
IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009)

Invited Paper

Trends in Formal Verification Techniques

for C-based Hardware Designs

Masahiro Fujita†1

Three formal verification approaches targeting C language based hardware
designs, which are the central verification technologies for C-based hardware
design flows, are presented. First approach is to statically analyze C design de-
scriptions to see if there is any inconsistency/inadequate usages, such as array
overbounds accesses, uses of values of variables before initialization, deadlocks,
and others. It is based on local analysis of the descriptions and hence applicable
to large design descriptions. The key issue for this approach is how to reason
about various dependencies among statements as precisely as possible with as
short time as possible. Second approach is to model check C design descrip-
tions. Since simple model checking does not work well for large descriptions,
automatic abstractions or reductions of descriptions and their refinements are
integrated with model checking methods such that reasonably large designs can
be processed. By concentrating on particular types of properties, there can be
large reductions of design sizes, and as a result, real life designs could be model
checked. The last approach is to check equivalence between two C design de-
scriptions. It is based on symbolic simulations of design descriptions. Since
there can be large numbers of execution paths in large design descriptions, var-
ious techniques to reduce the numbers of execution paths to be examined are
incorporated. All of the presented methods use dependence analysis on data,
control, and others as their basic analysis techniques. System dependence graph
for programming languages are extended to deal with C based hardware designs
that have structural hierarchy as well. With those techniques, reasonably large
design descriptions can be checked.

1. Introduction

Due to increased complexity and capacity of target designs, it takes more and
more time to make sure their logical correctness. One way to realize shorter
design periods is to start design with more abstracted representations, such as
system-level designs where whole designs are represented as hardware/software

†1 VLSI Design and Education Center, The University of Tokyo

combined systems. There are several advantages in starting the designs with
system-level. Among them the most important issue for verification is the re-
duction of designer’s effort to write down designs. Because design descriptions
are more abstracted than the lower level ones, such as the ones in register trans-
fer level (RTL), the quantity of design descriptions become much smaller, which
makes verification efforts much simpler. Currently C based languages are com-
monly used to describe designs in system-level. Starting from system-level, design
descriptions are gradually refined either manually or automatically all the way
down to RTL. It is very important to make sure the correctness of design de-
scriptions at each design step. Formal methods should be incorporated as much
as possible along with intensive simulations.

Figure 1 shows a general design flow in high level design processes. It starts
with a rather algorithmic description of the target design and tries to refine it
into a high-level synthesizable model. Here it is assumed that algorithmic design
descriptions written in C/C++ or their extended counterparts such as SpecC 1)

and SystemC 2) language are given as specifications. In some cases these algorith-
mic descriptions can be found in the definitions of standards for image compres-
sion/decompression techniques, communication protocols and encryption meth-
ods. The goal of designers is to transform these algorithmic descriptions into ones
that are hardware-friendly. The final transformed descriptions should be accepted

Fig. 1 High-level design flow.

2 c© 2009 Information Processing Society of Japan

3 Trends in Formal Verification Techniques for C-based Hardware Designs

by high level synthesis tools to generate high quality RTL descriptions. These
design refinements consist of many steps of transformations including changes
of data types (floating point to fixed point, refinements of bit-widths in fixed
point models), removal of certain types of pointer manipulations, partitioning of
memories, and various types of statement transformations to make the models
efficiently synthesizable. Design models higher than RTL such as algorithmic
and high-level ones, are called system-level models (SLM). Once a high-level
synthesizable description is obtained, it can automatically be transformed into
RTL through high level synthesis tools. The RTL description then goes into the
standard implementation flow using logic synthesis, placement and routing.

In order to enforce the correctness of various descriptions in the design flow
shown in Fig. 1, two issues must be resolved:
• Eliminate bugs as much as possible from given levels of descriptions. This is

needed at the highest level of abstraction that cannot be verified via equiv-
alence checking, but is also needed when equivalence checking cannot verify
all the behaviors of a model by comparing it against a higher level model.

• Guarantee the equivalence of the two descriptions: a validated higher level
model and a lower level model obtained automatically (via high-level synthe-
sis) or through manual refinements of the higher level model.

The aboves complement each other to assure the correctness of the descriptions
as a whole.

RTL descriptions precisely define what must be computed at each clock cycle.
On the other hand, high-level designs can have freedom in terms of scheduling
operations. Algorithmic descriptions usually have almost no timing constraints
relating to execution orders of operations. They are called “untimed” models.
As designs are refined, more and more timings on the executions of various op-
erations are inserted into design descriptions. They are called “timed” models.
High-level verification methods must deal with both untimed and timed design
descriptions. In the case of RTL descriptions, the notion of next time is obvious.
In high-level design descriptions, however, next time may not be clearly defined.
Therefore, analysis processes on timing are required to extract state transition
representations that are required for formal methods. This extraction process
is one of the key issues for high-level formal verification. Especially in the case

of equivalence checking on high-level designs, timings of executing operations in
the two designs are generally different, and those differences must be precisely
specified in order to define the equivalence of the two designs. The resulting
verification becomes sequential equivalence checking.

There are basically three formal verification approaches targeting C lan-
guage based hardware designs, such as the ones in SpecC 1). First ap-
proach is to statically analyze C design descriptions to see if there is any
inconsistent/inadequate/non-popular usages, such as array overbounds accesses,
uses of values of variables before initialization, null pointer accesses, deadlocks,
and many others. It is based on local analysis of the descriptions, and hence appli-
cable to very large design descriptions, such as the ones having more than 100,000
lines. Although the analysis is basically conservative in the sense that there can
be false errors or warnings, it can practically catch many realistic bugs. Moreover
it takes very short time for such various checks. The key issue for this approach
is how to reason about various dependencies among statements as precisely as
possible with as short time as possible. Second approach is to model check C
design descriptions. Since simple model checking does not work well for large
designs, automatic abstractions or reductions of designs and their refinements
are integrated with model checking methods so that reasonably large designs can
be processed. By concentrating on particular types of properties, there can be
large reductions of design sizes, and as a result, real life designs could be targets
for model checking. The last approach is to check equivalence between two C
design descriptions. It is based on symbolic simulations of design descriptions.
Since there can be large numbers of execution paths in large design descriptions,
various techniques to reduce the numbers of execution paths to be examined are
incorporated. There are many cases where two design descriptions to be com-
pared are very similar in the sense that the actual different portions of the two
descriptions are very small. In such cases, analysis only on those difference may
establish the equivalence of the whole designs and hence very large design de-
scriptions can be verified. All of the presented methods use dependence analysis
on data, control, and others as their basic techniques. System dependence graph
for programming languages are extended to deal with C based hardware designs
that have structural hierarchy as well. With the extended dependence analysis

