
IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009)

Regular Paper

Framework for Parallel Prefix Adder Synthesis

Considering Switching Activities �1

Taeko Matsunaga,†1 Shinji Kimura†1

and Yusuke Matsunaga†2

This paper addresses parallel prefix adder synthesis which aims at minimizing
the total switching activity under bitwise timing constraints. This problem is
treated as synthesis of prefix graphs which represent global structures of parallel
prefix adders at technology-independent level. An approach for timing-driven
area minimization of prefix graphs has been already proposed which first finds
the exact minimum solution on a specific subset of prefix graphs by dynamic
programming, then restructures the result for further reduction by removing
restrictions on the subset. In this paper, a switching cost of each node of a
prefix graph is defined, and an approach to minimize the total switching cost is
presented where our area minimization algorithm is extended to be able to cal-
culate the switching cost using Ordered Binary-Decision Diagrams (OBDDs).
Furthermore, a heuristic is integrated which estimates the effect of the restruc-
turing phase in the dynamic programming phase, to improve the robustness
of our algorithm under severe timing constraints. Through a series of experi-
ments, the proposed approach is shown to be effective especially when timing
constraints are not tight and/or there are comparably a large number of nodes
with very low switching costs.

1. Introduction

Arithmetic circuits are important circuit elements which could have a large
impact on qualities of the whole circuits. Among various arithmetic operations,
binary addition is the most fundamental and frequently-used one. A lot of stud-
ies have been done and various architectures of adders can be found in many
literatures 7). Among them, parallel prefix adders belong to a class of well-known

†1 Graduate School of Information, Production and Systems, Waseda University
†2 Faculty of Information Science and Electrical Engineering, Graduate School of Kyushu

University
�1 An original version of this paper was presented at IEEE International Conference on Com-

puter Design, in October 2008 10).

architectures which generalize carry look-ahead idea for faster carry propagation.
In addition to many regular structures 1),6),13), some algorithms for automatic
generation of parallel prefix adders also have been proposed, especially for area
minimization 8),14). The authors also have proposed an algorithm for parallel
prefix adder synthesis which targets area minimization under given bitwise tim-
ing constraints at technology independent level 11). The problem is captured as a
problem to minimize the number of nodes of prefix graphs which represent global
structures of parallel prefix adders at technology independent level.

As for a cost to be minimized, power is another important target. Power
consumption is becoming one of the major concerns in recent LSI design, and a
lot of work has been done for estimation of power, low-power design techniques
at various design levels, and acceleration techniques of power estimation 4),12).
Among various factors, the switching activity is a key factor at logic level, and
often estimated and utilized in low power synthesis techniques 3),5).

In this paper, an approach for power-aware synthesis of prefix graphs is pre-
sented. A cost is defined based on the switching activities for nodes in prefix
graphs as a factor which affects power consumption, and a switching-cost min-
imization algorithm is implemented based on our area minimization one with a
heuristic which improves the robustness.

As for power minimization of prefix adders, Liu, et al. have proposed an ap-
proach to minimize power of prefix adders under timing and area constraints 9).
Their approach handles a realistic area/timing/power model considering gate and
wire capacitance measures, and formulates the power minimization problem un-
der area and timing constraints as an Integer Linear Programming (ILP) problem.
It solved the problem exactly though it could be applied to only small adders
(8-bit or so) in practically. A divide-and-conquer approach is needed for larger
size, which means the exactness will be lost.

In contrast, our approach uses rough measures, so can be more tractable for
larger prefix graphs at the expense of accuracy. Our main concern is to construct
a framework at technology independent level without any assumption on imple-
mentation and leave flexibility for back-end design phases. Other costs such as
static power or capacitance-related factors could be integrated if they are defined
as the total summation of each node’s cost.

212 c© 2009 Information Processing Society of Japan

213 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

The rest of this paper is organized as follows. In Section 2, several definitions
related to parallel prefix adders and prefix graphs are described as preliminaries.
Then, the basic idea of our area minimization algorithm is briefly reviewed in
Section 3. In Section 4, our switching costs on prefix graphs are introduced,
and a basic minimization algorithm and a heuristic for specific cases are pro-
posed. Then, experimental results and conclusions are shown in Sections 5 and
6 respectively.

