E., M.E., and Ph.D. degrees in
Engineering from Kyoto University in 1989, 1991, and 1994, re-
spectively. In 1994, he joined Department of Computer Engineer-
ing, Hiroshima City University as an associate professor. Since
2004, he has been an associate professor of Department of Com-
munications and Computer Engineering, Kyoto University. He is
a member of IPSJ, IEICE, IEEE, and ACM.

Yukihiro Nakamura received his B.S., M.S. and Ph.D. de-
grees in Applied Mathematics and Physics from Kyoto Univer-
sity, in 1967, 1969 and 1995, respectively. From 1969 to 1996,
he was with Electrical Communications Laboratories, NTT. In
NTT he engaged in research and development of a general purpose
large-scale computer “DIPS”, the behavioral description language
“SFL” and the High-Level Synthesis System “PARTHENON”. In

1996, he joined Graduate School of Informatics, Kyoto University as a professor.
Since 2007, he has been a professor of Research Organization of Science and En-
gineering, Ritsumeikan University and also the President of Advanced Scientific
Technology and Management Research Institute “ASTEM RI”. He received Best
Paper Award of IPSJ, Okochi Memorial Technology Prize, Minister’s Prize of
the Science and Technology Agency and Achievement Award of IEICE in 1990,
1992, 1994 and 2000, respectively. He has played roles as a member, Asian repre-
sentative or chair for ICCAD, EDAC, ASP-DAC, CODES+ISSS and so on. He
is a fellow of IEEE and a member of IPSJ, IEICE, and ACM.

IPSJ Transactions on System LSI Design Methodology Vol. 2 103–113 (Feb. 2009) c© 2009 Information Processing Society of Japan