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

4 Trends in Formal Verification Techniques for C-based Hardware Designs

techniques, reasonably large design descriptions can be processed and verified.
There have been a number of efforts in the above three approaches, and some

of them have been already used in industrial designs. Static checking methods
are widely used as initial verification efforts in high level descriptions. Since they
can deal with millions of lines of codes in practical time, static methods can
compensate simulations for quick identification of buggy descriptions. Although
Model checking for RTL designs have been used in industry for several years,
its application to high level descriptions are mostly in introductory phases to
industry. As for equivalence checking for high-level descriptions, some industrial
tools have been developed, and they are now used in some real designs. The state-
of-the-art model checking and equivalence checking tools can deal with design
descriptions for block level of designs. As more research efforts, such as the ones
shown in this paper, are included in the industrial tools, large design descriptions
can be processed.

In this paper, mostly our works on them are presented as example efforts in the
above three approaches. This paper is organized as follows. In the next section
basic technology and algorithm for high-level verification with their performance
are reviewed. In the following section after introducing SpecC language as a rep-
resentative of various C based design languages, basic data structure for various
data/control/other dependence analysis, called system dependence graph, is in-
troduced. This data structure is the base for the analysis shown in the following
sections. Then in the following three sections the above mentioned three formal
verification approaches are presented. The last section gives concluding remarks.

2. Technology for High-level Verification

In this section, techniques for high-level design descriptions are briefly reviewed.
Sequential equivalence checking methods for high-level design descriptions for C
programs are discussed in later sections with details.

2.1 Simulation Based Verification
From the viewpoint of ensuring the correctness of the descriptions as much as

possible, both simulation and formal verification are employed in each verification
step. Intensive simulations may be performed on the descriptions with randomly
and manually generated input stimuli The key issue here is the quality of such

Fig. 2 Input stimuli generation based on user-guidance.

input stimuli, and there are techniques for generating good ones through the use
of formal verification techniques. There are always corner case problems in sim-
ulations. That is, some rarely exercised execution paths may not be activated
by the given stimuli. Thus bugs in those execution paths may not be eliminated.
Therefore, instead of using pure random stimuli, designers may specify sorts of
templates for event sequences relating to the behaviors of the target designs in-
cluding corner cases from which input stimuli can be automatically generated
as shown in Fig. 2. This is a user-guided generation of input stimuli and easily
fits into any design flows such as the one in Fig. 1. Systematically traversing
search spaces specified by such templates is a common analysis technique used in
formal verification techniques. Since this is a more systematic way to generate
input stimuli than normal simulation, it is sometimes called intelligent simula-
tion. Those templates can be created either by specifying I/O behaviors for
them or analyzing internal behaviors of the designs. For example, in the case of
communication protocols, such as on-chip bus protocols, I/O behaviors are com-
pletely specified as part of standard bus protocols from which their templates
can be generated. Also, assertions and properties on the designs can be used to
generate templates by analyzing their allowed execution sequences. An assertion
specifies how the target design should behave in multiple time frames, and so it
can be used to let the input stimuli follow those sequential behaviors.

Intelligent simulation pattern generations can be applied to larger descriptions
in general, although coverages of the generated simulation patterns may decrease
as description sizes increase.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

5 Trends in Formal Verification Techniques for C-based Hardware Designs

2.2 Static Analysis Methods
Static analysis does not execute and follow behaviors of designs globally. It

checks on behaviors of the designs only locally. The most basic static meth-
ods are the ones used in various lint-type tools. First of all, control/data flow
graphs are generated from given design descriptions, and dependencies on con-
trol/data are examined which results in various dependence graphs. By analyzing
these generated graphs, which can automatically be generated from C/C++ and
SpecC descriptions, various items can be checked very quickly by locally analyz-
ing them. The key issue here is what portions of the descriptions are analyzed
by such checks. Whereas model checking methods basically examine the de-
sign descriptions exhaustively starting from initial or reset states, static program
checking analyzes design descriptions only in small and local areas. Instead of
starting from initial states, it first picks up target statements and then examines
only small portions of design descriptions which are very close to those target
statements as shown in the left part of Fig. 3. Since analysis is local, it can
deal with very large design descriptions, although accuracy of the analysis is
less. This means that static checking methods can produce false errors or warn-
ings, that is, even if errors or warning are generated, they may not be real bugs.
Static checking methods are based on conservative analysis for quick processing.

Fig. 3 Static checking and model checking approaches.

Many items can be quickly checked with such static methods. Non-initialized use
of variables, null pointer references, relative execution orders among concurrent
statements, and other issues which are easily modeled as local traversals on con-
trol/data/dependence graphs can efficiently be checked. Static checking methods
have been applied to various software verification tasks and have proved to be
very effective even for very large descriptions having millions lines of code. Since
the analysis is conservative, there can be many false error messages generated by
static checking methods, and how to eliminate most of them is one of the key
future research topics in static checking methods.

Static checking methods can be applied to very large descriptions, e.g., descrip-
tions having more than millions of lines of codes with practical processing time,
although they may generate false waring/errors in some cases.

2.3 Model Checking Methods
After static checking methods are applied to the design descriptions, model

checking methods can be used to detect more complicated bugs that can only be
found through systematic traversals starting from initial states or user specified
states. Given a property, model checking methods determine whether all possible
execution paths from initial states satisfy the property, as shown in the right side
of Fig. 3. Several formal verification methods for C programs, such as CBMC 3),
SLAM 7), BLAST 8), MAGIC 9), and others, have been proposed. These are using
SAT such as Chaff 4) ad SMT solvers such as Z3 6) as basic reasoning engines for
state space traversal. Moreover, in order to process larger descriptions, given
descriptions are first reduced for model checking. This automatic reduction,
such as CEGAR paradigm 10), is generally target property dependent. That
is, given a property to be verified, portions of design descriptions that do not
influence the correctness of the property are automatically eliminated. Depending
on characteristics of target properties, the amount of reduction varies.