2. Preliminaries

2.1 Parallel Prefix Adder (PPA)
Given two inputs A = an, · · · , a1 and B = bn, · · · , b1, n-bit binary addition

computes the sum S = sn, · · · , s1 and the carry cn as si = ai ⊕ bi ⊕ ci−1 and
ci = aibi + aici−1 + bici−1. In parallel prefix adders, this binary addition is
calculated using the bitwise generate and propagate functions and the group
generate and propagate functions as basic operations as follows:
• Pre processing: Calculate bitwise generate(g) and propagate(p) functions.

gi = ai · bi

pi = ai ⊕ bi

• Prefix computation: Compute ci = G[i:1] by using group generate(G) and
propagate(P) functions.

P[i:j] =

{
pi if i = j
P[i:k] · P[k−1:j] if n ≥ i > j ≥ 1

G[i:j] =

{
gi if i = j
G[i:k] + P[i:k] · G[k−1:j] if n ≥ i > j ≥ 1

where j < k ≤ i.
• Post processing: Generate each sum bit si.

ci = G[i:1]

si = pi ⊕ ci−1

A parallel prefix adder consists of the above three parts (Fig. 1). The pre-
processing and the post-processing parts have fixed structures, while the prefix
computation part has wide flexibility for its configuration depending on how to
select k. So, how to execute prefix computation affects the qualities of parallel

Fig. 1 Parallel prefix adder.

prefix adders.
2.2 Prefix Graph
A global structure of a parallel prefix adder at technology-independent level can

be represented as a prefix graph whose node corresponds to a basic operation ◦
defined as follows.

(G,P)[i:j] = (G,P)[i:k] ◦ (G,P)[k−1:j]

= (G[i:k] + P[i:k] · G[k−1:j], P[i:k] · P[k−1:j])
Definition 1 A prefix graph with N inputs is a directed acyclic graph (DAG)

whose nodes correspond to associative operations ◦ in prefix computation on N

inputs, and represents the execution order of each node. An edge from node v1

to v2 exists if v1 is an operand of the operation corresponding to v2, where a
preceding node v1 of v2 is referred to as a fanin node of v2 and a succeeding node
v2 of v1is referred to as a fanout node of v1.

Figure 1 (c) shows two simple examples of prefix graphs with width 4. Figure 2
shows the aligned prefix graph corresponding to the bottom graph in Fig. 1 (c),
where each node is aligned by the width of input range. Node vi,j which is
at i-th row and j-th column (i ≤ j) represents an intermediate result of prefix
computation on i inputs xj , xj−1, · · · , xj−i+1. For example, a node v2,4 in Fig. 2
has two fanin nodes, v1,4 and v1,3, and represents the result of operation v1,4◦v1,3.

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

214 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

Fig. 2 Aligned prefix graph.

The input ranges of v2,4 and v2,2 are [4 : 3] and [2 : 1] respectively. v4,4 is the
result of operation v2,4 ◦ v2,2 and its input range is [4 : 1]. Idempotency is not
considered, that is, we assume that two ranges do not overlap right now.

In an aligned prefix graph with width N , each node v1,j is called a leaf node
and vj,j a root node where 1 ≤ j ≤ N . A leaf node and a root node correspond
to an input and an output respectively. The root node with the widest width is
called a base node, and the other root nodes are called non-base nodes. In what
follows, aligned prefix graphs are used as a representation of prefix graphs.

2.3 Area and Timing Measures on Prefix Graph
In this work, area of a prefix graph is measured by the number of nodes except

leaf nodes, and referred to as the size of a prefix graph. As for timing measures,
two types of node levels are defined.

Definition 2 Arrival level AL(v) and required level RL(v) of a node v in a
prefix graph are defined as follows.

AL(v) = max{AL(v′), v′ ∈ FI(v)} + 1,

RL(v) = min{min{RL(v′), v′ ∈ FO(v)} − 1, RL′(v)}
where FI(v) and FO(v) are sets of fanin and fanout nodes of v respectively, and
RL′(v) is the required level already given for itself(∞ if not specified).

For example, area and the arrival level of y4 are 3 and 3 in the upper graph of
Fig. 1 (c), and 4 and 2 in the lower graph respectively when given arrival levels
are 0 for all inputs.

Assume that arrival levels for input nodes and required levels for output nodes
are given as timing constraints. A prefix graph satisfies given timing constraints
if RL(v) ≥ AL(v) for all nodes v.

