
IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009)

Regular Paper

A Generalized Framework for Energy Savings

in Hard Real-Time Embedded Systems

Gang Zeng,
†1

Hiroyuki Tomiyama
†1

and Hiroaki Takada
†1

A dynamic energy performance scaling (DEPS) framework is proposed for
energy savings in hard real-time embedded systems. In this generalized frame-
work, two existing technologies, i.e., dynamic hardware resource configuration
(DHRC) and dynamic voltage frequency scaling (DVFS) are combined for en-
ergy performance tradeoff. The problem of selecting the optimal hardware
configuration and voltage/frequency parameters is formulated to achieve max-
imal energy savings and meet the deadline constraint simultaneously. Through
case studies, the effectiveness of DEPS has been validated.

1. Introduction

Power and energy consumption has become one of the major concerns in to-
day’s embedded system design. Reducing power or energy consumption can
extend battery lifetime of portable systems, decrease chip cooling costs, as well
as increase system reliability. In contrast to the conventional hardware-centric
low power designs, the software-centric energy performance tradeoff approach
has attracted much attention recently due to its flexibility and easy implemen-
tation. This approach is based upon two observations. First, application needs
for particular hardware resources such as caches, issue queues, and instruction
fetch logic within an embedded processor can vary significantly from application
to application 8). This fact manifests the application-specific energy saving po-
tential via dynamically turning off the unnecessary hardware resource according
to the actual requirements of different applications. Second, in real-time systems
the utilization of processor is generally less than 100% even if all tasks run at
the worst case execution time (WCET). The fact of existing slack in real-time

†1 Graduate School of Information Science, Nagoya University

system reveals the chance for trading off performance for energy savings since
the highest performance is not always necessary if the deadlines can be met. To
take advantage of the above energy saving potential, software-centric approach
attempts to provide “just fit” power and performance for different applications
to minimize total energy consumption while meeting the deadline constraints
simultaneously.

There are two kinds of commonly used power control technologies for exploiting
the above energy saving potential. One is dynamic hardware resource configu-
ration (DHRC), such as adaptive-issue queue 13), adaptive branch prediction 10),
selective cache way 11), etc.. This technology tries to improve processor energy
efficiency by dynamically tuning major processor resources in accordance with
varied needs of applications 8). In general, the more hardware resource the ap-
plication requires, the higher power the processor dissipates. Therefore, DHRC
saves energy by turning off the unnecessary hardware resource over application
needs. DHRC is effective for exploring application-specific energy saving poten-
tial as the above first observation. However, its effectiveness on different applica-
tions is difficult to predict for two reasons. (1) DHRC is application-dependent,
i.e., a specific DHRC technique may be effective for some applications, but may be
ineffective for other ones 9). (2) Even for a DHRC-effective application, the spe-
cific energy and performance relations under different hardware configurations
are difficult to predict. The second technology for energy savings is dynamic
voltage frequency scaling (DVFS) 1)–7),26),27). Because the dynamic power con-
sumption of CMOS circuits is proportional to its clock frequency and its voltage
square, DVFS can save energy effectively through lowering both frequency and
voltage of processor. Unlike DHRC, DVFS generally has similar effectiveness on
different applications. That is, lowering frequency and voltage in a range always
leads to longer execution time and less energy consumption. Therefore, DVFS
is an effective method for energy savings by trading off energy and performance
as the above second observation. Moreover, the variation of execution time and
energy consumption for different voltage/frequency settings can be estimated by
simple calculations. For example, most DVFS algorithms assume that the energy
is proportional to the square of supply voltage and the execution time is inversely
proportional to clock frequency.

167 c© 2009 Information Processing Society of Japan

168 A Generalized Framework for Energy Savings

It is desirable to save more energy by combining the above technologies. This
is because combining them can provide more chances for energy and performance
tradeoff than DVFS or DHRC alone. Moreover combining them can overcome
the limitation of each technology. For example, for system with high CPU uti-
lization, the DVFS may be useless since there is not adequate slack to degrade
performance for energy savings. In this case DHRC however can still save energy
due to its less performance degradation. Unfortunately, it is not a trivial problem
to combine the two technologies, especially for the hard real-time systems. The
reasons are as follows: (1) While the energy consumption and execution time
can be estimated by calculation after voltage/frequency scaling; they cannot be
done so after hardware configuration is changed. Thus to guarantee deadline
for DHRC application, the only way to obtain the energy time relation under
a specific hardware configuration is measurement. (2) Combining DVFS and
DHRC may result in so many possible configurations that the total measure-
ment and computation time is unaffordable. (3) Consider the fact that one kind
of hardware resource configuration may be effective for some applications, but
may be useless for other applications. Thus a framework should have the capa-
bility to accommodate different hardware configuration mechanisms for various
applications.

Based on different criteria, the software-centric energy performance tradeoff
approaches can be classified into different categories. For example, according to
the granularity at which the technologies are applied, they can be classified into
inter-task and intra-task approaches. While the inter-task approach is targeted
at different tasks or different jobs of the same task; the intra-task approach is
applied for periodic intervals 26), program phases 11),12) or subroutines 9) within
one task. In addition, they can be classified into static (off-line) and dynamic
(on-line) approaches according to when the decisions are made.

In this work, we propose a generalized framework, i.e., dynamic energy per-
formance scaling (DEPS), to save more energy by combining two existing tech-
nologies. This framework is targeted at hard real-time embedded systems with
preemptive scheduling policy. As a first step, we discuss its static inter-task based
application in this paper. Generally, the static and inter-task based approach has
global view of program power behaviors, low runtime overhead, simple implemen-

tation, and it is particularly suitable for task with known and stable workload.
Through analysis of an actual DVFS application, Ref. 25) suggested that while
simple dynamic DVFS might miss deadline during extreme workload variations,
static DVFS generally is sufficient. In addition, it is shown in Ref. 9) that static
application of DHRC achieved better energy savings than dynamic one due to
its global information of program behaviors. Furthermore, though off-line static
approach cannot handle dynamic variations of workload, it can often be used as
a complement to on-line dynamic approach. The main contributions of this work
are as follows: (1) Formulate the problem of selecting the optimal hardware con-
figuration and CPU voltage/frequency to achieve the maximal energy savings and
meet the deadline requirements simultaneously. (2) Propose a inter-task based
static application scheme of DEPS and corresponding decision algorithm for se-
lecting effective DEPS configurations. (3) Construct a simulation environment
for evaluating the DEPS framework, and demonstrate its effectiveness through
case studies.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the proposed DEPS framework. Section 4 gives case
studies. Finally, Section 5 summarizes the paper.

