
IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009)

Regular Paper

Single-Cycle-Accessible Two-Level Caches and

Compilation Technique for Energy Reducion

Seiichiro Yamaguchi,†1 Yuriko Ishitobi,†1

Tohru Ishihara†1 and Hiroto Yasuura†1

A small L0-cache located between an MPU core and an L1-cache is widely
used in embedded processors for reducing the energy consumption of memory
subsystems. Since the L0-cache is small, if there is a hit, the energy consump-
tion will be reduced. On the other hand, if there is a miss, at least one extra
cycle is needed to access the L1-cache. This degrades the processor perfor-
mance. Single-cycle-accessible Two-level Cache (STC) architecture proposed
in this paper can resolve the problem in the conventional L0-cache based ap-
proach. Both a small L0 and a large L1 caches in our STC architecture can be
accessed from an MPU core within a single cycle. A compilation technique for
effectively utilizing the STC architecture is also presented in this paper. Ex-
periments using several benchmark programs demonstrate that our approach
reduces the energy consumption of memory subsystems by 64% in the best case
and by 45% on an average without any performance degradation compared to
the conventional L0-cache based approach.

1. Introduction

Energy consumption is one of the most important criteria for not only mo-
bile systems but also every computer systems. These systems also require ever-
increasing performance of microprocessors for integrating multiple functionalities
into a single system. Today’s microprocessors used in embedded systems have
on-chip caches in order to improve the performance. The on-chip caches also im-
prove the energy efficiency of memory subsystems through decreasing the number
of accesses to off-chip memories which involve huge energy dissipation. There-
fore, increasing the size of the on-chip cache reduces the energy dissipated for
the off-chip accesses. However integrating too large cache on a chip results in
an increase of the total energy consumption since the energy consumption of the

†1 Kyushu University

cache becomes dominant as the size of the on-chip cache increases. For example,
ARM920T microprocessor dissipates 44% (25% in instruction cache, 19% in data
cache) of the power in its caches 1). StrongARM SA-110 microprocessor, which
specifically targets low power applications, dissipates 43% (27% in instruction
cache, 16% in data cache) of the power in its caches 2). Therefore, a cache ar-
chitecture which reduces the number of off-chip accesses without increasing the
energy consumption of the cache is highly desired. This paper proposes a cache
architecture which reduces the energy consumption of on-chip caches and the
number of off-chip accesses 3).

The proposed cache architecture, named Single-cycle-accessible Two-level
Cache (STC) architecture, has one small and one normal size caches at the same
level of memory hierarchy. Only one of the caches is activated at a time. Since
both of them can be accessed from an MPU core within a single cycle, there
is no performance degradation compared to the conventional level-1 caches. If
the small cache is more frequently accessed, the total cache energy consumption
can be reduced. Although the two caches are located at the same level of mem-
ory hierarchy, they also have a property of hierarchical caches. This paper also
presents a compilation technique which selectively places code and data objects
in a memory address space so that they are mapped to the small cache prefer-
entially. This concentrates memory accesses to the small cache and, as a result,
reduces the total energy consumption of memory subsystems.

The rest of this paper is organized as follows. In section 2, related work is
summarized. Section 3 presents a motivational example. The STC architecture is
explained in section 4. Section 5 presents a compiler framework and an algorithm
for finding code and data placement which minimizes the energy consumption of
memory subsystem. Section 6 shows experimental results. Finally, section 7
concludes this paper.

2. Related Work

In the past, many researchers have proposed techniques exploiting a small L0-
cache between an MPU core and an L1-cache, e.g., Block Buffering 4),5), Loop
Cache 6), Filter Cache 7), and S-Cache 8). Figure 1 shows a memory subsystem
of the conventional L0-cache based approach. Since the L0-cache is small, it

189 c© 2009 Information Processing Society of Japan

190 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Fig. 1 Memory subsystem of conventional L0-cache based approach.

Fig. 2 Memory subsystem of SPM based approach and its address mapping.

consumes less energy per access. Therefore, if there is a hit in the L0-cache, the
energy consumption will be reduced. On the other hand, if there is a miss, at
least one extra cycle is required to access the L1-cache. This leads a degradation
of microprocessor performance.