3. Prefix Graph Synthesis for Area Minimization

In this section, the basic idea of our timing-constrained area minimization
algorithm is summarized 11).

Our first target for PPA synthesis was timing-constrained area minimization
problem, which was captured as a problem to search prefix graphs as follows.

Problem 1 Given bitwise input arrival levels and output required levels, gen-
erate a prefix graph of the minimum size.

The main idea to tackle this problem is to define a specific subset of the prefix
graphs and decompose the whole minimization process into two phases. The first
phase, DP phase, finds an exact minimum solution for the subset by dynamic
programming. Then further reduction is done by restructuring the resulting
prefix graph in the second phase, RS phase.

In DP phase, the minimum solutions can be found for practical bit width within
a reasonable time by defining the subset appropriately. We call an element of the
subset a restricted prefix graph, which is defined as follows.

Definition 3 Assume that two fanin nodes of the base node vN,N of a prefix
graph with width N are vN−k,N and vk,k. A restricted prefix graph is a prefix
graph whose structure has the following features as shown in Fig. 3:
• Fanin nodes of a root node vN−j,N−j are vk,k and vN−k−j,N−j where 0 ≤

j < N − k.
• Subgraphs whose base nodes are vN−k,N and vk,k also have the above features

recursively.
Nodes vN−j,N−j , 0 ≤ j < N −k, which are not included in subgraphs, are called
genuine nodes of the restricted prefix graph, and their fanin edges are called
genuine edges. We denote a set of restricted prefix graphs whose base nodes are
vn,p by R(n, p).

Figure 3 (b) shows a famous parallel prefix adder, Sklansky PPA 13), which is
considered as an example of a restricted prefix graph. In other words, a restricted
prefix graph is a generalized version of Sklansky PPA where a prefix graph can
be divided into any two parts with possibly different widths.

A restricted prefix graph R1 consists of mutually exclusive sub-graphs R2 and
R3, and genuine nodes. The size of R1 can be calculated as the sum of the

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

215 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

Fig. 3 Restricted prefix graph.

Fig. 4 Restructuring-phase.

sizes of both sub-graphs and the number of genuine nodes. Each sub-graph
has the same structure recursively. As a result, the problem which generates a
restricted prefix graph with the minimum size under bitwise timing constraints
satisfies the principle of optimality. Therefore, a restricted prefix graph with the
minimum size can be constructed by solving subproblems with smaller widths
and combining the optimum solutions based on dynamic programming.

The resulting prefix graph is restructured by removing imposed restrictions
for further area minimization in RS phase. In Fig. 4, when a fanin node of v0

changes from v1 to v1′ , another fanin node will be changed from v2 to v2′ . Then
if v2′ is already connected to some node and the number of fanout nodes of the
original fanin node v2 becomes 0, v2 can be removed.

We expect our two-folded framework based on the exact solutions for the sub-
set can generate globally better structures than ad hoc heuristics. There is no
guarantee that the resulting restricted prefix graph might be better seeds for

finding better prefix graphs in RS phase. Though effectiveness can not be eval-
uated theoretically, prefix graphs with smaller sizes are achieved experimentally
compared with well-known parallel prefix adders such as Brent-Kung 1), Sklan-
sky 13), and Kogge-Stone 6), as well as those generated by existing heuristics 8),14),
in reasonable execution time.

4. Prefix Graph Synthesis for Switching-Cost Minimization

Our synthesis approach is not restricted to area minimization, and extended
to treat other problems whose costs to be minimized can be calculated as the
summation of the cost of each node. Switching activity, a factor which affect
dynamic power consumption, is an example of those costs. In this section, we
propose an approach to minimize a power-related measure at the prefix graph
level by utilizing the above synthesis framework.

4.1 A Measure of Power
Dynamic power dissipation of a CMOS gate i is given by

DPi =
1
2
Ci · V 2

dd · SWi · fclk,

where Ci is the physical capacitance at the output of the gate, Vdd is the supply
voltage, and fclk is the clock frequency. SWi is referred to as the switching
activity, and is the average number of output transitions per 1/fclk time, that
is, a clock cycle. Dynamic power of the whole circuit is calculated as the sum of
DPi of every gate of the circuit.