2. Related Work

There have been a large number of publications using DHRC or DVFS for
energy and performance tradeoff in recent years. Pillai and Shin proposed off-
line and on-line DVFS algorithms under fixed-priority and earliest deadline first
(EDF) scheduling policy, respectively 1). Kim, et al. evaluated various existing
DVFS algorithms including both fixed-priority and EDF scheduling algorithm
for hard real-time systems 2). Saewong and Rajkumar proposed several off-line
and on-line DVFS algorithms for fixed-priority real-time systems corresponding
to processors with large or small DVFS overhead 3). Mochocki, et al. introduced
off-line DVFS algorithms for EDF scheduling policy considering time and energy
overhead of DVFS 27). Cho, et al. proposed DVFS algorithms considering mea-
sured energy performance relations for different applications 4). Unlike the above
inter-task approaches; Choi, et al. presented a fine-grained intra-task DVFS al-
gorithm for memory bound application using performance counter for runtime

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

169 A Generalized Framework for Energy Savings

measurement 5). In Ref. 6), Shin and Kim also proposed intra-task DVFS algo-
rithm using control flow information for hard real-time systems. Recently, Yuan,
et al. proposed cross-layer adaptation DVFS algorithm combining both inter-task
and intra-task scaling for energy savings in a soft real-time application 7).

As far as DHRC is concerned, Albonesi proposed selective cache ways by us-
ing off-line program profiling and runtime program phase-based configuration 11).
Banerjee, et al. proposed completely dynamic cache ways configuration using
hardware-based program phase detector 12). Both the above approaches focused
on data cache and utilized program phase information. In contrast, Huang, et al.
proposed general subroutine-based hardware configuration approach 9) in which
both off-line and on-line algorithms were proposed. In Ref. 10), Chaver, et al. also
proposed subroutine-based branch predictor reconfiguration using access gating
and structure resizing. Note that all these DHRC approaches performed fine-
granularity configuration and were not targeted for hard real-time systems, which
is different from the proposed approach. Albonesi, et al. summarized recent dy-
namically tuning processor resources approaches in Ref. 8).

Although the two technologies are effective for energy savings, there are few
papers considering the combination of them due to the reasons discussed in Sec-
tion 1. Huang, et al. first proposed the combination of DVFS and hardware
resource reconfiguration for energy and temperature management in which an on-
line interval-based algorithm was presented to select the most energy-saving con-
figuration subject to a given slowdown factor 14). While their work was targeted
at single-task application with given slowdown factor, our approach is aimed at
multi-task hard real-time application with given period and deadline. Recently,
Nacul and Givargis proposed combination of DVFS and cache reconfiguration
for low power 15). Unlike our off-line optimal global exploration algorithm for all
tasks, Ref. 15) used an on-line algorithm for selecting the Pareto-optimal con-
figuration that best filled the slack for the next task to be executed. Moreover,
our generalized framework can adopt various DHRC schemes, and not limited to
cache reconfiguration.

3. DEPS Framework

The entire DEPS framework includes three layers, i.e., power controllable hard-

Fig. 1 DEPS framework.

ware, power aware software, and power analysis tools. Figure 1 shows the frame-
work and interactions between three layers. As software-centric approach, the
DEPS engine is implemented in the scheduler of OS. The power analysis tools are
employed to analyze and extract the power relative information. The power mea-
surement tool is employed to obtain the specific energy time relations under each
selected configuration. In addition, power analysis tools can insert power control
hints into program to support fine-grained energy saving algorithm. Meanwhile,
the power controllable hardware is critical. However, for specific applications the
effective mechanism may be different, and the overhead for power control should
also be considered. The framework can support both inter-task and intra-task
based applications with coarse or fine granularity, although we only consider the
inter-task based application with coarse granularity in this work.

3.1 System Model
This work focuses on embedded system and assumes a DHRC and DVFS en-

abled embedded processor. The DVFS can operate at a finite set of supply
voltage levels, each with an associated speed.

We consider hard real-time applications consisting of a set of independent n

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

170 A Generalized Framework for Energy Savings

periodic real-time tasks, represented as Γ = {τ1, τ2, . . . , τn}. Each task τi has a
period Pi and relative deadline Di that is equal to the Pi. A task τi has mi ef-
fective DEPS configurations Ci1, Ci2, . . . , Cimi

consisting of DHRC configuration
and DVFS parameters. Each DEPS configuration Cij is associated with a spe-
cific energy time relation, which can be represented by a pair of values (Tij , Eij)
where Tij is its worst-case execution time under this DEPS configuration, and
Eij is its energy consumption corresponding to the Tij .

As mentioned earlier, this work mainly focuses on the static application of
DEPS and assumes known and stable workload. This applies to many hard
real-time systems which are the main target of this work. Therefore, we can
utilize measurement to obtain the application-specific energy time relation under
selected DEPS configuration and given input data. There are two reasons for the
use of measurement. First, as described in Section 1, the energy consumption
and execution time of a program is difficult to predict under different DEPS
configurations. Second, while most DVFS papers use calculation for prediction
after voltage/frequency scaling, recent research shows application-specific energy
time relation through actual measurements, which can be exploited to further
save energy over normal DVFS application 4),5). These application-specific power
characteristics include external memory or other I/O devices access behaviors as
well as leakage power consumption, etc., which are generally ignored in simple
calculation.