A software controlled memory called scratchpad memory (SPM) is used with an
L1-cache for resolving the problem of the conventional L0-cache based approach.
Since the SPM and the L1-cache are located at the same level of memory hierar-
chy, both of them can be accessed from an MPU core in a single cycle. Only one
of them is activated at a time. Figure 2 shows a memory subsystem of SPM
based approach and its address mapping. An address space called SPM region
is statically mapped to the SPM. The code and data allocation is done during a
system boot and is unchanged after the boot. Therefore, no miss occurs in the
SPM. The SPM consumes less energy per access compared to that of the L1-cache
since the SPM does not need tag search operations which are need for caches.
Therefore, the SPM is more energy efficient if programmers or compilers can op-
timally allocate code and data to the SPM. Several algorithms for allocating code
and data are proposed in Refs. 9)–12). Dynamic SPM management techniques
presented in Refs. 13)–16) can further reduce the energy consumption of memory
subsystem if overlaying the SPM is done with a small energy overhead. However,
if the overlay of the SPM occurs frequently the energy overhead is large. In such

Fig. 3 Memory subsystem of HPC architecture and its address mapping.

a case, a mechanism for overlaying the SPM with a small overhead is preferred.
Horizontally Partitioned Cache (HPC) architecture exploits two caches, one

small and one normal size caches, at the same level of memory hierarchy 17)–19).
A memory subsystem of the HPC architecture and its address mapping are shown
in Fig. 3. A Main-cache and a Mini-cache respectively represent a normal size
cache and a small cache. The address space is partitioned into two regions, a
Main-cache region and a Mini-cache region. These regions are exclusively mapped
to the Main-cache and the Mini-cache respectively. After checking several bits of
a memory access address, an MPU core accesses one of the caches. The word-line
of the cache which is not accessed is not activated. This mechanism is similar
to the SPM based approach. However, replacement of the Mini-cache, which
corresponds to the overlaying of the SPM, is done automatically in this HPC
architecture. The energy consumption of the memory subsystem is also reduced
by allocating frequently accessed code and data to the Mini-cache region.

3. Motivation

One of the biggest problems of the HPC architecture and the SPM overlay
technique is their ineffective utilization of on-chip memory resources. For example
in the HPC architecture, the code and data allocated to the Mini-cache region are
mapped to the Mini-cache only. Therefore, those code and data cannot exploit
large capacity of the Main-cache. On the other hand, the code and data allocated
to the Main-cache region cannot exploit energy efficiency of the Mini-cache.

More specific example is described in Table 1 and Fig. 4. In this example,
subroutines A, B and the others are alternatively executed on the HPC archi-
tecture. If these subroutines are less frequently switched as shown in Fig. 4 (a),
code allocation case 1 in Table 1 is better than cases 2 and 3 with respect to

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

191 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Table 1 Motivational Example in the HPC Architecture.

Code Access ratio Size
Subroutine A 40% 1 KB
Subroutine B 40% 1 KB

Others 20% 30 KB

Cache Size
Main-cache 8 KB
Mini-cache 1 KB

Code allocation
Case Mini-cache region Main-cache region

1 Subroutine A, Subroutine B Others
2 Subroutine A Subroutine B, Others
3 Subroutine B Subroutine A, Others

Fig. 4 Access trace examples.

the energy consumption since the number of Mini-cache misses is not very large.
Contrary, if the subroutines are more frequently switched as shown in Fig. 4 (b),
the code allocation case 1 results in an increase of the number of Mini-cache
misses. For reducing the number of Mini-cache misses, one of the subroutines
can be allocated to the Main-cache region as shown in cases 2 and 3 in Table 1.
However, this increases the average energy required for accessing caches.

We can resolve the problems in the HPC architecture without increasing the
cache size if the frequently accessed code and data allocated to the Mini-cache
region can be also mapped to the Main-cache. Our STC architecture allows the
code and data allocated to the Mini-cache region to be mapped to both the small
and the normal size caches.