Since V 2
dd and fclk are not tractable at logic level, there are two factors, Ci and

SWi to be targeted for power minimization. In this paper, we pick up SWi as an
important factor of power consumption, define a switching cost of a prefix graph
node, and focus on the minimization of the total switching cost of all nodes as
the target cost to be minimized for power reduction.

There are several approaches to estimate SWi at logic level 12). Calculation of
the switching activity depends on many factors such as input-pattern dependency
and delay model, and there is a trade off between its accuracy and calculation
time. Since technology-dependent factors can not be estimated accurately at the
prefix graph level because of the loss of information and the efficiency is crucial in
iteratively calculating the costs during synthesis process, we adopt probability-

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

216 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

based estimation under zero delay or non-glitch model 12) where all changes at
the inputs propagate through the internal gates instantaneously.

Definition 4 Signal probability p(i) at a node i is the probability that the
signal value at the node is one.

We assume that p(xi) is given for each input xi. All input signals are assumed
to be independent each other (spatial independence). Furthermore, the values
of the same input signal in two consecutive clock cycles are also assumed to be
independent (temporal independence).

Under these assumptions, the switching activity at an internal node i is calcu-
lated as the summation of probabilities that the signal value changes from 0 to
1 and 1 to 0 in consecutive clock cycles as follows:

SWi = p(i) · (1 − p(i)) + (1 − p(i)) · p(i)
= 2 · p(i) · (1 − p(i))

To calculate the switching cost, signal probabilities should be calculated for all
internal nodes. Though they could be obtained by simulation, an OBDD 2)-based
approach can be applied effectively under our assumptions.

Assume that the global function of an output of node v is f(x1, · · ·xj), where
x1, · · ·xj are primary inputs. Since f = xj′fxj′ + x̄j′fx̄j′ for xj′(1 ≤ j′ ≤ j), the
signal probability of this function is calculated as follows:

p(f) = p(xj′)p(fxj′) + p(x̄j′)p(fx̄j′)
= p(xj′)p(fxj′) + (1 − p(xj′))p(fx̄j′)

where fxj′ and fx̄j′ are the cofactors of f with respect to xj′ and x̄j′ , respectively.
When signal probabilities of all input signals are given, p(f) can be calculated
by generating the global function as an OBDD and traversing the OBDD using
the above equation.

We now expand the above switching activity to the switching cost of prefix
graph nodes.

Definition 5 The switching cost of a prefix graph node v is defined as follows.
SW (v) = α · SW (G) + β · SW (P)
SW (G) = 2p(G) · (1 − p(G))
SW (P) = 2p(P) · (1 − p(P))

As mentioned before, a prefix graph node corresponds to a (G,P) operation

and has two distinct outputs G and P corresponding to go and po in Fig. 1 (b).
The switching cost of a node is defined as the summation of those of G and P

outputs with some factors α and β. Currently they are set to one, though they
can be changed to any value.

Our measure of power is rather simple with several assumptions, and would
be less accurate than the power model defined in Ref. 9). However, it would be
possible to include the effects of static power and glitch if they could be modeled
as the summation of node costs, like in their model.

4.2 Switching Cost Minimization Algorithm
Now, the target problem is as follows:

Problem 2 Given bitwise input arrival levels, output required levels, and
input signal probabilities, generate a prefix graph whose total switching cost is
minimum.

As well as the size of a prefix graph, the total switching cost of a prefix graph is
calculated by simply summing up the switching cost of each node. So, the same
techniques used in area minimization algorithm are applicable in minimization
of switching costs except cost calculation.

In our synthesis framework, any nodes on the same row of an aligned prefix
graph have the same global functions, and they can be generated before DP phase.
Switching costs of all nodes can be calculated also in advance based on given
input signal probabilities. So, timing-constrained switching cost minimization
algorithm can be implemented efficiently by expanding our area minimization
algorithm as follows:
(1) Generate global functions of all possible nodes and calculate switching costs

under given signal probabilities using OBDD-based approach.
(2) DP Phase: Find the restricted prefix graph with the minimum total switch-

ing cost by dynamic programming. Since switching costs of all nodes have
been already calculated, switching costs of prefix graphs can be calculated
by simply summing up already calculated costs of subgraphs and genuine
nodes.