3.2 Problem Formulation For Static Application of DEPS
We assume the overhead for task switching and DEPS configuration is negligible

for simplicity, and denote hyperperiod as the least common multiple of all task
periods. The energy optimization problem is to determine the set of DEPS
configurations that minimize the energy consumption over a hyperperiod while
meeting the deadline constraints. This problem can be formulated as follows:

Minimize energy:
n∑

i=1

mi∑
j=1

hyperperiod

Pi
(Eij − TijWidle)xij (1)

subject to

n∑
i=1

mi∑
j=1

Tij

Pi
xij ≤ n(2

1
n − 1) (2)

or
n∑

i=1

mi∑
j=1

Tij

Pi
xij ≤ 1 (3)

and
mi∑
j=1

xij = 1, i = 1, 2, . . . , n (4)

where
xij ∈ {0, 1},∀i, j. (5)

The above Eq. (1) is deduced from the following equations.
Task running energy in a hyperperiod is:

n∑
i=1

mi∑
j=1

hyperperiod

Pi
Eijxij (6)

CPU idle energy in a hyperperiod is:⎛
⎝hyperperiod −

n∑
i=1

mi∑
j=1

hyperperiod

Pi
Tijxij

⎞
⎠ Widle (7)

The total energy consumption in the hyperperiod is thus the sum of task run-
ning energy and CPU idle energy where Widle denotes the idle power of proces-
sor. Because the hyperperiodWidle is constant in Eq. (7), minimizing the total
energy is equal to minimizing Eq. (1). Equations (2) and (3) represent utilization-
based schedulability test for rate monotonic (RM) and EDF scheduling 17), re-
spectively. Note that more complex schedulability test such as response time
analysis (RTA) 18) can also be used for fixed-priority based scheduling at the ex-
pense of higher computational complexity. Equation (4) indicates that only one
DEPS configuration can be selected for one task where xij = 1 denotes that the
configuration Cij has been selected for task τi, otherwise xij = 0.

It is clear that the problem for selecting the optimal DEPS configuration is

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

171 A Generalized Framework for Energy Savings

a typically multiple choice 0/1 knapsack problem, which is a known NP-hard
problem 16). While there is no polynomial-time exact method for this problem, we
can use common methods for solving any reasonable size by off-line computation.
In the following case studies, we use LPSolve tool 28), a free mixed integer linear
programming solver, for solving this energy optimal problem.

Although we do not consider the configuration overhead for simplicity, they can
be included in the above formulation. This is because the number of hardware
configurations and DVFS settings occurred in one hyperperiod is known. Thus,
if the DEPS overhead in terms of time latency and energy consumption for once
hardware configuration and DVFS setting is also known, their influences can be
incorporated into Eqs. (1), (2) or (3). The overhead of DVFS is generally higher
than that of DHRC. While DVFS overhead is micro second level, DHRC is cycle
level. A detailed discussion on the overhead of DHRC and DVFS configuration
can be found in Refs. 9) and 27), respectively.

3.3 Decision Algorithm For Selecting Effective DEPS Configura-
tions

Consider a DEPS framework with L voltage levels, and K DHRC configura-
tions, we thus need perform L × K times measurement to obtain all possible
energy time relations for one task. Also, L×K variables are involved in the op-
timal computation for one task. Fortunately, not all configurations are effective
for trading off execution time for energy savings. Because even if these configu-
rations are employed in the optimal computation, additional energy savings can
not be achieved. For example, the configurations with increased execution time
and energy consumption are ineffective. Therefore, we can reduce both measure-
ment and computation time without sacrificing energy savings by only selecting
the effective DEPS configurations which consume less energy than other config-
urations by prolonging execution time. As discussed in Section 1, since DVFS
is effective for any applications, we retain all DVFS parameters directly. Then,
to find the effective DHRC configurations, we assume that DVFS and DHRC do
not interfere with each other. This assumption is reasonable because software
generally exhibits similar behaviors (e.g., cache hit or miss) even if the CPU’s
frequency and voltage are different. Therefore, the following decision algorithm
can be performed with specified DVFS parameters instead of all possible ones.

As a result, only K times measurement are needed to find all effective DHRC
configurations. After that, if DHRC has H effective configurations where H ≤ K,
then total L×H measurements are required. Finally, these obtained energy time
relations at effective DHRC configurations and different DVFS parameters are
employed in the optimal calculation.

The decision algorithm for finding the effective DHRC configurations for a given
task is described as follows.
(1) Conduct K measurements to obtain all possible energy time relations in

DHRC under any fixed DVFS parameter (e.g., the highest frequency and
voltage).

(2) Sort the configurations as increasing execution time order.
(3) Select the configurations such that the selected ones have increasing ex-

ecution time but with decreasing energy consumption. Obviously, those
configurations are effective for energy savings by degrading performance.

(4) When two configurations have the same execution time, only the one with
less energy consumption is selected.

Example for selecting the effective DEPS configuration is given in Section 4.2.
3.4 Implementation of Static DEPS
The implementation procedure of static DEPS mainly includes the following

steps:
(1) Select effective DEPS configurations for each task as the decision algorithm

given in Section 3.3.
(2) Obtain energy time relations associated with each effective DEPS configu-

rations by measurement.
(3) Solve the energy optimal problem using the formulation described in Sec-

tion 3.2 to obtain the optimal DEPS configuration for each task.
(4) Store the optimal DEPS configuration and corresponding hardware param-

eters into a static task configuration table.
(5) For each context switch, OS scheduler sets corresponding DEPS configura-

tion for the next running task according to the static configuration table.
We use an example to illustrate the application of static DEPS. This simple

example includes two periodic tasks and 7 effective DEPS configurations as shown
in Fig. 2, where C11(1.0, 9) indicates that for DEPS configuration C11 of task 1,

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

172 A Generalized Framework for Energy Savings

Fig. 2 An example for static DEPS application.

its corresponding worst-case execution time and energy consumption are 1.0 s
and 9 J, respectively. The idle power of processor is assumed to be 1 W. The
DEPS results for one hyperperiod scheduling are given in the same figure in which
Fig. 2 b (1) and Fig. 2 b (2) denote the DEPS results by assuming Widle is zero and
1 W, respectively, in Eq. (1). As can be seen, the selected optimal configurations
can achieve the minimal energy consumption and meet the deadlines. Moreover,
considering idle power in the formulation can lead to more energy savings than
disregard of idle power.