4. STC Architecture

4.1 Overview
Our STC architecture employs a small cache called Small-cache as is employed

in the L0-cache based approach and the HPC architecture. Figure 5 shows
a memory subsystem of the STC architecture and its address mapping. The

Fig. 5 Memory subsystem of STC architecture and its address mapping.

address space is partitioned into two regions, a Multi-cache region and a Single-
cache region. The difference between the HPC architecture and the STC archi-
tecture is an address map of the Multi-cache region. In our STC architecture, the
Multi-cache region is mapped to both the Small-cache and a normal size cache
called Main-cache. The Single-cache region is mapped to the Main-cache only.
The code and data allocated to the Multi-cache region exploit the Small-cache
preferentially, and utilize the Main-cache depending on a replacement policy.

In the STC architecture, as is similarly done in the HPC architecture, only
one of the Main-cache or the Small-cache is accessed at a time. This is done by
checking several bits of the memory access address. Since the Single-cache region
is mapped to the Main-cache only, only the Main-cache is activated if the target
address is included in the Single-cache region. In this case, the Small-cache is
inactivated. However, since the Multi-cache region can be mapped to both the
Small-cache and the Main-cache, it is impossible to decide which caches should be
activated before accessing a tag of the Small-cache if the target address is included
in the Multi-cache region. Accessing both the Small-cache and the Main-cache in
parallel leads to an increase of the energy consumption of the caches. Accessing
the Small-cache first and then accessing the Main-cache if there is a miss in the
Small-cache reduces the total energy consumption of the caches. However, this
degrades the processor performance. To avoid these issues, the STC architecture
employs a mechanism to detect Small-cache hits or misses before activating the
caches. This mechanism can be implemented by a D-flip-flop based tag memory.

4.2 D-flip-flop Based Tag Memory
Typically, cache consists of a row decoder, an SRAM tag array for status and

tag fields, an SRAM data array for a data field, and sense amplifiers. Figure 6
shows 2-bits 2-rows SRAM array. Read access to the SRAM array is done in

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

192 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Fig. 6 2-bits 2-rows SRAM array.

Fig. 7 Timing chart of conventional cache read access using SRAM tag array.

the following steps, 1) decode a row address and precharge bit-lines, 2) activate
one of word-lines, and 3) read out data by sense amplifiers. Timing chart of the
conventional cache read access using SRAM tag array is shown in Fig. 7. The
conventional cache decodes a row address and precharges bit-lines at first half of
memory clock cycle. At last half of the cycle, the conventional cache operates
in the following steps, 1) activates one of word-lines, 2) senses SRAM tag and
data values, 3) compares tags, and 4) output target values if there is a hit in the
cache.

Meanwhile, our STC architecture employs D-flip-flop tag array in the Small-
cache for detecting Small-cache hits or misses before activating word-lines of
SRAM array. Figure 8 shows 2-bits 2-rows D-flip-flop array. A value in the D-

Fig. 8 2-bits 2-rows D-flip-flop array.

flip-flop array can be accessed quickly since, unlike the SRAM array, an output
signal of the D-flip-flop is always available without any read out operations.
Therefore, read access to the D-flip-flop array can be done in the following one
step only, 1) select output signals of D-flip-flops using a multiplexer. Hence, the
delay for checking a Small-cache hit or a miss depends on delays required for
the multiplexer and a comparator. The tag search operation of the Small-cache
has to be completed before activating a word-line of the SRAM array. In other
words, the delays of the multiplexer and the comparator have to be shorter than
the half of memory clock cycle. Otherwise, an access to the Main-cache needs
more than one cycle. Since the tag search operation of the Small-cache in our
STC architecture is performed every cycles in parallel with checking the region
of access address, the average energy consumption per a Small-cache access is
larger than that of the HPC architecture. The energy consumption of the tag
search operation of the Small-cache is the energy consumptions of the multiplexer
and the comparator. Note that clock-lines are always inactivated during the read
access. If the size of the Multi-cache region is N times larger than the Small-cache
size, �log2(N)�-bit is needed for implementing the tag memory.

4.3 Architecture and Operation of STC
The memory access address consists of a Region-tag, a Small-tag, an Index,

and an Offset fields as shown in Fig. 9. The Region-tag field specifies whether

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

193 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Fig. 9 Memory access address of the STC architecture.