(3) RS Phase: Start from the above result, and re-structure for further reduc-
tion of switching costs. Gains by removing nodes are calculated as the total

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

217 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

switching costs of removable nodes.
Because of the pre-computation of node costs, execution time is comparable to

those of area minimization algorithm, and can be applied for practical bit widths
in reasonable time.

4.3 A Heuristic for Robustness
We modified our synthesis framework to be able to address switching cost min-

imization, and executed several preliminary experiments. Our new approach re-
sulted in lower switching costs compared to existing heuristics for area minimiza-
tion and regular parallel prefix adders such as Sklansky and Brent-Kung PPAs.
However, we also found that it sometimes generated prefix graphs with higher
switching costs than those generated by area minimization algorithm. Those sit-
uations often occurred under severe maximum delay constraints, that is, output
required levels were set to the possible minimum levels. In these cases, though
restricted prefix graphs with the minimum cost were obtained in DP phase, RS
Phase could not remove much nodes since there was no or few opportunities to
restructure it without conflicting timing constraints. All nodes are considered to
have the same cost in area minimization, but switching cost of each node is not
same, and there can be several prefix graphs where the differences of total costs
are very subtle. We observe that this subtle difference sometimes could prevent
a good seed for RS phase from being generated.

Our approach for this problem is to roughly estimate the gain of restructuring
in RS Phase and modify the costs in DP Phase. RS phase calculates the gain,
that is, the number of removable nodes by changing the diagonal fanin nodes
to each possible genuine node, selects the best candidate for restructuring, and
changes fanins. It repeats this procedures until no restructuring occurs. A node
is removable when it has no fanout nodes.

As shown in Fig. 5, if a node of a restricted prefix graph is not a base node, it
has at most one fanont node and the fanout node is also a non-base node. When
a node is a base node, it can have more than one fanout node and can not be
removed. So, only non-base nodes relate to the gain calculation. In our approach,
non-base nodes in the same column are recorded, and used to calculate the gain
in DP phase.

This heuristic only treats simplified restructuring where a fanin node of

Fig. 5 Fanout nodes of base nodes and non-base nodes.

vn−j,n−j can be changed only to vn−j−1,n−j−1, so it might be less accurate for
more complicated restructuring. We basically apply this heuristic only where
timing constraints are severe and there are few possible alternatives which sat-
isfy timing constraints. Though this approach is an ad hoc heuristic, it could be
expected to enhance the robustness of our approach.

5. Experiments

We integrated the above heuristic to synthesis framework, and executed it
under various combinations of input signal probabilities and timing constraints.
We also implemented and executed existing heuristics 8),14) for comparison. All
experiments were done on Pentium 4, 2.4 GHz machine.

5.1 Case1: PPA in Wallace-tree Multipliers
The first set of experiments is for 24-bit and 39-bit PPAs used in 16*16

and 24*24-bit Wallace-tree multipliers respectively. Input timing constraints for
PPAs were extracted from the structures of both multipliers. Signal probabili-
ties of primary inputs of PPAs were estimated from the structures of multipliers
under the condition where signal probabilities of all inputs of multipliers were
equal to 0.5.

Table 1 shows the total switching costs for 24-bit and 39-bit prefix graphs
under several output required levels from the possible minimum levels to
more relaxed levels shown in the second column. The third to the seventh
columns show the total switching costs of the resulting prefix graphs gener-
ated by area minimization algorithm (ND), switching-cost minimization algo-
rithm (SW1), switching-cost minimization with a heuristic (SW2), and existing

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

218 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

Table 1 Total switching costs for PPAs in Wallace-tree multipliers.

bit LV ND SW1 SW2 LO DO ND/SW LO/SW DO/SW
24 19 31.22 31.16 30.75 31.68 31.68 1.02 1.03 1.03

20 28.98 28.90 28.90 29.98 31.88 1.00 1.04 1.10
21 28.97 28.10 28.10 29.46 29.46 1.03 1.05 1.05
22 28.89 27.42 27.42 29.34 29.92 1.05 1.07 1.09
23 28.75 26.88 26.88 29.10 29.10 1.07 1.08 1.08
24 28.50 26.52 26.52 28.84 28.84 1.07 1.09 1.09
25 28.20 25.95 25.95 28.47 28.47 1.09 1.10 1.10