4. Case Studies

As mentioned earlier, the achievable energy savings of DEPS are highly depen-
dent on the employed DHRC and DVFS because DEPS can adopt diverse DHRC
and DVFS techniques. Therefore, it is difficult to evaluate the absolute energy
savings of general DEPS. For this reason, we use case studies to demonstrate the
effectiveness of DEPS. In these case studies, we choose a 4-level voltage processor
for DVFS, the selective cache way (SCW) 11) and configurable branch predictor
(CBP) for DHRC in the DEPS framework. In Ref. 3), the relations between
the energy savings and the number of voltage/frequency levels were investigated,
and it was revealed that limited voltage/frequency levels will result in less energy
savings for DVFS applications. However, while most general-purpose commercial
DVFS processors can provide more voltage levels, embedded processors typically
have less ones due to its relatively low running frequency. For example, the
evaluation board of TMS320C5509 only provides 3-voltage levels 24). The reason
for selecting SCW is due to its easy implementation and low configuration over-
head. SCW exploits the subarray partitioning of set associative caches in order
to provide the capability to disable ways of the cache during periods where full
cache functionality is not required to achieve energy savings. The detailed imple-
mentations of SCW, configuration overhead, as well as method for keeping data
coherency can be found in Refs. 11) and 12). A configurable branch predictor
is also assumed for the DHRC. The CBP can trade off power consumption for
performance improvement by selecting different prediction methods. Generally,
dynamic prediction can improve performance at the cost of extra hardware and
power consumption. Note that our DEPS framework is general and independent
of the employed DHRC and DVFS technologies. We simply choose the above
technologies as examples of DEPS.

4.1 Simulation Environment Setup
As we focus on embedded systems, a SimpleScalar/ARM 19) based power simu-

lator, Sim-Panalyzer 20), is employed to run power simulation in our experiments.
Sim-Panalyzer is an infrastructure for microarchitectural power simulation con-
sidering both dynamic and leakage power. The ARM configurations are listed in
Table 1. Note that we only implement the SCW on instruction cache to reduce

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

173 A Generalized Framework for Energy Savings

Table 1 SimpleScalar/ARM configuration.

Fetch queue 2

Branch Predictor CBP

Fetch, Decode width 1

Issue width 1 (in-order)

Functional units 1 int ALU, 1 int Multiplier
1 FP ALU, 1 FP Multiplier

Instruction L1 Cache Selective cache way (SCW)

Data L1 Cache Size 8 KB; sets 64
block size 32-byte; 4-way

L2 Cache None

Memory bus width 4-byte

Table 2 Instruction L1 cache SCW configurations.

Parameters cfg.1 cfg.2 cfg.3

Cache size (KB) 8 4 2

Num. of sets 64 64 64

Block size 32 32 32

Associativity 4 2 1

Replacement policy LRU LRU -

Table 3 Configurable Branch Predictor (CBP).

Dynamic Branch Prediction Bimodal 2 K entries
(DBP) 3 cycles extra penalty

Static Branch Prediction (SBP) Not-taken

Table 4 DVFS parameters.

Processor frequency (MHz) 280 220 160 100

Processor voltage (V) 2.0 1.8 1.6 1.4

the configuration overhead associated with keeping data coherence. The possible
configurations of SCW on L1 instruction cache are summarized in Table 2. The
CBP has two configurable modes with different prediction accuracy and power
consumption as shown in Table 3. In addition to the above configurations, spe-
cial configurations for Sim-Panalyzer are retained. Furthermore, we incorporate
the DVFS capability into the Sim-Panalyzer as the given parameters in Table 4.

Table 5 Benchmarks information.

Name of Instruction Description
benchmark count

sha 13,537,444 secure hash algorithm

v42 5,876,830 modem encoding/decoding

engine 1,661,192 engine control application

g3fax 2,456,034 group three fax decode

cjpeg 15,945,744 jpeg encoder

tiff2rgba 36,946,334 image format conversion

Table 6 Synthetic task set 1 with high CPU utilization.

Task Period WCET (ms) at 280 MHz Total
name (ms) 8 KB Icache and SBP CPU uti.

g3fax 40 15.6

engine 60 8.7

v42 150 36.7
99.6%

sha 300 64.9

Table 7 Synthetic task set 2 with low CPU utilization.

Task Period WCET (ms) at 280 MHz Total
name (ms) 8 KB Icache and SBP CPU uti.

engine 300 8.7

g3fax 400 15.6

cjpeg 800 95.2
33.2%

tiff2rgba 3,000 435.2

Some benchmark programs from Mibench 21), Mediabench 22) and Powerstone 23)

which exhibit different hardware resource requirements are used for the evalua-
tions, and associated information is given in Table 5. Three synthetic task sets
that correspond to high, low and medial CPU utilization are used to run on this
ARM simulator with specified periods as given in Tables 6, 7 and 8, respectively.
The total CPU utilization of one task set is the sum of WCET/period of each
task. Since the EDF scheduling has higher utilization bound than fix-priority
scheduling as shown in Section 3.2, we only consider the EDF based scheduling
in the case studies to evaluate the maximal potential for energy saving in DEPS.

To investigate the effectiveness of DEPS, we conduct experiments under six

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

174 A Generalized Framework for Energy Savings

Table 8 Synthetic task set 3 with medial CPU utilization.