Fig. 10 2-way set-associative Small-cache architecture.

the access address resides in the Single-cache region or the Multi-cache region.
The Small-tag field is used for detecting a Small-cache hit or a miss. The Main-
tag field which consists of the Region-tag and the Small-tag fields is used for
checking a Main-cache hit or a miss. The Index and the Offset fields are used as
conventional. Figure 10 and Fig. 11 shows architectures of 2-way set-associative
Small-cache and 4-way set-associative Main-cache.

At first half of memory clock cycle, Region-tag comparison, Small-tag com-
parison of D-flip-flop tag array, and bit-lines precharge of SRAM arrays are per-

Fig. 11 4-way set-associative Main-cache architecture.

formed. The rest of cache read procedures depends on the results of Region-tag
comparison and Small-tag comparison. There are three types of procedures as
follows.
(1) The access address resides in the Single-cache region.

In this case, a word-line of the Main-cache is activated at the last half of the
cycle as shown in Fig. 12. The word-line of the Small-cache is inactivated.

(2) The access address resides in the Multi-cache region and there is
a Small-cache hit.
In this case, a hit way’s word-line of the Small-cache is activated at the last
half of the cycle as shown in Fig. 13. The word-line of the Main-cache is
inactivated.

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

194 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Fig. 12 Timing chart of STC if the access address resides in the Single-cache region.

Fig. 13 Timing chart of STC if the access address resides in the Multi-cache region and
there is a Small-cache hit.

(3) The access address resides in the Multi-cache region and there is
a Small-cache miss.
In this case, a word-line of the Main-cache is activated at the last half of the
cycle as shown in Fig. 14. The word-line of the Small-cache is inactivated.

In case (3), if there is a Main-cache hit, operated cache line is stored to a Small-
cache replacement buffer. Otherwise, get the target data from an off-chip memory
and store it to the Small-cache replacement buffer. And then performs Small-
cache replacement flow as shown in the following.
Small-cache replacement flow
SR1 Make backup copy

Make a copy of data in a cache line having the lowest priority in the target
set of the Small-cache and store it to a Main-cache replacement buffer. Go

Fig. 14 Timing chart of STC if the access address resides in the Multi-cache region and
there is a Small-cache miss.

to the next step. Note that the lowest priority line can be determined based
on replacement policies like the least recently used (LRU) policy or the least
frequently used (LFU) policy.

SR2 Update Small-cache
Move the data in the Small-cache replacement buffer to the lowest priority
line of the Small-cache. Update the Small-cache tag and status fields simul-
taneously. Go to the next step.

SR3 Update Main-cache
Move the data in the Main-cache replacement buffer to the lowest priority
line of the Main-cache. Update the Main-cache tag and status fields simul-
taneously. This step is operated in parallel with the step SR2.

An invalid flag of a cache line is set when the cache line resided in the Small-
cache is replaced to the Main-cache or the cache line resided in the Main-cache
is copied to the Small-cache. This preserves coherence between the Main-cache
and the Small-cache. For always achieving the single cycle access to both the
Small-cache and the Main-cache, the Small-cache replacement procedure is not
performed if the replacement buffers are full. Otherwise, one extra cycle is needed
for waiting for completing the Small-cache replacement procedure before access-
ing them. This is one of the Small-cache replacement policies. Another policy
is that new cache lines for replacement overwrite the replacement buffers if the
MPU core accesses a new cache line before completing the Small-cache replace-
ment procedure.

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

195 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Fig. 15 Compiler framework.

5. Code and Data Placement

5.1 Compiler Framework
Optimization of the energy consumption for memory subsystem can be con-

verted into a memory object placement problem since the energy consumption
of memory subsystem strongly depends on code and data placement. Figure 15
shows our compiler framework for effectively utilizing the STC architecture. A
compiler generates an executable file and a list of memory objects with its origi-
nal mapping address from a target application program. An address trace can be
obtained through exploiting a debugger. We input the list of memory objects, the
address trace and some constraints to a mapping framework for finding the op-
timal code and data mapping. A simulator in the mapping framework estimates
the energy consumption and the execution time using an energy consumption
model and an execution time model formulated in the following subsection. A
placement algorithm is also presented in the following subsection. Finally, the
mapping framework outputs the optimal memory mapping.