Model checking methods can deal with reasonably large descriptions with au-
tomatic reductions of descriptions with respect to given properties to be verified.
Thousands of lines to tens of thousands lines of codes have been verified within
practical time by the methods mentioned above.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

6 Trends in Formal Verification Techniques for C-based Hardware Designs

3. Dependence Analysis Techniques

3.1 C Based Design Language
There have been lots of efforts to use C or C++ languages to describe hardware

parts of the target designs as well as their software parts. Although there are
differences in their details, the ways to describe hardware parts in C and C++
languages share common features. In this paper we target SpecC language 1)

when presenting the verification methods as a representative of C based hardware
design descriptions. SpecC is an extension over C language in the following ways:
• Parallel (concurrent) descriptions with par, notify, wait statements
• Introduction of modules and ports for structural hierarchy
• Various statements to describe hardware oriented controls
The features of SpecC language are summarized in Fig. 4. A SpecC behavior

is a class consisting of a set of ports, a set of component instantiations and a
set of private variables and functions. A behavior corresponds to a module in
RTL hardware description languages. In order to communicate, a behavior can
be connected to other behaviors or channels through its ports or interfaces. The
structural hierarchy of such a behavior is shown in Fig. 4 (a). The sequential and

Fig. 4 SpecC language.

parallel constructs of SpecC are shown in Fig. 4 (b) and (c), respectively.
Concurrency and synchronization among concurrent behaviors are represented

in SpecC by the par and notify/wait constructs, as seen in the Figs. 5 and 6. As
can be seen from Fig. 5, there is no constraints on execution orders among state-
ments in parallel behaviors. In a single behavior running in isolation, correctness
of the result is usually independent of the timing of its execution, and deter-

Fig. 5 Parallel execution in SpecC.

Fig. 6 Synchronization between parallel processes in SpecC.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

7 Trends in Formal Verification Techniques for C-based Hardware Designs

mined solely by the logical correctness of its functions. However, when several
behaviors are running in parallel, execution timing may have a great affect on the
correctness of the execution results, that is, results can vary depending on how
the multiple behaviors are interleaved. Therefore, synchronization between be-
haviors is an important issue for a system-level design language, and notify/wait
statements of SpecC are used for synchronization. A wait statement suspends
its current behavior from execution and keeps waiting until one of the specified
events is notified. With these synchronization statements, the descriptions in
Fig. 6 (a) behaves in the same way as the one in Fig. 6 (b).

3.2 Program Slicing and Dependent Analysis for SpecC Descrip-
tions

Program slicing is a technique to extract portions of the original programs
which are relevant to the variables at some statements specified by users. Slicing
is computed given two parameters, program point p and the set of variables v

which appear in p. Program slicing first computes various dependence graphs
where slicing for the given parameters are computed. Horwitz, et al. in Ref. 11)
defines System Dependence Graphs (SDGs), which contains multiple Procedure
Dependence Graphs (PDGs) and expresses dependencies between procedures.
An example system dependence graph generated from a simple C description is
shown in Fig. 7. As for the details of various edges and nodes defined in system
dependence graphs, please refer to Ref. 11).

In SpecC language, there are hierarchical structures such as the behavior, chan-
nel and interface, concurrent parallel execution syntax as par, and synchroniza-
tion syntax as wait and notify. To address these SpecC language’s features, an
SDG for SpecC with new nodes and edges are added. To deal with concurrent ex-
ecutions realized by using par statements, a node for par as a control point node,
similar to that of if, while and for, is defined. From par node, control dependence
edges labeled true are drawn to every node corresponding to the statements that
are executed concurrently under the semantic par. For example, in Fig. 8, since
b1.main() and b2.main() are executed concurrently, there must be control edges
from par node to each of them. Extra data dependence edges for representing
the shared ports and parameters are also required. In the figure, b1 and b2 are
running in parallel and there is a shared variable p1, hence, the data edge for

Fig. 7 A simple C description and its system dependence graph.

M A Out p1 to M A In p1 are constructed and vice versa. In Figs. 8 and 9,
the prefix M is used to represent member variables. For example, M A Out and
M F In mean Member Actual Out and Member Formal In, respectively.

Wait statement is also defined as a control point node in a dependence graph,
and control dependence edges labeled true are constructed to every node exe-
cuted after it. This is because whether wait is passed or not affects the executions
of those statements, just like if or for statements. In addition, a data depen-
dence edge of an event variable used in wait statement is constructed. In Fig. 9,
there is a control edge from the wait node to the control point node for if(valid).
The notify statement is defined as an assignment node to an event variable. In
the figure, a data dependence edge is constructed from notify(e) to the formal
out node corresponding to the event variable e. Typically an event variable is

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

8 Trends in Formal Verification Techniques for C-based Hardware Designs

Fig. 8 Extended nodes and edges for par statement.

Fig. 9 Nodes and edges for notify and wait statements.

communicated through channel connected to behavior’s port. Therefore we can
traverse data dependence edges from notify node to wait node across behaviors
and channels in the SDG.

With the above extensions over system dependence graphs for C languages,
various dependencies in SpecC descriptions can be represented as Extended Sys-
tem Dependence Graphs. In the following analysis methods, SpecC descriptions
are first converted into Extended System Dependence Graphs.

4. Static Program Checking

By locally analyzing dependence graphs generated from C based design de-
scriptions, various properties can be checked or verified very quickly. The key
issue here is how much portions of the descriptions are analyzed for such verifi-
cation. While model checking methods basically examine the design descriptions
exhaustively starting from initial or reset states, static program checking ana-
lyze design descriptions very locally. Instead of starting from initial states, it
first picks up target statements and then examine only small portions of design
descriptions which are very close to those target statements. Since analysis is
local, it can deal with very large design descriptions, although accuracy of the
analysis may be decreased. This means that static program checking methods
may generally produce false errors or warnings, that is, even if errors or warn-
ing are generated, they may not be true. This is due to the fact that static
program checking methods use conservative analysis. In this section, we present
several items that can be relatively effectively checked along with their associated
verification algorithms 12).