39 21 57.26 58.06 56.63 58.72 61.75 1.01 1.04 1.09
22 51.64 52.40 51.88 53.94 60.03 1.00 1.04 1.16
23 50.98 50.70 51.63 52.81 57.69 1.01 1.04 1.14
24 50.14 49.46 49.46 52.02 54.62 1.01 1.05 1.10
25 50.13 48.65 48.65 51.83 53.16 1.03 1.07 1.09
26 50.02 47.86 47.86 51.45 53.22 1.05 1.07 1.11
27 49.79 47.15 47.15 51.09 51.79 1.06 1.08 1.10

heuristics (LO 14) and DO 8)). The last three columns indicate ratios of ND, LO,
and DO to SW, where SW is the smaller value between SW1 and SW2 and the
results of our switching cost minimization algorithm.

As shown in Table 1, SW resulted in the lowest costs in all cases. The reduction
ratio grows as output required levels increase. SW2 seems to be effective for
tighter timing constraints and not for relaxed ones as expected.

Execution time of SW1 and SW2 are around 20 seconds and 25 seconds respec-
tively for 39-bit with level 27 (the largest case of the above setting).

5.2 Case2: 32-bit Adders with Various Timing Constraints and Sig-
nal Probabilities

The second set of experiments is for observing the impact of signal probabilities
and input timing constraints in our synthesis framework. We set the following
three types of input timing constraints for 32-bit PPAs as shown in Fig. 6:
(1) 32C: convex pattern (the upper left of Fig. 6)
(2) 32C l0: late inputs for upper 16 bits (the upper right of Fig. 6)
(3) 32C u0: late inputs for lower 16 bits (the bottom of Fig. 6)

As for signal probabilities, the following two types are considered:
(1) uni: all inputs have the same signal probabilities (0.5)
(2) zero: signal probabilities are extracted under the situations where the adder

sequentially calculates the total summation of 16-bit data.

Fig. 6 Three types of input profiles for 32 bit adder.

Fig. 7 Switching cost of each node.

The latter case is an example where there are many nodes with very low costs.
Figure 7 shows the distributions of switching costs for all the possible nodes in
a 32-bit prefix graph. The horizontal axis indicates switching cost per one node
and the vertical axis shows the number of nodes with the cost. The left graph
is for “uni” case, and the right one is for “zero” case. Compared to “uni” case,
there are found many nodes with 0 or nearly 0 costs in “zero” case.

Table 2, Table 3, and Table 4 show the total switching costs of the resulting
prefix graphs under the above three input profiles respectively. Regardless of
input profiles, the advantage of our approach increases as output required levels
increase. Among the three input profiles, our approach is most effective for 32C l0

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

219 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

Table 2 Total switching costs under timing constraints “32C”.

prob LV ND SW LO DO ND/SW LO/SW DO/SW
uni 16 60.53 60.07 65.47 65.47 1.01 1.09 1.09

17 54.40 54.34 60.18 60.18 1.00 1.11 1.11
18 53.99 53.36 56.49 61.09 1.01 1.06 1.14
19 53.14 52.31 54.90 56.83 1.02 1.05 1.09
20 52.64 51.75 53.07 54.40 1.02 1.03 1.05

zero 16 35.05 34.55 35.43 35.43 1.01 1.03 1.03
17 34.02 32.96 34.84 34.84 1.03 1.06 1.06
18 33.82 32.38 34.12 35.28 1.04 1.05 1.09
19 33.82 32.11 34.03 34.49 1.05 1.06 1.07
20 33.82 31.94 33.70 34.03 1.06 1.06 1.07

Table 3 Total switching costs under timing constraints “32C-l0”.

prob LV ND SW LO DO ND/SW LO/SW DO/SW
uni 13 57.75 57.25 58.40 58.40 1.01 1.02 1.02

14 57.00 55.41 57.13 57.13 1.03 1.03 1.03
15 56.44 54.52 56.43 56.43 1.04 1.04 1.04
16 55.83 53.70 55.62 55.62 1.04 1.04 1.04
17 55.12 52.86 54.92 54.92 1.04 1.04 1.04

zero 13 38.45 36.03 38.60 38.60 1.07 1.07 1.07
14 38.29 34.56 38.46 38.46 1.11 1.11 1.11
15 38.27 33.32 38.33 38.33 1.15 1.15 1.15
16 38.19 32.37 37.99 37.99 1.18 1.17 1.17
17 37.98 32.10 37.78 37.78 1.18 1.18 1.18

where timing constraints seem to be loose since upper bits require the results of
lower bits so it is preferable that arrival levels of lower bits are earlier than those
of upper bits. So, as in the case of late output required levels, relaxed timing
constraints may give opportunities to reduce switching costs.