5.2 Energy Consumption and Execution Time Models
Energy consumption of memory subsystem Etotal and execution time of target

application Ttotal are formulated as follows;

Etotal = NRStag · ERStag + NRSdata · ERSdata + NRM · ERM

+NRoff · ERoff + NWStag · EWStag + NWSdata · EWSdata

+NWM · EWM + NWoff · EWoff (1)
Ttotal = NRSdata · TRSdata + NRM · TRM + NRoff · TRoff

+NWSdata · TWSdata + NWM · TWM + NWoff · TWoff (2)
where ERStag, ERSdata, ERM , ERoff , EWStag, EWSdata, EWM and EWoff repre-
sent the energy consumption of the Small-cache tag read, Small-cache data read,
Main-cache read, off-chip read, Small-cache tag write, Small-cache data write,
Main-cache write and off-chip write operations, respectively. NRStag, NRSdata,
NRM , NRoff , NWStag, NWSdata, NWM and NWoff denote the event counter for
each operation. TRSdata, TRM , TRoff , TWSdata, TWM and TWoff indicate the
execution time for each operation. The values of Nx can be obtained from the
trace data using the simulator in the mapping framework. The values of Ex and
Tx are provided from each memory module.

5.3 Algorithm
As an input of our algorithm shown in Fig. 16, a list of memory objects F

is used. The memory object includes functions, global variables and constants.
An address trace TR of a target application program is also used as an input
of our algorithm. The address trace TR is a sequence of instruction and data
addresses accessed by the MPU core. An execution time constraint tconst is given
as a constraint of the problem. The energy consumption of memory subsystem
and the execution time of the target application are calculated using TR, the en-
ergy consumption model and the execution time model presented in the previous
subsection. The main loop of the algorithm starts from the original code where
all the memory objects are placed in the Single-cache region. Then the optimal
set F ′ of memory objects which is relocated to the Multi-cache region is found.
This is done by choosing a single memory object o from top of F and calculating
the energy reduction obtained by relocating o into the Multi-cache region. This
calculation is performed for every elements in F . After every elements are eval-
uated, a memory object obest which reduces the energy consumption the most is
selected and is moved form F to F ′. This iteration is repeated until the energy
consumption stops decreasing. Finally, the algorithm outputs F ′.

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

196 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Code and Data Placement
Input: TR,F ,tconst

Output: F ′

Emin=infinity;
repeat

for(t = 0; t < |F |; t + +)do
o = F [t];
tentatively place memory object o to the multi-cache region;
TR′ = modified TR according to the relocation of o;
Calculate Etmp = Energy(TR′);
Calculate ttmp = time(TR′);
if(Etmp ≤ Emin and ttmp ≤ tconst)

Emin = Etmp ;
obest = o;

end if
end for
Remove obest from F ;
Append obest into F ′;
Update TR according to F and F ′;

until Emin stops decreasing
Output F ′

Fig. 16 Code and data placement algorithm.

6. Experimental Results

6.1 Experimental Setup
We use several benchmarks in EEMBC DENBench 1.0 suite 20) for our experi-

ments. Benchmarks we chose are shown in Table 2. The GNU C compiler and
debugger for Toshiba MeP architecture are used for generating lists of memory
objects and address traces. The length of the address trace for each single-task
benchmark program is 10 million instructions after skipping the initial 1 million
instructions. Active code size in Table 2 represents a size of code which are ap-
peared in the address traces obtained. We also use our original address traces,
tasksetA, tasksetB, tasksetC, tasksetC2 and tasksetC3, which are generated by
combining the address traces of several single-task benchmarks. For example,
tasksetA consists of aes, cjpeg, des, djpeg and huffde. We suppose that 1 mil-
lion instructions of each application program are executed by turns in tasksetA,

Table 2 Benchmark Applications.