4.1 Detection of Null Pointer Dereferences
Null pointer dereferences are more likely to happen wherever pointer variables

point to nothing. Normally, pointer variables are used after initializations which
assign addresses of variables. Null pointer dereferences are classified into three
types as given in Fig. 10. In each case, a pointer variable “p” is used at “b =
*p + 5”. However, in (a), there are no nodes initializing “p” except for “p =
NULL”. In (b), although “p = &a” initializes “p”, it may not be executed since
it is under a conditional branch “if(cond)”. In (c), the execution order of “p =
&a” and “b = *p + 5” is not decidable when behaviors “B31” and “B32” are
running concurrently. Therefore, “p” can be dereferenced as null pointer in each
case.

Null pointer dereferences can be detected by the following procedure.
(1) For each pointer variable used in nodes, nodes which initializes the pointer

are collected by traversing data dependence edges backwardly.
(2) Whether there are no nodes initializing to null is checked.
For example, a node “b = *p + 5” in Fig. 10 (b) is checked as follows.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

9 Trends in Formal Verification Techniques for C-based Hardware Designs

Fig. 10 Example of null pointer analysis.

(1) A pointer variable “p” is used in the node.
(2) Whether “p” can be null at the node is checked.

(a) Dependence edges about “p” are traversed backwardly from “b = *p
+ 5”, and “p = NULL” and “p = &a” are found as nodes initializing
“p”

(b) Since there is a node where “p” is defined to null, “p” is found to
have possibility to be null.

In the null pointer dereferencing detection, false warning problems may hap-
pen. This is due to the fact that the algorithms mentioned above examine the
description only locally and also analysis on conditions may not be accurate.
That is, some erroneous execution paths can be actually false paths if the execu-
tion starts from initial states. In order to solve these false warnings, reachability
analysis from initial states must be performed. Model checking methods analyze
that way and explained later.

Fig. 11 An example for deadlock detection.

4.2 Detection of Deadlocks
Deadlocks occur when all concurrent processes are suspended and their exe-

cutions cannot proceed any more. In SpecC designs, deadlocks happen when a
suspended process by an wait node is not resumed by at least one of the notify

nodes connected with the wait node through data dependence edges. Therefore,
deadlocks are detected by checking whether at least one of the corresponding
notify nodes is executed for each wait node.

Figure 11 gives an example source code and its SDG for the deadlock de-
tection. In the example, there is an wait node “wait(e)” in a behavior “B2”.
The deadlock checking for “wait(e)” starts from collecting corresponding notify

nodes by backwardly traversing data dependence edges of “e”, and then the cor-
responding notify node “notify(e)” in behavior “B1” is found. Next, whether
“notify(e)” nodes exist in each paths of “B1” is checked. In the example a “no-
tify(e)” is in the “then” or “true” path of “if(cond)”, and no “notify(e)” exists
in the “else” or “false” path of “if(cond)”. Therefore, we can say that deadlock
may occur in this case.

There are many other items to be checked by static checking methods. For
example, array overbounds accesses should be checked as much as possible since
they may cause critical and security errors. For such analysis on overbounds of

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

10 Trends in Formal Verification Techniques for C-based Hardware Designs

indexing variables must be computed as accurately as possible without spending
much time 13).

Static checking is becoming a common tool for initial verification of the C based
design descriptions. As can be seen from the above discussions, static checking
is generally very quick since it analyzes only locally the design descriptions. On
the other hand, static checking generates errors or warnings if there are local
execution paths that lead to the errors or warning as can be seen above. Those
errors or warnings are not true if the execution paths are false, that is, they are
never activated. If the conjunction of conditions for an execution path is not
satisfiable, that path becomes false. Since C descriptions have word variables,
such as integer variables, both SAT solvers (e.g., Chaff 4)) and SMT solvers (e.g.,
CVC 5) and Z3 6)) are used. In order to completely check whether an execution
path is false or not, the description must be model checked and all possible exe-
cution paths from initial states must be examined, which is generally infeasible.
There are two difficulties. One is that execution paths are very long and have lots
of conditions. If the conjunct of them becomes too large, neither SAT nor SMT
solvers can deal with them. For efficient static checking, the length of execution
paths must be kept small and that is the reason why the analysis must be very
local. The other is that there are too many execution paths to be checked. If
each execution path is checked one by one, the analysis simply never terminates.
Recently false execution path analysis methods which can deal with sets of exe-
cution paths instead of analyzing them individually are proposed 14). This could
allow static checking methods to work more globally (or less locally).

5. Model Checking Methods

5.1 Model Checking Algorithm
Given a property, model checking methods check whether all possible execution

paths from initial states satisfy the property. Several formal verification methods
for C programs have been proposed. CBMC 15) verifies that a given ANSI-C
program satisfies given properties by converting them into bit vector equations
and solving satisfiability using SAT solver, such as Chaff 4). All statements in
C descriptions are automatically translated into Boolean formulae, and they are
analyezd up to given specific cycles. Although CBMC and similar approaches can

generally verify C descriptions, they cannot deal with large ones due to blow-up of
SAT processing time. In C descriptions, there are word variables, such as integer
variables, which have multiple bit-widths. If all such word variables are expanded
into Boolean as CBMC does, resulting Boolean formulae to be analyzed simply
become too large. It is much better to keep word variables as words instead of
expanding them into Boolean. Some SAT solvers, called Satisfiability Modulo
Theory (SMT) solvers, such as CVC 5) and Z3 6) can deal with multi-bit variables
as they are. They are sorts of theorem provers and consist of several decision
procedures. Although reasoning about C description can be much more efficient
with SMT solvers, realistic sizes of C design descriptions are still simply too large
to be processed.

Therefore, there have been proposed a number of automatic abstraction tech-
niques, such as SLAM 7), BLAST 8), MAGIC 9), and others, by which large C
design descriptions can sufficiently be reduced, and SAT/SMT solvers quickly
reason about the reduced design descriptions. This automatic reduction is gener-
ally target property dependent. That is, given a property to be verified, portions
of design descriptions which do not influence the correctness of the verification
are automatically eliminated. Depending on characteristics of target properties,
amount of reduction varies. For example, if the target is to check whether array
accesses never exceed array bounds, most of the design descriptions are irrele-
vant and can be omitted for model checking. In the following, one such approach
targeting synchronization mechanisms for parallel processes are presented 16),17).

