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Regular Paper

Structured Placement with Topological

Regularity Evaluation

Qing Dong†1 and Shigetoshi Nakatake†1

This paper introduces a new concept of regularity-oriented floorplanning and
block placement—structured placement, it takes the regularity as a criterion
of placement so as to improve the performance. We provide the methods to
extract regular structures from a placement representation in linear time, and
manage to evaluate these structures by quantifying the regularity as an objec-
tive function. We also construct a particular simulated annealing framework,
which optimizes placement topology and physical dimension separately and al-
ternately so that it attains a solution balancing the trade-off between regularity
and area efficiency. Furthermore, we introduce the symmetry-oriented struc-
tured placement to produce symmetrical placement. Experiments show that
the resultant placements achieve regularity without increased chip area and
wire length, compared to those by existing methods.

1. Introduction

As the system on a chip (SoC) technology progresses in recent years, both
digital and analog functional units are implemented on the same chip. Ther-
mal, parasitics, signal integrity and substrate issues are all taken into account,
so physical design tools should offer both digital and analog capabilities to the
mixed-signal integrated circuits. As an important process in the design flow, the
placement tool must not only provide a good compact layout result, but also
cover analog specific features, such as regularity. Regularity is crucial for analog
placement since it contributes to high routability and suppression of variation
on performance. An analog placement with less regularity might introduce more
bends and vias, consequently increase the interconnect parasitics, sometimes even
risk the circuit a disastrous performance. Figure 1 shows how the regularity af-
fects the routing channels. The routing channels in A, B and C are extracted
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Fig. 1 Routing channels with different regularity.

Fig. 2 Routing bends reduction by the placement with better regularity. Placement A(2) and
B(2) have better regularity than placement A(1) and B(1), thereby are more preferable.

from the same benchmark with different regularities. Since A has the best regu-
larity, therefor for a net connecting pin P1 and P2, the number of routing bends
in A is the smallest.

Figure 2 explains why a placement with good regularity is preferable. Two
placements for the same problem A are shown in Fig. 2, i.e., A(1) and A(2),
and A(2) has better regularity than A(1). Denote the top, bottom, left and right
edge of a block m as, m T , m B, m L and m R respectively. Given a two-pin net
connecting pin S in block m1 to pin T in m3, there are 16 ways to assign S and
T into different edges of corresponding blocks. For A(2) there are 3 assignments
that can introduce non-bend routing, i.e., assign S into m1 B and T into m3 T ;
assign S into m1 L and T into m3 L; assign S into m1 R and T into m3 R. While
for A(1) there is only one assignment, i.e., assign S into m1 B and T into m3 T ,
that can introduce non-bend routing. Furthermore, for those assignments which
can not avoid bends, A(2) still exceeds A(1). Red bold segments demonstrate the
routing when assigning S into m1 R and T into m3 L, and the bends in A(1) and
A(2) are 3 and 1 respectively. The problem B in Fig. 2 is a more practical case
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223 Structured Placement with Topological Regularity Evaluation

extracted from an industrial circuit. We can see that B(2) has better regularity
than B(1). To explain why B(2) is more preferable, without loss of generality,
we select a block k in the problem (colored in dark grey), and assume that k has
4 pins connected to 4 pads located at 4 corners of the chip respectively by 4 nets.
The pins of k are assigned so that the total routing bends of the nets in B(1)
are minimized (see Fig. 2, there are 8 bends in B(1)). However, we can see that,
even in such an assignment, the total number of bends of the 4 nets in B(2) are
still less than that of B(1) (total 5 bends in B(2)).

Many techniques for block placement have been studied in recent years, meth-
ods based on rectangle packing such as BSG, Sequence-pair, O-tree, B*-tree,
and TCG-S 3),5),8)–10),13),15) are widely used. These methods devote into gener-
ating placement with less area and wire length, while none of them concerns
the regularity. Even the constraint-driven approaches 11),16) for analog placement
just cope with the specified devices to suppress mismatch, they do not care the
regularity neither.

In this paper, we introduce a new concept of placement – structured placement,
it takes the regularity as a criterion of placement. With the proposed method,
the traditional goals of placement such as less area and wire length are preserved
as usual, meanwhile a placement can pursue the regularity automatically. Our
methods can easily cooperate with constraint-driven approaches to complement
the analog placement, constraints take care of specified devices, our approach
takes care of the rest part of a placement. In experiments, we applied our struc-
tured placement to industrial instances for analog block designs. The experiments
show that the resultant placements contain as many regular structures as possi-
ble without increased chip area and wire length. Symmetry-oriented structured
placement demonstrates its excellence by producing symmetrical results without
loss of concern about regularity. Our contributions are summarized as follows.
• We introduce the concept of structured placement. By quantifying and in-

corporating the topological regularity into evaluation, we make a placement
achieve regularity.