Benchmarks Description Code size Active code size
aes AES 55.10 KB 3.47 KB
cjpeg JPEG Compression 71.34 KB 10.53 KB
des DES 56.76 KB 7.91 KB
djpeg JPEG Decompression 75.95 KB 6.50 KB
huffde Huffman Decoder 49.23 KB 0.88 KB
mpeg2dec MPEG-2 Decoder 84.76 KB 9.66 KB
mpeg2enc MPEG-2 Encoder 112.30 KB 33.38 KB
mp3player MP3 Player 64.64 KB 7.31 KB
mpeg4dec MPEG-4 Decoder 256.05 KB 27.47 KB
rgbcmyk RGB to CMYK Converter 49.18 KB 2.03 KB
rgbhpg High-Pass Gray-Scale Filter 49.45 KB 2.19 KB
rgbyiq RGB to YIQ Converter 49.38 KB 2.09 KB
rsa RSA 100.23 KB 10.91 KB
tasksetA aes, cjpeg, des, djpeg, huffde 308.38 KB 27.34 KB
tasksetB mpeg2dec, mp3player, rgbcmyk, rgbhpg 248.02 KB 21.19 KB
tasksetC mpeg2enc, mpeg4dec, rgbyiq, rsa 517.96 KB 62.66 KB
tasksetC2 mpeg2enc, mpeg4dec, rgbyiq, rsa 517.96 KB 52.59 KB
tasksetC3 mpeg2enc, mpeg4dec, rgbyiq, rsa 517.96 KB 33.50 KB

tasksetB and tasksetC. After executing huffde, tasksetA executes aes continu-
ously. tasksetC2 executes 4 million instructions of mpeg2enc and mpeg4dec first,
and then 1 million instructions of rgbyiq and rsa are executed. tasksetC3 exe-
cutes 5 million, 1 million, 1 million, 1 million instructions of mpeg2enc, mpeg4dec,
rgbyiq, and rsa are executed respectively. The length of the address traces for
each multi-task benchmark program is 30 million instructions after skipping the
initial 5 million instructions.

We have developed the code and data mapping framework shown in Fig. 15
which estimates energy consumption of memory subsystem and execution time
of the target benchmark program exploiting the energy consumption model and
execution time model presented in the previous section. The code and data
placement algorithm is embedded in the developed framework. Execution time
constraint is supposed as the execution time of the conventional L0-cache based
approach.

The energy consumption and execution time for each on-chip memory module
are estimated using a commercial 65 nm CMOS technology. We use a model of
Micron mobile SDRAM MT48H16M32LFCM-75 IT 21) as an off-chip memory.
In our experiments, we also suppose several on-chip memory configurations as

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

197 Single-Cycle-Accessible Two-Level Caches andCompilation Technique for Energy Reducion

Table 3 On-chip Memory Configurations.

On-chip Memory Configurations
L1-cache, Main-cache 4 way 8 KB or 2 way 8 KB or 2 way 4 KB, line size:32 byte
L0-cache, Mini-cache 2 way 1 KB or Direct map 1 KB or Direct map 512 B
Small-cache line size:32 byte
SPM 1 KB or 512 B

shown in Table 3. Target memory subsystems are assumed only instruction
memory subsystem and have 8-byte instruction buffer. The size of the Mini-cache
region and the Multi-cache region are assumed 4 MB.

6.2 Delay and Area of D-flip-flop Array
The delay for checking a Small-cache hit or a miss depends on delays required

for the multiplexer and the comparator. If the size of Multi-cache region is 4 MB,
the size of the Small-cache is 1 KB, and cache line size is 32 B, 12-bits 32-rows D-
flip-flop array is needed. We designed the multiplexer and the comparator for the
D-flip-flop array, and estimated these delays using the commercial 65 nm CMOS
technology. The delays of the multiplexer and the comparator are approximately
550 ns and 420 ns, respectively. In this case, our STC architecture performs over
500 MHz. This performance is enough for embedded processors.

The area of 12-bits 32-rows SRAM array is approximately 5.3× 10−15m2. The
area of 12-bits 32-rows D-flip-flop array is approximately 1.0 × 10−13m2, which
are about 19 times of the SRAM array.

6.3 Simulation Results
Figure 17 shows the normalized energy consumption results of the STC ar-

chitecture and those obtained by previous techniques presented in section 2. The
energy consumptions are normalized by the energy consumption of the conven-
tional L0-cache based approach for each benchmark. For the HPC and the STC
architectures, functions are placed to the large cache region and the small cache
region so that the total energy consumption can be minimized. This code place-
ment for the HPC and the STC architecture is performed based on our developed
mapping framework. The code placement for the SPM-based approach, we placed
funcions order by the number of accesses of the functions.