As for input signal probabilities, our approach is more effective where there
are many low-cost nodes. Since the total switching cost is the summation of
the costs of all nodes, area minimization algorithm also leads to reduction of
the switching cost. There is high correlation between the number of nodes and the
total switching cost especially when there is less difference among the switching
cost of each node. Meanwhile, in case that there are many nodes with very low
costs, such as “zero” case, reducing area might not lead to reduction of the total
switching cost as shown in Table 3 and Table 5, where the numbers of nodes in
SW are larger than those in ND in several cases, though the switching costs are

Table 4 Total switching costs under timing constraints “32C-u0”.

prob LV ND SW LO DO ND/SW LO/SW DO/SW
uni 13 63.77 63.54 63.77 63.77 1.00 1.00 1.00

14 60.32 60.16 60.76 62.59 1.00 1.01 1.04
15 59.73 58.92 59.98 59.98 1.01 1.02 1.02
16 58.88 57.91 59.34 60.05 1.02 1.02 1.04
17 58.38 56.87 58.84 58.84 1.03 1.03 1.03

zero 13 41.11 40.54 41.11 41.11 1.01 1.01 1.01
14 39.63 38.79 40.09 40.93 1.02 1.03 1.05
15 38.66 37.35 39.78 39.78 1.04 1.06 1.06
16 38.66 36.69 39.62 40.33 1.05 1.08 1.10
17 38.66 35.64 39.62 39.62 1.08 1.11 1.11

Table 5 The number of nodes of resulting prefix graphs (32C-l0).

prob LV ND SW LO DO
uni 13 49 50 50 50

14 48 48 48 48
15 47 47 47 47
16 46 46 46 46
17 45 45 45 45

zero 13 49 61 50 50
14 48 64 48 48
15 47 58 47 47
16 46 56 46 46
17 45 51 45 45

lower. So, the correlation might become lower, which means direct minimization
of the total switching cost could be superior.

6. Conclusions

In this paper, our area minimization framework for prefix graph synthesis was
expanded to treat switching cost minimization, and improved to integrate esti-
mation of restructuring effects for robustness. Relation between various types of
signal probability and switching costs of nodes are also surveyed through several
experiments. Switching-cost minimization algorithm is effective especially where
there are a comparably large number of nodes with very low switching costs and
timing constraints are not tight.

The effectiveness of our switching-cost minimization algorithm depends on fea-
tures of signal probabilities and timing constraints. It is important to carefully

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

220 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

observe the effectiveness under distinct situations.
Our switching cost is a rather rough measure, so more accurate measures should

be considered. In those cases, our framework can be applied as long as the target
cost to be minimized can be calculated as the summation of all node costs, and
similar observation on effectiveness as mentioned above may be applicable.

Acknowledgments This research was supported in part by Waseda Uni-
versity Global COE Program “International Research and Education Center for
Ambient SoC” sponsored by MEXT, Japan, and JST CREST Project.

References

1) Brent, R.P. and Kung, H.T.: A Regular Layout for Parallel Adders, IEEE Trans.
Computers, Vol.31, No.3, pp.260–264 (1982).

2) Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Computers, Vol.35, No.8, pp.677–691 (1986).

3) Chen, B. and Nedelchev, I.: Power Compiler: A Gate Level Power Optimization
and Synthesis System, IEEE International Conference on Computer Design, pp.74–
79 (1997).

4) Coburn, J., Ravi, S. and Raghunathan, A.: Power Emulation: A New Paradigm
for Power Estimation, DAC, pp.700–705 (2005).

5) Iman, S. and Pedram, M.: Multi-Level Network Optimization for Low Power, IEEE
International Conference on Computer Aided Design, pp.372–377 (1994).

6) Kogge, P.M. and Stone, H.S.: A Parallel Algorithm for the Efficient Solution of
a General Class of Recurrence Equations, IEEE Trans. Computers, Vol.22, No.8,
pp.786–793 (1973).