Task Period WCET (ms) at 280 MHz Total
name (ms) 8 KB Icache and SBP CPU uti.

engine 100 8.7

g3fax 200 15.6

sha 400 64.9

v42 400 36.7
67.4%

cjpeg 800 95.2

tiff2rgba 3,200 435.2

Table 9 Processor configurations in the case studies.

No. Configuration name Hardware configurations

1 DEPS 1 DVFS + SCW + CBP

2 DEPS 2 DVFS + SCW + SBP

3 DEPS 3 DVFS + 8 K Icache + CBP

4 DVFS alone DVFS + 8 K Icache + SBP

5 SCW alone 280 MHz + SCW + SBP

6 CBP alone 280 MHz + 8 K Icache + CBP

kinds of processor configurations in the case studies as given in Table 9. The
method is to run the above three task sets under these configurations and evaluate
their average power consumptions during the hyperperiod. All energy results
are obtained from the simulation results of Sim-Panalyzer by running individual
benchmark program under different hardware configurations. In other words,
we ignore the effect of OS scheduling and the configuration overhead of DVFS
and DHRC during task switching as mentioned earlier. Moreover, we assume
that the disabled parts of hardware consume negligible power via clock gating or
power gating when full hardware resource is not required. For example, in case of
SCW we obtain its energy consumption from Sim-Panalyzer by configuring the
instruction cache as shown in Table 2. Note that the Sim-Panalyzer cannot run
multiple tasks simultaneously, and cannot change its configuration during the
execution of task. However, we can use the combinational results of individual
benchmark for representing the running of multiple tasks because our DEPS
framework does not change the configuration during the execution of same task.

4.2 Experimental Results
To illustrate the efficiency of the decision algorithm, we consider the most

complex case, i.e., the DEPS 1 in Table 9. According to the above Tables 2,
3 and 4, there are 6 configurations for DHRC and 4 configurations for DVFS.
The DEPS 1 can thus provide total 24 configurations. To investigate all pos-
sible energy time relations and validate the proposed decision algorithm, each
benchmark is simulated 24 times using Sim-Panalyzer, which corresponds to 24
DEPS configurations. As can be seen from the simulation results in Table 10, for
DVFS, lowering processor frequency and voltage always leads to longer execution
time and less energy consumption. However, for DHRC, the energy performance
tradeoff is highly dependent on program behaviors. For example in SCW, while
the v42 requires large instruction cache (8 KB) to achieve better energy perfor-
mance results, g3fax prefers small instruction cache (2 KB) because it leads to
negligible degradation of performance but with significant energy savings. Simi-
larly, application-dependent characteristic can be observed in CBP. For example,
while all benchmarks except the engine can achieve high branch prediction accu-
racy (above 93%) and improved performance with DBP, the engine is relatively
difficult to predict (86% accuracy) with DBP, resulting in worse performance due
to frequent miss prediction penalty.

To select the effective DHRC configurations, the decision algorithm proposed
in Section 3.3 is applied as the following steps. (1) 280 MHz/2.0 V is selected as
the fixed DVFS parameters for simulation. (2) 6 DHRC configurations including
different SCW and CBP are simulated for each benchmark respectively to obtain
corresponding energy time relations. (3) Sort the configurations as increasing
execution time order. (4) The configurations with increased execution time and
decreased energy consumption are selected as effective configurations which are
marked with * in the Table 10. Note that for configurations with the same ex-
ecution time, only the one with less energy consumption is selected. Actually,
if we repeat the above experiments with specified other DVFS parameters, sim-
ilar results to the given one can be obtained for most benchmarks. This fact
implies that the DHRC exhibits similar behaviors under different frequency and
voltage settings. In summary, the DEPS with configuration 1 requires total 36
measurements to find the effective configurations for 6 tasks. Then, 68 rather

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

175 A Generalized Framework for Energy Savings

Table 10 Power simulation results of individual benchmark under possible DEPS configurations.

Bench. SCW CBP 280 MHz/2.0 V 220 MHz/1.8 V 160 MHz/1.6 V 100 MHz/1.4 V

conf. conf. T (ms) E (mJ) T (ms) E (mJ) T (ms) E (mJ) T (ms) E (mJ)