Our STC architecture reduces the energy consumption of memory subsystem
approximately by 64% in the best case and by 45% on an average without any

Fig. 17 Normalized energy consumption.

performance degradation compared to the L0-cache based memory subsystem.
As one can see from Fig. 17, SPM-based memory subsystem is the most suitable
for almost single-task applications. The one of the reasons is that active code
size for each benchmark is not so large. On the other hand, our STC architecture
is suitable for multi-task applications.

7. Conclusions

Single-cycle-accessible Two-level Cache (STC) architecture and compiler frame-
work for effectively utilizing the STC architecture are proposed. Experiments
using EEMBC DENBench 1.0 benchmark suite demonstrate that our STC ar-
chitecture reduces the energy consumption of the memory subsystems by 64% at
the best case and by 45% on an average compared to the conventional L0-cache
based approach without any performance degradation.

Acknowledgments This work is supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration with STARC, e-Shuttle,
Inc., Fujitsu Ltd., Synopsys, Inc. and Cadence Design Systems, Inc. This work
is also supported by CREST ULP program of JST and JSPS Grant-in-Aid for
Young Scientists (B) (20700049).

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

198 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

References

1) Segars, S.: Low-Power Design Techniques for Microprocessor, International Solid-
State Circuits Conference Tutorial (2001).

2) Montanaro, J., et al.: A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor, IEEE
Journal of Solid-State Circuits, Vol.31, No.11, pp.1703–1714 (1996).

3) Yamaguchi, S., Ishihara, T. and Yasuura, H.: A Single Cycle Accessible Two-Level
Cache Architecture for Reducing the Energy Consumption of Embedded Systems,
Proc. International SoC Design Conference, pp.188–191 (2008).

4) Su, C.-L. and Despain, A.M.: Cache Design Trade-offs for Power and Performance
Optimization: A Case Study, Proc. International Symposium on Low Power Design,
pp.63–68 (1995).

5) Kamble, M. B. and Ghose, K.: Analytical Energy Dissipation Models for Low
Power Caches, Proc. International Symposium on Low Power Electronics and De-
sign, pp.143–148 (1997).

6) Bellas, N., Hajj, I., Polychronopoulos, C. and Stamoulis, G.: Architectural and
Compiler Support for Energy Reduction in the Memory Hierarchy of High Perfor-
mance Microprocessors, Proc. International Symposium on Low Power Electronics
and Design, pp.70–75 (1998).

7) Kin, J., Gupta, M. and Mangione-Smith, W.H.: The Filter Cache: An Energy
Efficient Memory Structure, Proc. International Symposium on Microarchitecture,
pp.184–193 (1997).

8) Panwar, R. and Rennels, D.: Reducing the Frequency of Tag Compares for Low
Power I-cache Design, Proc. International Symposium on Low Power Design, pp.57–
62 (1995).

9) Avissar, O., Barua, R. and Stewart, D.: An Optimal Memory Allocation Scheme
for Scratch-Pad-Based Embedded Systems, ACM Trans. Embedded Computing Sys-
tems, Vol.1, No.1, pp.6–26 (2002).

10) Steinke, S., Wehmeyer, L., Lee, B.-S. and Marwedel, P.: Assigning Program and
Data Objects to Scratchpad for Energy Reduction, Proc. Design, Automation and
Test in Europe, pp.409–415 (2002).

11) Verma, M., Wehmeyer, L. and Marwedel, P.: Cache-Aware Scratchpad Allocation
Algorithm, Proc. Design, Automation and Test in Europe, Vol.2, pp. 1264–1269
(2004).

12) Ishitobi, Y., Ishihara, T. and Yasuura, H.: Code Placement for Reducing the En-
ergy Consumption of Embedded Processors with Scratchpad and Cache Memories,
Proc. IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multime-
dia, pp.13–18 (2007).

13) Francesco, P., Marchal, P., Atienza, D., Benini, L., Catthoor, F. and Mendias,
J.M.: An Integrated Hardware/Software Approach for Run-Time Scratchpad Ma-
negement, Proc. Design Automation Conference, pp.238–243 (2004).