5.2 Abstraction-refinement Based Model Checking: Synchroniza-
tion Verification

System-level models are organized as a collection of cooperating processes run-
ning in parallel. In order to keep all processes executing as the designer intended,
proper scheduling of statement execution in all processes (known as synchroniza-
tion) is necessary. Deadlock is an error that is caused by synchronization failure.
Static checking methods which have been introduced in the previous section can
also be applied to checking deadlocks, race conditions for shared variables, and
other synchronization verification items. Although static checking methods can
deal with large descriptions, they may generate false errors or warnings due to
their local analysis.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

11 Trends in Formal Verification Techniques for C-based Hardware Designs

On the other hand, simple model checking cannot deal with large descriptions
due to explosions of execution paths. Therefore, it is essential to apply ab-
straction methods that can reduce the sizes of descriptions to be model checked.
The method presented here is based on application of the state-of-the-art model
checking with counterexample-guided abstraction refinement (CEGAR) 10) and
constraints solving with integer linear programming (ILP) techniques. Generally
speaking, statements that control synchronization of concurrent processes are
only small portions of the whole descriptions. By concentrating on synchroniza-
tion verification, large portions of the given descriptions can be eliminated for
model checking.

In SpecC, the computation and communication parts are clearly separated.
Computation is encapsulated in behaviors, while communication is encapsulated
in channels. Now let us consider concurrency in SpecC. Expressing behaviors
within a par statement results in parallel execution of those behaviors. For
example, par{a.main(); b.main();} in Fig. 5 implies that behavior a and b are
concurrently running (in parallel). Within behaviors, statements are running in
the sequential manner just like in the C programming language. Without any
notify/wait statements as shown in Fig. 5, the final values of x and y varies
depending on schedulings. The two parallel behaviors a and b are shown in
Fig. 6 (a) where the synchronization statements, notify/wait, are inserted into
the one in Fig. 5. The statement wait e in behavior b suspends the statement st3
until the specified event e is notified. That is, it is guaranteed that statement
st3 is safely executed right after statement st2. This eliminates the ambiguous
results. Synchronization verification is to check if the corresponding “wait event”
and “notify event” statements synchronize with each other as designers intend.

Behaviors and statements in SpecC can be defined on time interval which
defines starting time and ending time of each behavior or statement described
as T(behavior/statement)s and T(behavior/statement)e. The behavior a and
behavior b in Fig. 6 can be represented with the following timing constraints.
• Tas <= T1s < T1e <= T2s < T2e <= Tae

(sequentiality in a)
• Tbs <= T3s < T3e <= Tbe

(sequentiality in b)

Fig. 12 Synchronization verification with ILP solvers.

• Tas = Tbs, Tae = Tbe

(concurrency between a and b)
• T2e < T3s

(synchronization of notify and wait statement)
Note that the length of each statement, st1, st2, st3, and the gap between them

are non-deterministic. These equalities/inequalities are precisely representing the
non-determinism of the execution of statements in SpecC.

Figure 12 shows typical synchronization examples which may be found in
iteration bodies of loop-type statements in design descriptions. These syn-
chronization problems can be analyzed as mixed integer linear programming
problems with real number representations for the timing constraints on be-
haviors and statements as shown above and integer representations for logical
constraints derived from conditional statements in the design descriptions, such
as if-statements. The conditional statements are modeled with constraints on in-
teger variables. Since we are concentrating only on synchronization verification,
we can abstract away portions of the design descriptions which are not related
to synchronization statements. As a result, we can deal with fairly large de-
sign descriptions with the state-of-the-art ILP solvers. First we can extract very
small portions of the original design descriptions which directly influence the syn-
chronization statements, such as wait and notify. We call this an abstraction
process of the design descriptions. Counterexample-Guided Abstraction Refine-
ment (CEGAR) 10) is a method to automate the abstraction refinement process.
More specifically, starting with a coarse level of abstraction, the given property
is verified. A counterexample is generated when the property does not hold. If
this counterexample turns out to be spurious, the previous abstract programs are
then refined to a finer level of abstraction. Please note that due to the abstraction

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

12 Trends in Formal Verification Techniques for C-based Hardware Designs

Fig. 13 A and B are running in parallel. Constraints C1 and C2 represent sequentiality in A
and B, respectively. Constraints C3 and C4 represent synchronization of notify/wait
of e1 and e2, respectively.

of the design description, counter examples for the abstracted descriptions may
not be realized in the original description. Then by using symbolic simulations
we can generate ILP formulae to be checked. If the results of ILP solvers are neg-
ative, we proceed to the process of refinement of abstraction. For this refinement,
we need to investigate dependencies among statements where SDGs provide very
efficient mechanisms. This abstraction-refinement process may be repeated un-
til we get real verification results. There are several tools which are based on
this strategy 7)–9). They are using similar but different abstraction techniques
depending on the targets of designs and also on the types of properties.

Figure 13 shows a simple example that illustrates the use of CEGAR and
ILP solver for synchronization verification. Both A and B are called under par

and x and y are shared global variables. Note that, in Fig. 13, we consider only
the synchronization statements and omit others. The basic idea for synchroniza-
tion verification is to show inconsistency or conflict on the conjunctions of the
negation of a property and the constraints extracted from the descriptions. If
the conjunctions are conflicting, the negation of the property cannot be satisfied
due to the constraints extracted from the descriptions. That is the property is
satisfied by the descriptions. As mentioned earlier, synchronization verification
can be conducted in two steps. First, we use CEGAR to validate that every pair
of notify/wait statements are eventually synchronized. Particularly, we are inter-

Table 1 Experimental results.

LOC # of
Benchmark

Original After abs. Behaviors Iterations
Runtime Deadlock

FIFO 260 240 5 3 18.2 0

Point-to-point protocol 844 724 13 2 50.1 0

Elevator control system 2,000 819 6 2 21.1 0

MPEG4 48,126 781 5 1 9.7 0

ested in validating the guarded condition of statement notify e1. The result from
CEGAR tells that the condition if(x >= y) is always true. The second step is
to validate all equalities/inequalities formulae. In this case there is a conflict in
the formulae and a deadlock occurs due to the wait e1 and wait e2 are executing
prior to notify e1 and notify e2, respectively.