8 KB* DBP * 63.00 24.88 80.21 20.40 109.87 16.35 175.66 13.01

SBP 64.88 24.34 82.60 19.93 113.16 15.94 180.91 12.62

sha 4 KB* DBP* 63.02 21.38 80.24 17.55 109.90 14.09 175.69 11.27

SBP 64.91 20.99 82.64 17.23 113.19 13.83 180.96 11.06

2 KB* DBP* 64.44 20.30 81.89 16.77 111.46 13.49 177.85 10.91

SBP* 66.92 19.37 84.98 16.09 115.40 12.93 184.01 10.48

8 KB* DBP* 35.71 13.83 45.06 11.46 60.17 9.22 95.42 7.49

SBP* 36.72 13.40 46.35 11.10 61.94 8.93 98.24 7.23

v42 4 KB DBP 42.45 15.03 52.89 12.83 67.47 10.44 105.43 8.87

SBP 44.48 14.66 55.37 12.60 70.43 10.28 109.95 8.79

2 KB DBP 71.18 26.29 86.25 23.63 98.64 19.88 148.28 18.17

SBP 72.90 25.82 88.36 23.54 101.28 19.71 152.42 18.15

8 KB DBP 8.83 3.43 11.23 2.80 15.41 2.25 24.64 1.79

SBP 8.69 3.22 11.05 2.63 15.17 2.11 24.25 1.67

engine 4 KB* DBP 8.83 2.98 11.23 2.44 15.41 1.96 24.64 1.57

SBP* 8.69 2.72 11.05 2.22 15.17 1.78 24.25 1.42

2 KB DBP 14.19 4.94 17.46 4.37 21.25 3.59 32.68 3.18

SBP 14.10 4.70 17.33 4.17 21.03 3.36 32.30 2.99

8 KB DBP 14.61 5.87 18.59 4.80 25.52 3.85 40.82 3.06

SBP 15.56 6.00 19.80 4.90 27.19 3.92 43.48 3.10

g3fax 4 KB* DBP* 14.61 5.21 18.59 4.27 25.52 3.43 40.82 2.73

SBP 15.56 5.13 19.80 4.20 27.19 3.36 43.48 2.66

2 KB* DBP* 14.62 4.89 18.60 4.01 25.53 3.22 40.83 2.57

SBP* 15.58 4.71 19.82 3.85 27.20 3.09 43.50 2.46

8 KB* DBP* 92.17 36.18 116.58 30.00 155.56 24.07 246.81 19.52

SBP 95.16 35.31 120.35 29.27 160.80 23.47 255.19 18.97

cjpeg 4 KB* DBP* 94.54 32.91 119.82 27.65 158.13 22.13 250.33 18.18

SBP* 97.66 31.17 123.70 26.24 163.49 20.97 258.88 17.22

2 KB DBP 114.59 39.73 143.38 34.46 179.89 28.15 280.26 24.32

SBP 119.37 37.81 149.18 33.13 187.24 26.86 291.67 23.32

8 KB* DBP* 432.25 148.39 509.94 128.15 603.14 102.49 909.07 89.84

SBP* 435.20 141.56 513.68 123.72 608.28 98.16 917.45 86.82

tiff2rgba 4 KB* DBP* 438.90 140.99 517.70 122.64 610.52 98.41 919.28 87.21

SBP* 441.99 133.34 521.59 117.54 615.86 93.54 928.00 83.75

2 KB DBP 453.77 142.12 535.16 124.40 626.84 100.26 941.72 89.66

SBP 457.34 134.09 539.56 119.31 632.81 95.17 951.33 85.98

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

176 A Generalized Framework for Energy Savings

Table 11 DEPS results using task set 1 (99.6% CPU utilization).

Task name and DEPS 1 DEPS 2 DEPS 3

experimental results DHRC F/V DHRC F/V DHRC F/V

sha 2 KB SBP 280/2.0 4 KB SBP 280/2.0 8 KB DBP 280/2.0

v42 8 KB DBP 280/2.0 8 KB SBP 280/2.0 8 KB DBP 280/2.0

engine 4 KB SBP 280/2.0 4 KB SBP 280/2.0 8 KB SBP 220/1.8

g3fax 2 KB SBP 280/2.0 2 KB SBP 280/2.0 8 KB DBP 280/2.0

Average power 319.85 mW 322.38 mW 365.72 mW

Power reduction 20.2% 19.6% 8.8%

Table 12 DEPS results using task set 2 (33.2% CPU utilization).

Task name and DEPS 1 DEPS 2 DEPS 3

experimental results DHRC F/V DHRC F/V DHRC F/V

engine 4 KB SBP 100/1.4 4 KB SBP 100/1.4 8 KB SBP 100/1.4

g3fax 2 KB SBP 100/1.4 2 KB SBP 100/1.4 8 KB DBP 100/1.4

cjpeg 4 KB SBP 100/1.4 4 KB SBP 100/1.4 8 KB SBP 100/1.4

tiff2rgba 4 KB SBP 100/1.4 4 KB SBP 100/1.4 8 KB SBP 100/1.4

Average power 60.33 mW 60.33 mW 65.87 mW

Power reduction 85.0% 85.0% 83.6%

than 144 simulations whose results are denoted in boldface in the Table 10 are
performed. Finally, these measured results are used in the optimal computation.
LPSolve tool 28) is employed for solving the energy optimal problem. Execution
time of LPSolve for all experiments is less than 0.08 second in our computer with
a 1.6 GHz Pentium processor and 1 GB RAM.

The evaluation of DEPS includes the same algorithm with three different config-
urations (i.e., DEPS 1, 2 and 3) as given in Table 9. DEPS results corresponding
to high and low CPU utilization are reported in Tables 11 and 12, respectively,
in which DHRC denotes the SCW and/or CBP configurations as given in Ta-
bles 2 and 3, and the F/V denotes the frequency voltage parameters as given in
Table 4. It is clear from the results that more energy can be saved for lower CPU
utilization since more slacks can be used for trading off performance for energy
savings.

Table 13 compare the DEPS with other power saving methods using three
task sets. Because the proposed DEPS is an inter-task based static method, we

Table 13 Power comparisons of different methods using three task sets.

Methods and Average power (mW) of different task sets Average percentage

configurations High (99.6%) uti. Medial (67.4%) uti. Low (33.2%) uti. power reduction

DEPS 1 319.85 157.02 60.33 55.3%

DEPS 2 322.38 159.28 60.33 54.9%

DEPS 3 365.72 177.26 65.87 49.4%

DVFS alone 3) 374.13 178.06 65.97 48.6%

SCW alone 322.38 213.31 104.25 46.8%

CBP alone 370.88 244.28 116.73 39.2%

also select the inter-task based static application of DVFS and DHRC for fair
comparison. In Table 13, the DVFS alone represents the optimal speed assign-
ment algorithm proposed in Ref. 3) where different speeds are assigned statically
to different tasks to achieve the maximal energy savings. The SCW and CBP
alone represents the off-line application of DHRC where the hardware configu-
rations with less energy consumption but can still meet the deadline constraints
are selected statically for each task. Meanwhile, we assume that DVFS alone
utilizes full hardware resource, SCW and CBP alone utilize the highest processor
performance, which correspond to the hardware configurations with the same
name in Table 9. Because the absolute energy consumption depends on the run
time of application, we compare the average power of various methods to the
maximal power consumption on this ARM-based simulator, i.e., 401 mW when
running g3fax at 280 MHz, 8 KB instruction cache and DBP. As can be seen
from Table 13, the DEPS with configuration 1 to 3 achieves 55.3%, 54.9%, and
49.4% power reduction, respectively. The results imply that the combination of
DVFS and SCW is more effective for energy savings than combination of DVFS
and CBP, and additional use of CBP can only achieve limited energy reduction
than the combination of DVFS and SCW. Furthermore, the DEPS achieves con-
sistently more energy savings than DVFS alone and DHRC alone. Specifically,
the DEPS with configuration 1 achieves average 6.7%, 8.5%, and 16.1% improve-
ment over DVFS alone, SCW alone and CBP alone respectively for various CPU
utilizations. Table 14 gives detailed results of comparison using task set 3.