14) Kandemir, M., Ramanujam, J., Irwin, M.J., Vijaykrishnan, N., Kadayif, I. and
Parikh, A.: Dynamic Management of Scratch-Pad Memory Space, Proc. Design
Automation Conference, pp.690–695 (2001).

15) Udayakumaran, S., Dominguez, A. and Barua, R.: Dynamic allocation for scratch-
pad memory using compile-time decisions, ACM Trans. Embedded Computing Sys-
tems, Vol.5, No.2, pp.472–511 (2006).

16) Verma, M., Wehmeyer, L. and Marwedel, P.: Dynamic Overlay of Scratchpad Mem-
ory for Energy Minimization, Proc. International Conference on Hardware/Software
Codesign and System Synthesis, pp.104–109 (2004).

17) González, A., Aliagas, C. and Valero, M.: A Data Cache with Multiple Caching
Strategies Tuned to Different Types of Locality, Proc. International Conference on
Supercomputing, pp.338–347 (1995).

18) Shrivastava, A., Issenin, I. and Dutt, N.: Compilation Techniques for Energy Re-
duction in Horizontally Partitioned Cache Architectures, Proc. International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems, pp.90–96
(2005).

19) Shrivastava, A., Issenin, I. and Dutt, N.: A Compiler-in-the-Loop Framework to
Explore Horizontally Partitioned Cache Architectures, Proc. Asia and South Pacific
Design Automation Conference, pp.328–333 (2008).

20) EEMBC: DENBench 1.0,
http://www.eembc.org/benchmark/digital entertainment sl.php.

21) Micron Technology, Inc.: MICRON 512Mb Mobile SDRAM : MT48H16M32LFCM-
75 IT Data Sheet, http://www.micron.com/products/dram/mobilesdram/.

(Received November 17, 2008)
(Revised February 20, 2009)

(Accepted April 13, 2009)
(Released August 14, 2009)

(Recommended by Associate Editor: Shigetoshi Nakatake)

Seiichiro Yamaguchi received his B.E. and M.E. degrees in
computer science from Kyushu University in 2004 and 2006 re-
spectively. His research interest includes low power SoC design.

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

199 Single-Cycle-Accessible Two-Level Caches and Compilation Technique for Energy Reducion

Yuriko Ishitobi received her B.E. and M.E. degrees in com-
puter science from Kyushu University in 2007 and 2009 respec-
tively. Her research interest includes low power SoC design.

Tohru Ishihara received his B.S., M.S. and Ph.D. degrees in
computer science from Kyushu University in 1995, 1997 and 2000
respectively. From 1997 to 2000, he was a research fellow of the
Japan Society for the promotion of science. For the next three
years he worked as a research associate in VLSI Design and Ed-
ucation Center, the University of Tokyo. From 2003 to 2005, he
worked at Fujitsu Laboratories of America as a research staff of

an advanced CAD technology group. In 2005, he joined System LSI Research
Center, Kyushu University as an associate professor. His research interests in-
clude low power SoC design and hardware/software co-design. He is a member
of IPSJ, IEEE and ACM.

Hiroto Yasuura received his B.E., M.E. and Ph.D. degrees
in computer science from Kyoto University. He was an associate
professor in Kyoto University and moved to Kyushu University
in 1991. He was a professor of Department of Computer Science
and Communication Engineering, Graduate School of Informa-
tion Science and Electrical Engineering of Kyushu University. He
is currently a trustee/vice president of Kyushu University. His re-

search interests include design methodology for VLSI system, CAD and hardware
algorithm. He was a recipient of the Achievement Award from IEICE and awards
for persons of merit in Industry-Academia-Government Collaboration/Ministry
of Education, Culture, Sports, Science and Technology Award in 2001 and 2007
respectively. He served as general chair of ICCAD and ASP-DAC, and a vice
president of IEEE CAS Society. He also served as director of IPSJ/IEICE. He is
a fellow of IPSJ.

IPSJ Transactions on System LSI Design Methodology Vol. 2 189–199 (Aug. 2009) c© 2009 Information Processing Society of Japan