Several experiments are conducted on Pentium4 2.8 GHz machine with 2 GB
RAM running Linux. The results of synchronization verification are shown in
Table 1. Runtimes are in seconds. A counterexample is generated whenever
a property does not hold. This counterexample shows a path leading to each
inserted deadlock in the descriptions. The column LOC denotes the lines of codes
of the original descriptions and the descriptions after abstraction. The column
“# of Behaviors and Iterations” denotes the number of concurrent behaviors
and the number of times the CEGAR refinement loop was executed. The last
column denotes the number of deadlocks detected. We found no deadlocks in all
benchmarks.

As can be seen in Table 1, the verification of MPEG4 descriptions considers
only very small portion of the descriptions (about 800 lines) instead of the entire
description (about 48,000 lines). By focusing on the synchronization verification
sizes of the models that need to be considered can significantly be reduced.

5.3 Integration with Static Checking Methods
Model checking methods use automatic abstraction techniques for the reduction

of design descriptions to be analyzed. This is an effort to make model checking
analysis applied to as small descriptions as possible. On the other hand, static
checking methods shown in the previous section try to extend the descriptions
to be analyzed as large as possible without much increases of processing time.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

13 Trends in Formal Verification Techniques for C-based Hardware Designs

Owning to the recent advancements of SAT and SMT solvers, model checking
and static checking methods are becoming similar. Depending on how much time
is allowed for analysis, either static checking or model checking methods can be
used. There are efforts which integrate model checking and static checking meth-
ods. For example, F-SOFT 18) is targeting software verification and incorporate
pointer analysis methods such as the one in Ref. 19) as well.

6. Equivalence Checking Methods

6.1 Equivalence Checking from Specific Aspects
Equivalence checking is a key technology to make sure that lower level design

descriptions keep essentially the same behaviors as the ones in higher level de-
scriptions and bugs are not inserted into. Although equivalence checking between
the two descriptions can be performed with model checking methods by connect-
ing the outputs of the two descriptions and checking appropriate properties on
the connected outputs, this method does not scale for large descriptions. There-
fore existing equivalence checking methods for C descriptions are targeting some
specific types of equivalence. Several such equivalence checking methods that can
be applied to C-based designs in system-level or behavior-level have been pro-
posed. In Ref. 20), an equivalence checking method for scheduling of processes
is presented. It can efficiently verify the equivalence of scheduling in which the
computation algorithms are preserved. In Ref. 21), on the other hand, the equiv-
alence of optimizations within loops is verified. In the following, an equivalence
checking method which can deal with large design descriptions as long as the
two descriptions are reasonably similar is presented. In a typical system level
design flow, designs are refined incrementally, and design descriptions for two
neighbouring design steps are naturally similar. The method shown below works
well for such situations.

6.2 Equivalence Checking Method with Difference Identification
The method is based on identification of differences between the two descrip-

tions to be compared 22) as shown in Fig. 14. First of all differences are recognized
by some analysis. They are the first target for equivalence checking. If they are
equivalent, then clearly the whole descriptions are equivalent. If they are not
equivalent, however, the areas to be analyzed for equivalence must be extended

Fig. 14 Equivalence checking based on difference identification.

as shown in the figure. This is because differences may not propagate to pri-
mary outputs and/or primary inputs may not reach the differences. Therefore,
the overall equivalence checking flow becomes the one shown in Fig. 15. Two
C descriptions are given with the definition of input and output variables. In
addition, the correspondence of those variables between the two descriptions is
also given. The method verifies the equivalence of the output variables basically
by using symbolic simulation and reports the verification result (“equivalent” or
“not equivalent”).

Target C descriptions should satisfy the following restrictions.
• No pointer uses (or all pointer uses are analyzed and replaced by certain

variables through point-to analysis) nor dynamic memory allocation
• Loops are unrolled in a certain times in advance
• No recursive function calls
These restrictions come from the limitation of symbolic simulation. Therefore,

if these statements are out of design descriptions that need to be verified by
symbolic simulation, it does not matter whether given C descriptions have these
statements or not. As explained later, symbolic simulations are applied only to
the different portions and their neighbours of the two descriptions. A simple
way to identify the difference between the two descriptions is based on textual
differences, such as the ones reported by UNIX command “diff”. The difference
gives good hints where the equivalence of the two descriptions must be verified by
symbolic simulation. If the different portions of the two descriptions are verified
to be equivalent, it is clear that the whole descriptions are equivalent as well.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

14 Trends in Formal Verification Techniques for C-based Hardware Designs

Fig. 15 Our proposed verification flow.

On the other hand, even if the different portions are not equivalent, the whole
descriptions can still be equivalent due to the other portions. Therefore areas to
be symbolically simulated must be extended. Extensions can continue until either
the two areas symbolically simulated are proved to be equivalent or extensions
reach primary inputs and outputs (in this case the two descriptions are proved
to be inequivalent).

For the purpose of making correspondence between statements in both descrip-
tions, dummy statements are inserted to the descriptions in the following cases
to let both descriptions have corresponding statements with each other.
• When an assignment is removed, the assignment to the same variable such

as a = a; is inserted.

• When a conditional branch is removed, the same branch structure is inserted
where all assignments are replaced by ones to the same variable.

Since these inserted statements clearly preserve the original behavior, the result
of verification does not change. Even if many statements are different, the de-
scriptions after inserted dummy statements are less than twice of the original
descriptions.

Then SDGs for both descriptions are constructed. At the same time, statements
are removed from SDGs when they do not affect any output variables and are
not affected by any input variables just like program slicing. This reduction can
be performed on SDGs. Verification areas can be represented with a set of SDG
nodes, since each node corresponds to a statement in C descriptions. The initial
verification area for a difference is two sets of SDG nodes corresponding to the
difference (one set from each description). Note that a difference may consist
of several statements. We define input variables and output variables of a local
verification area as shown below.
• Local input variable a variable corresponding to a data dependence edge

coming from out of the verification area to the area
• Local output variable a variable corresponding to a data dependence edge

coming from the verification area to out of the area
If a variable is an output variable appearing in both descriptions, its equivalence
is checked by symbolic simulation. Although other local output variables (ap-
pearing only one of the two descriptions) are not checked for this difference, they
will be taken into account in verification for other differences later.