Through the above case studies, we can derive the following conclusions from
energy savings point of view.

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

177 A Generalized Framework for Energy Savings

Table 14 Configuration and power result of different methods using task set 3 (67.4% CPU utilization).

Task name and DVFS alone 3) SCW alone CBP alone DEPS 1 DEPS 2 DEPS 3

experimental results F/V conf. conf. DHRC F/V DHRC F/V DHRC F/V

sha 220/1.8 2 KB SBP 2 KB SBP 220/1.8 2 KB SBP 220/1.8 8 KB SBP 220/1.8

v42 160/1.6 8 KB SBP 8 KB DBP 160/1.6 8 KB SBP 160/1.6 8 KB SBP 160/1.6

engine 160/1.6 4 KB SBP 4 KB SBP 220/1.8 4 KB SBP 160/1.6 8 KB SBP 160/1.6

g3fax 160/1.6 2 KB DBP 2 KB DBP 160/1.6 2 KB SBP 160/1.6 8 KB DBP 220/1.8

cjpeg 220/1.8 4 KB SBP 4 KB SBP 160/1.6 4 KB SBP 220/1.8 8 KB SBP 160/1.6

tiff2rgba 160/1.6 4 KB SBP 4 KB SBP 160/1.6 8 KB SBP 160/1.6 8 KB SBP 160/1.6

Hyperperiod energy 569.80 mJ 682.58 mJ 781.68 mJ 502.46 mJ 509.68 mJ 567.24 mJ

Average power 178.06 mW 213.31 mW 244.28 mW 157.02 mW 159.28 mW 177.26 mW

Power reduction 55.6% 46.8% 39.1% 60.8% 60.3% 55.8%

• DHRC is effective especially for systems with high CPU utilization since it
can save energy with less performance degradation than DVFS. However,
DHRC is ineffective in the case that all applications require the largest hard-
ware resource (e.g., the v42 for SCW). Moreover, DHRC is less efficient in
reclaiming slack time than DVFS in case of medial and low CPU utilization.

• DVFS is effective for systems with large slack time, because it can effectively
reduce power consumption by reclaiming slack and degrading performance.
On the other hand, DVFS may be useless for energy savings when system is
with high CPU utilization and stable workload since the permitted perfor-
mance degradation is limited.

• DEPS is more effective than either DHRC or DVFS in isolation since it
can provide more chances for energy and performance tradeoff whatever the
CPU utilization is high or low. The achievable energy savings of DEPS are
highly dependent on the employed hardware configuration mechanisms and
characteristics of system workload. In general, the more power controllable
mechanisms the hardware provides, the more energy saving potential can be
explored, and the more slack time in the systems, the more energy can be
saved.

5. Conclusion

We proposed a generalized framework, i.e., DEPS: dynamic energy perfor-
mance scaling for energy savings targeted at hard real-time embedded systems.

It integrates two existing energy performance tradeoff technologies, i.e., dynamic
hardware resource configuration and dynamic voltage frequency scaling into this
framework. We formulate the problem of selecting the optimal DEPS config-
uration to achieve maximal energy savings and meet the deadline constraint
simultaneously. As a first step, we propose static task-level application of DEPS.
Through case studies, DEPS with different configurations shows consistently bet-
ter energy savings than DVFS alone and DHRC alone under various CPU utiliza-
tions. For future work, we plan to evaluate the proposed DEPS on a more realistic
platform with the consideration of DEPS configuration overhead, and to explore
the possible dynamic application of DEPS for coping with varied workload.

Acknowledgments The authors would like to thank the anonymous re-
viewers for their constructive comments which helped improving the quality of
this paper. This work is supported in part by the fund of Core Research for
Evolutional Science and Technology, Japan Science and Technology Agency.

References

1) Pillai, P. and Shin, K.G.: Real-Time Dynamic Voltage Scaling for Low-Power Em-
bedded Operating Systems, Proc. ACM Symposium Operating Systems Principles,
pp.89–102 (2001).

2) Kim, W., Shin, D., Yun, H., Kim, J. and Min, S.L.: Performance Comparison of Dy-
namic Voltage Scaling Algorithms for Hard Real-Time Systems, Proc. IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp.219–228
(2002).

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

178 A Generalized Framework for Energy Savings

3) Saewong, S. and Rajkumar, R.: Practical Voltage Scaling for Fixed-Priority RT-
Systems, Proc. IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pp.106–114 (2003).

4) Cho, Y., Chang, N., Chakrabarti, C. and Vrudhula, S.: High-Level Power Man-
agement of Embedded Systems with Application-Specific Energy Cost Functions,
Proc. Design Automation Conference (DAC), pp.568–573 (2006).

5) Choi, K., Soma, R. and Pedram, M.: Fine-Grained Dynamic Voltage and Fre-
quency Scaling for Precise Energy and Performance Tradeoff Based on The Ratio
of Off-Chip Access to On-Chip Computation Times, IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol.24, No.1, pp.18–28 (2005).

6) Shin, D. and Kim, J.: Intra-Task Voltage Scheduling on DVS-Enabled Hard Real-
Time Systems, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, Vol.24, No.10, pp.1530–1549 (2005).

7) Yuan, W., Nahrstedt, K., Adve, S.V., Jones, D.L. and Kravets, R.H.: GRACE-1:
Cross-Layer Adaptation for Multimedia Quality and Battery Energy, IEEE Trans.
Mobile Computing, Vol.5, No.7, pp.799–815 (2006).

8) Albonesi, D.H., Balasubramonian, R., Dropsbo, S.G., et al.: Dynamically Tuning
Processor Resources with Adaptive Processing, IEEE Computer, pp.49–58 (2003).