7) Koren, I.: Computer Arithmetic Algorithms, A K Peters, Ltd. (2002).
8) Liu, J., Zhou, S., Zhu, H. and Cheng, C.-K.: An Algorithmic Approach for Generic

Parallel Adders, ICCAD, pp.734–730 (2003).
9) Liu, J., Zhu, Y., Zhu, H., Cheng, C.-K. and Lillis, J.: Optimum Prefix Adders

in a Comprehensive Area, Timing and Power Design Space, ASPDAC, January,
pp.609–615 (2007).

10) Matsunaga, T., Kimura, S., and Matsunaga, Y.: Synthesis of Parallel Prefix Adders
Considering Switching Activities, IEEE International Conference on Computer De-
sign, pp.404–409 (2008).

11) Matsunaga, T. and Matsunaga, Y.: Timing-Constrained Area Minimization Algo-
rithm for Parallel Prefix Adders, IEICE Trans. Fundamentals, Vol.E90-A, No.12,
pp.2770–2777 (2007).

12) Pedram, M.: Power Minimization in IC Design: Principles and Applications, ACM
Trans. Design Automation of Electronic Systems, Vol.1, No.1, pp.3–56 (1996).

13) Sklansky, J.: Conditional Sum Addition Logic, IRE Trans. Electron. Comput.,

Vol.9, No.6, pp.226–231 (1960).
14) Zimmermann, R.: Non-Heuristic Optimization and Synthesis of Parallel-Prefix

Adders, International Workshop on Logic and Architecture Synthesis, pp.123–132
(1996).

(Received November 17, 2008)
(Revised February 20, 2009)

(Accepted April 13, 2009)
(Released August 14, 2009)

(Recommended by Associate Editor: Hiroshi Saito)

Taeko Matsunaga received Bachelor of Liberal Arts in Pure
and Applied Sciences from the University of Tokyo in 1982. She
joined Fujitsu Laboratories in Kawasaki, Japan, in 1982 and she
had been involved in research and development of the CAD for
digital systems. In 2001, she joined Logic Research Co. Ltd. in
Fukuoka, Japan, then moved to Institute of Systems & Informa-
tion Technologies/Kyushu as an industrial researcher. In Novem-

ber 2003, she joined Fukuoka Laboratory for Emerging & Enabling Technology
of SoC (FLEETS), and had been engaged in EDA projects until March 2007.
She is currently working toward Ph.D. degree at Graduate School of Informa-
tion, Production and Systems, Waseda University. Her research interests include
arithmetic synthesis, logic synthesis, and high level synthesis. She is a member
of IEEE, ACM and IPSJ.

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

221 Framework for Parallel Prefix Adder Synthesis Considering Switching Activities

Shinji Kimura received the B.E., M.E. and Dr.of Eng. degrees
in information science from Kyoto University, Kyoto, Japan in
1982, 1984, and 1989, respectively. He was an assistant professor
at Kobe University from 1985, was an associate professor at Nara
Institute of Science and Technology from 1993, and has been a
professor of Waseda University since 2002. He was a visiting sci-
entist at Carnegie Mellon University from 1989 to 1990, and was

a visiting scholar of Stanford University from 2000 to 2001. He is interested in
the formal and timing verification of logic circuits, the hardware/software code-
sign methodologies, reconfigurable hardware, and the low-power design. He is a
member of the Information Processing Society of Japan and the IEEE Computer
Society.

Yusuke Matsunaga received the B.E., M.E. and Ph.D. degrees
in Electronics and Communications Engineering from Waseda
University, Tokyo, Japan, in 1985, 1987, and 1997, respectively.
He joined Fujitsu Laboratories in Kawasaki, Japan, in 1987 and
he had been involved in research and development of the CAD for
digital systems. From October 1991 to November 1992, he was a
visiting Industrial Fellow at the University of California, Berkeley,

in the department of Electrical Engineering and Computer Sciences. In 2001, he
joined the faculty at Kyushu University. He is currently an associate professor
of Department of Computer Science and Communication Engineering. His re-
search interests include logic synthesis, formal verification, high-level synthesis
and automatic test patterns generations. He is a member of IEEE, ACM and
IPSJ.

IPSJ Transactions on System LSI Design Methodology Vol. 2 212–221 (Aug. 2009) c© 2009 Information Processing Society of Japan