A pair of corresponding local input variables is equivalent in the following cases.
• They are not affected by any differences that are proved to be inequivalent.
• They are already proved to be equivalent by the verification of other differ-

ences.
Equivalences of other pairs of local input variables are considered to be unknown.
If all pairs of local output variables are proved to be equivalent, the verification
area of the difference is also proved to be equivalent. On the other hand, if the
equivalence of any local output variables are not proved, the verification area is
extended so that preceding and/or succeeding statements are included. These
are determined by tracing dependency on SDGs.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

15 Trends in Formal Verification Techniques for C-based Hardware Designs

Fig. 16 A verification example based on difference identification.

The way to extend the verification area are shown below.
• Backward extension Adding a directly preceding SDG node that has a

data dependence to any local input variable
• Forward extension along data dependence Adding a directly succeeding

SDG node that has a data dependence from any local output variable
• Forward extension along control dependence Adding all directly suc-

ceeding SDG nodes that have a control dependence from any local output
variables (This extension can be carried out if any condition nodes are proved
to be inequivalent)

During extensions, multiple SDGs that represent assignments to the same vari-
able are added to the verification area when control dependences of them are
different. In such cases, the nodes that control these assignments are also added.
After the extensions, the local input/output variables are generated for the new
verification area, and verification by symbolic simulation is carried out.

Extensions terminate in the following ways.
• If the equivalences of added SDG nodes are already proved, no backward

extension is applied from them
• If added statements are the top (or end) of programs, no backward extension

(or forward extension) is applied from them
A simple verification example is shown in Fig. 16. We assume that the variables

in1 and in2 are the primary inputs of the program, and the variable out is the
primary output. The statement x = x; in Description 1 is added as a dummy
statement to make a correspondence to x = x + c; in Description 2.

At first, the first difference D1 is verified. The first verification area is A in
the figure, and its local input variables are a and c, and its local output variable
the variable x. Since all local input variables are unknown, the equivalence of x

cannot be proved. Thus, in this case, we decide to backwardly extend the area
from a.

Then, the extended verification area becomes the area B, and the verification
is carried out again. In this case, the local input variables are in1, in2, and c,
and the local output variables are x and (in1 > in2). Since the equivalence of x

cannot be proved after the verification with the area B, we decide to forwardly
extend the area from x and obtain the area C.

After the verification with this area C, we can prove the equivalence of x.
The verification for the difference D2 is not carried out, since it is included the
verification for D1. Then, as the all difference is verified, it can be said that the
two descriptions are functionally equivalent.

In general, a verification area can have multiple local input/output variables.
Therefore, there are a number of combinations to apply backward and forward
extensions. Reasonable strategies for differences usually happening in practice
are shown below.
• Applying backward extensions until the start points of the programs, then

applying forward extensions until end points
• Applying forward extensions and backward extensions in turn
• First, applying backward extensions m times, then applying forward exten-

sions n times (m,n are pre-defined number)
These strategies are similar to ones in equivalence checking of gate-level circuits,
such as the ones shown in Refs. 23), 24). In some cases, designers understand
which kinds of refinements are carried out. If so, a specific strategy for the
refinement can be applied to improve the verification efficiency.

The method is evaluated with the following design examples written in C lan-
guage.
• Common sub-expression eliminations in a differential equation solver (total

130 lines, differences are 10 parts, 30 lines)
• Refinements in IDCT(Inverse Discrete Cosine Transform) (total 420 lines,

differences are 16 parts, 96 lines) from MPEG2 encoder/decoder

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

16 Trends in Formal Verification Techniques for C-based Hardware Designs

Table 2 Experimental results.

result time verified nodes total nodes
diffeq1 eqv 0.7 sec 60 288
diffeq2 ineqv 0.7 sec 73 288
mpeg1 eqv 1.8 sec 192 1,160
mpeg2 ineqv 0.9 sec 62 1,160
rijndael1 eqv 0.3 sec 240 4,112
rijndael2 ineqv 0.6 sec 44 4,112

• Refinements from 4-Xor into 2-Xor in the encryption function (total 1,235
lines, differences are 40 parts, 120 lines) from Rijndael encryption program

The refinements in IDCT is to reduce the computation, and it has applied combi-
nations of common sub-expression elimination and factorization. All experiments
were carried out on PC with 2.4 GHz processor and 2 GB memory.

The experimental results are shown in Table 2. All verification results are the
same as what we have intended. As shown in the table, the numbers of SDG
nodes that are symbolically simulated are much smaller than the total SDG nodes
in the programs. This is seen especially in the inequivalent cases. This is because
the result can be concluded to be inequivalent if a counterexample is found.

As for the comparison of verification times with the method that simply analyze
the whole programs, the proposed method takes shorter times to verify when the
verified programs are relatively large. For example, equivalence checking with
symbolic simulation of the whole IDCT example, which has eight conditional
branches, takes more than 800 sec, while the proposed method takes 1.8 sec as
shown in the table.

In addition, symbolic simulation for the whole MPEG2 or Rijndael cannot be
carried out in practical time. Therefore, our approach where only the portions
related to the differences are symbolically simulated is effective especially when
a given program is very large.

7. Conclusions

Three approaches for formal verification of C based design descriptions have
been presented. They are all relying on efficient analysis of various dependence
found in the descriptions. Static checking methods and model checking methods
are becoming similar, and both are targeting larger descriptions by narrowing

the areas to be actually analyzed. Equivalence checking methods works well as
long as the two description to be compared are reasonably similar.

There are significant on-going research efforts on the topics targeting not only
on hardware descriptions in C based languages but also their software descrip-
tions. Owing to recent advances of SAT and SMT solvers, larger and more
complicated descriptions can now be formally verified. Moreover, industrial for-
mal verification tools following the researches shown in the paper are becoming
available. Through their applications to real designs, new insights for future re-
search direction can be obtained and further advances may be observed in the
near future.

References

1) Gajski, D., Zhu, J., Doemer, R., Gerstlauer, A. and Zhao, S.: SpecC: Specification
Language and Methodology, Kluwer Academic Publisher (Mar. 2000).