9) Huang, M., Renau, J. and Torrellas, J.: Positional Adaptation of Processors: Ap-
plication to Energy Reduction, Proc. IEEE International Symposium Computer
Architecture, pp.157–168 (2003).

10) Chaver, D., Pinuel, L., Prieto, M., Tirado, F. and Huang, M.: Branch Prediction
on Demand: An Energy-Efficient Solution, Proc. International Symposium on Low-
Power Electronics and Design, pp.390–395 (2003).

11) Albonesi, D.H.: Selective Cache Ways: on-Demand Cache Resource Allocation,
Proc. International Symposium on Microarchitecture (MICRO), pp.248–259 (1999).

12) Banerjee, S., Surendra, G. and Nandy, S.K.: Program Phase Directed Dynamic
Cache Way Reconfiguration for Power Efficiency, Proc. Asia and South Pacific
Design Automation Conference (ASPDAC), pp.884–889 (2007).

13) Buyuktosunoglu, A., et al.: A Circuit-Level Implementation of an Adaptive-Issue
Queue for Power-Aware Microprocessors, Proc. Great Lakes Symp. VLSI, pp.73–78
(2001).

14) Huang, M., Renau, J., Yoo, S.M. and Torrellas, J.: A Framework for Dynamic
Energy Efficiency and Temperature Management, Proc. International Symposium
on Microarchitecture (MICRO), pp.202–213 (2000).

15) Nacul, A. and Givargis, T.: Dynamic Voltage and Cache Reconfiguration for Low
Power, Proc. Design Automation and Test in Europe (DATE), pp.1376–1377 (2004).

16) Martello, S. and Toth, P.: Knapsack Problems: Algorithms and Computer Imple-
mentations, Wiley (1990).

17) Liu, C.L. and Layland, J.W.: Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment, Journal of the ACM, Vol.20, No.1, pp.40–61 (1973).

18) Lehoczky, J.P., Sha, L. and Ding, Y.: The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior, Proc. IEEE Real Time Systems
Symposium (RTSS), pp.166–171 (1989).

19) SimpleScalar Tools. http://www.simplescalar.com/
20) Sim-Panalyzer Project. http://www.eecs.umich.edu/˜panalyzer/
21) Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T. and Brown,

R.B.: MiBench: A Free, Commercially Representative Embedded Benchmark Suite,
IEEE Annual Workshop on Workload Characterization (2001).

22) Lee, C., Potkonjak, M. and Mangione-Smith, W.H.: Mediabench: A Tool for Eval-
uating and Synthesizing Multimedia and Communications Systems, Proc. Interna-
tional Symposium on Microarchitecture (MICRO), pp.330–335 (1997).

23) Scott, J., Lee, L., Arends, J. and Moyer, B.: Designing the Low-Power M*CORE
Architecture, Proc. International. Symposium. on Computer Architecture Power
Driven Microarchitecture Workshop, pp.145–150 (1998).

24) Texas Instruments, Application Report, SPRA848A: Using the Power Scaling Li-
brary (2004).

25) Texas Instruments, Application Report, SPRAA19A: Power Management in an
RF5 Audio Streaming Application Using DSP/BIOS (2005).

26) Lee, S. and Sakurai, T.: Run-Time Voltage Hopping for Low-Power Real-Time
Systems, Proc. Design Automation Conference (DAC), pp.806–809 (2000).

27) Mochocki, B.C., Hu, X.S. and Quan, G.: A Unified Approach to Variable Voltage
Scheduling for Nonideal DVS Processors, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol.23, No.9, pp.1370–1377 (2004).

28) LPSolve tool: http://sourceforge.net/projects/lpsolve/

(Received November 17, 2008)
(Revised February 20, 2009)

(Accepted April 13, 2009)
(Released August 14, 2009)

(Recommended by Associate Editor: Shinji Kimura)

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

179 A Generalized Framework for Energy Savings

Gang Zeng graduated from Hunan University, China, with
B.E., M.E. degrees in 1993, 2001, respectively. From 1993 to
1998, he was a lecturer at the Institute of Electric and Infor-
mation Engineering, Hunan University. He received his Ph.D.
degree in information science from Chiba University in 2006. He
is currently an assistant professor at the Graduate School of Infor-
mation Science, Nagoya University. His research interests include

power-aware computing, embedded system design, design for testability, system-
on-a-chip testing. He is a member of the IEEE.

Hiroyuki Tomiyama received his Ph.D. degree in computer
science from Kyushu University in 1999. From 1999 to 2001, he
was a visiting postdoctoral researcher with the Center of Embed-
ded Computer Systems, University of California, Irvine. From
2001 to 2003, he was a researcher at the Institute of Systems
& Information Technologies/KYUSHU. In 2003, he joined the
Graduate School of Information Science, Nagoya University, as an

assistant professor, where he is now an associate professor. His research inter-
ests include design automation, architectures and compilers for embedded sys-
tems and systems-on-chip. He currently serves as an editorial board member
of IPSJ Transactions on SLDM, IEEE Embedded Systems Letters, and Inter-
national Journal on Embedded Systems. He has also served on the organizing
and program committees of several premier conferences including ICCAD, ASP-
DAC, DATE, CODES+ISSS, and so on. He is a member of ACM, IEEE, IPSJ
and IEICE.

Hiroaki Takada is a professor at the Department of Infor-
mation Engineering, the Graduate School of Information Science,
Nagoya University. He received his Ph.D. degree in Information
Science from University of Tokyo in 1996. He was a research as-
sociate at University of Tokyo from 1989 to 1997, and was an
assistant professor and then an associate professor at Toyohashi
University of Technology from 1997 to 2003. His research interests

include real-time operating systems, real-time scheduling theory, and embedded
system design. He is a member of ACM, IEEE, IPSJ, IEICE, and JSSST.

IPSJ Transactions on System LSI Design Methodology Vol. 2 167–179 (Aug. 2009) c© 2009 Information Processing Society of Japan