2) IEEE 1666 Language Reference Manual, IEEE (2005).
3) Clarke, E.M., Kroening, D. and Lerda, F.: A Tool for Checking ANSI-C Pro-

grams, Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004), Lecture Notes in Computer Science 2988, pp.168–176, Springer-
Verlag (2004).

4) Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Chaff: Engineering
an Efficient SAT Solver, Proc. Design Automation Conference ’01 (2001).

5) Barrett, C. and Tinelli, C.: CVC3, Proc. 19th International Conference on Com-
puter Aided Verification (CAV ’07), Lecture Notes in Computer Science 4590,
pp.298–302, Springer-Verlag (July 2007).

6) deMoura, L. and Bjørner, N.: Z3: An Efficient SMT Solver, Proc. Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Budapest, Hungary (2008).

7) Ball, T. and Rajamani, S.K.: The SLAM Project: Debugging System Software via
Static Analysis, Proc. POPL, pp.1–3 (Jan. 2002).

8) Henzinger, T., Jhala, R., Majumdar, R. and Sutre, G.: Software verification with
Blast, Tenth International Workshop on Model Checking of Software (SPIN), Lec-
ture Notes in Computer Science 2648, pp.235–239, Springer-Verlag (2003).

9) Chaki, S., Clarke, E.M., Groce, A., Jha, S. and Veith, H.: Modular Verification of
Software Components in C, IEEE Transactions on Software Engineering (TSE),
Vol.30, No.6, pp.388–402 (June 2004).

10) Clarke, E.M., Grumberg, O., Jha, S., Lu, Y. and Veith, H.: Counterexample-
Guided Abstraction Refinement for Symbolic Model Checking, J. ACM (JACM),
Vol.50, No.5, pp.752–794 (Sept. 2003).

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

17 Trends in Formal Verification Techniques for C-based Hardware Designs

11) Horwitz, S., Reps, T. and Binkley, D.: Interprocedural Slicing Using Dependence
Graphs, ACM Transactions on Programming Languages and Systems, Vol.12, No.1,
pp.26–60 (1990).

12) Sasaki, S., Nishihara, T., Ando, D. and Fujita, M.: Hardware/Software Co-
design and Verification Methodology from System Level Based on System Depen-
dence Graph, Journal of Universal Computer Science, Vol.13, No.13, pp.1972–2001
(2007).

13) Sankaranarayanan, S., Ivancic, F. and Gupta, A.: Program Analysis Using Sym-
bolic Ranges, Proc. International Static Analysis Symposium (SAS) (2007).

14) Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Wei, O. and Gupta, A.: SLR:
Path-Sensitive Analysis through Infeasible-Path Detection and Syntactic Language
Refinement, Proc. International Static Analysis Symposium (SAS) (2008).

15) Clarke, E., Kroening, D. and Yorav, K.: Behavioral Consistency of C and Verilog
Programs Using Bounded Model Checking, Proc. Design Automation Conference
’03, pp.368–371 (2003).

16) Sakunkonchak, T., Komatsu, S. and Fujita, M.: Synchronization Verification in
System-Level Design with ILP Solvers, IEICE Trans. Fundamentals of Electronics,
Communications and Computer Sciences, Vol.E89-A, No.12, pp.3387–3396 (Dec.
2006).

17) Sakunkonchak, T., Komatsu, S. and Fujita, M.: Using Counterexample Analy-
sis to Minimize the Number of Predicates for Predicate Abstraction, Proc. 5th
International Symposium on Automated Technology for Verification and Analysis,
pp.553–563 (Oct. 2007).

18) Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P., Ivančić, F. and Yang, Z.: F-Soft:
Software Verification Platform, Proc. Computer Aided Verification (2005).

19) Séméria, L. and De Micheli, G.: SpC: Synthesis of Pointers in C — Application of
Pointer Analysis to the Behavioral Synthesis from C, Proc. International Conference
on Computer Aided Design (1998).

20) Abdi, S. and Gajski, D.: Functional Validation of System Level Static Scheduling,
Proc. Design, Automation and Test in Europe ’05, pp.542–547 (Mar. 2005).

21) Shashidhar, K.C., Bruynooghe, M., Catthoor, F. and Janssens, G.: Functional
Equivalence Checking for Verification of Algebraic Transformations on Array-
Intensive Source Code, Proc. Design, Automation and Test in Europe ’05, pp.1310–

1315 (Mar. 2005).
22) Matsumoto, T., Saito, H. and Fujita, M.: An Equivalence Checking Method for C

Descriptions Based on Symbolic Simulation with Textual Differences, IEICE Trans.
on Fundamentals, Vol.E88-A, No.12, pp.3315–3323 (Dec. 2005).

23) Jain, J., Mukherjee, R. and Fujita, M.: Advanced Verification techniques based on
learning, 32nd ACM/IEEE Design Automation Conference (1995).

24) Matsunaga, Y.: An Efficient Equivalence Checker for Combinational Circuits,
Proc. 33rd IEEE/ACM Design Automation Conference (1996).

(Received September 1, 2008)
(Released February 17, 2009)

(Invited by Editor-in-Chief: Hidetoshi Onodera)

Masahiro Fujita received the B.S. degree in electrical engi-
neering in 1980, and the M.S. and Ph.D. degrees in information
engineering from the University of Tokyo, Tokyo, Japan, in 1982
and 1985, respectively. From 1985 to 1993, he was a Research Sci-
entist with Fujitsu Laboratories, Kawasaki, Japan. From 1994 to
1999, he was the Director of the Advanced Computer-Aided De-
sign Research Group, Fujitsu Laboratories of America, Sunnyvale,

CA. He is currently a Professor in VLSI Design and Education Center, University
of Tokyo, Tokyo, Japan. He has been on program committees for major confer-
ences dealing with digital design and is an Associate Editor of Formal Methods
on Systems Design, ACM Transaction on Embedded System, and ACT Trans-
action on Storage. His primary research interest is in the computer-aided design
of digital systems. Dr. Fujita received the Sakai Award from the Information
Processing Society of Japan in 1984.

IPSJ Transactions on System LSI Design Methodology Vol. 2 2–17 (Feb. 2009) c© 2009 Information Processing Society of Japan