• We propose the methods to extract regular structures from a placement and
evaluate their regularities in linear time with respect to the number of blocks.

• We propose the dual simulated annealing procedure to optimize the place-

ment’s topological and physical properties separately and alternately, so the
searching converges at a solution with high regularity as well as high com-
pactness.

• We also propose a symmetry-oriented optimization procedure to generate
symmetry-oriented structured placement. We formulate the topological com-
plete symmetry structure, and design efficient move operations to maintain
the placement topological symmetry during the optimization.

The rest of this paper is organized as follows. Section 2 defines the prob-
lem. Section 3 describes the structures of a placement and the representations
used in this paper. Section 4 introduces the structured placement including the
extraction and evaluation of topological structures, and the optimization proce-
dure. Section 5 introduces the symmetry-oriented structured placement. Section
6 shows the experimental results. Section 7 concludes contribution and future
works.

2. Problem Formulation

Given a set of n rectangular blocks B = b1, . . . , bn, a set of m nets N =
N1, . . . , Nm between the n blocks. wi and hi are the width and height of each
block respectively, where i = 1, . . . , n. The bottom-left corner of each block is
denoted by (xi, yi). We assume that the bottom-left corner and the top-right
corner of chip locate at (0, 0) and (max{xi + wi},max{yi + hi}) respectively.
A placement is an assignment of (xi, yi) for each block such that no two blocks
overlap and all blocks are placed in the chip area. The objective of our work
is to generate a placement P with good regularity meanwhile minimize the chip
area and total wire length. The details of regularity and the cost function will
be presented in Section 4.

3. Topological Structure of Placement

3.1 Regular Structure of Placement
Generally speaking, structures of placement can be classified into array, row,

symmetry, and random, as shown in Fig. 3. Array- and row-structure are often
used in gate array and standard cell placement. Symmetry-structure is often
requested in analog layout for device matching. Rectangle packing based place-
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224 Structured Placement with Topological Regularity Evaluation

Fig. 3 Structures of placement.

Fig. 4 An image of analog placement and its structure.

ment such as Sequence-Pair 13) and B*-tree 3) has random-structure. Among
these structures, strong or weak relation with respect to the regularity is as
array > row > symmetry > random. (A > B means A has a stronger reg-
ularity than B.) On the contrary, with respect to the flexibility of the area
efficiency, the relation is as array < row < symmetry < random. Regularity
often contributes to suppression of variation of characteristics of same devices,
while flexibility does to yield smaller chip area by handling blocks of arbitrary
shapes. In a typical placement, strong regularity appears in the local. An image
of analog placement and its structure is shown in Fig. 4.

3.2 Sequence-Pair & Single-Sequence
A sequence-pair 12) is an ordered pair of Γ+ and Γ− to represent a placement.

Each of Γ+ and Γ− is a permutation of names of given n blocks. If block x is
the i-th in Γ+, we denote Γ+(i) = x, as well as Γ−1

+ (x) = i. Similar notation
is also used for Γ−. For every block pair (a, b), a is left to b (equivalently, b is

Fig. 5 A placement with its corresponding sequence-pair and single-sequence.

right to a) if Γ−1
+ (a) < Γ−1

+ (b) and Γ−1
− (a) < Γ−1

− (b). Analogously, a is below b

(equivalently, b is above a) if Γ−1
+ (a) > Γ−1

+ (b) and Γ−1
− (a) < Γ−1

− (b).
The single-sequence 7),17) can represent a placement’s topology without speci-

fying block’s name. It is defined as S(k) = Γ−1
+ (Γ−(k)), that is, S is the same

as Γ− when each block is renamed as Γ+ = (1, 2, . . . , n). For example, given a
sequence-pair, (Γ+,Γ−) = (b, d, a, c; a, b, c, d), the corresponding single-sequence
is S = (3, 1, 4, 2).

An example of a placement with its corresponding sequence-pair and single-
sequence are shown in Fig. 5.

4. Structured Placement

4.1 Extraction of Regular Structures
Firstly, we introduce the extraction algorithm of array- and row-structure from

a single-sequence S. Consider a subsequence X of the S with two or more
numbers. Let the minimum number and the maximum number in X be mX

and MX respectively. If MX − mX + 1 = |X|, X is referred as a rectangular
extractable subsequence. For example, given S = (1, 2, 7, 8, 9, 5, 6, 3, 4, 10), sub-
sequences (1, 2), (7, 8), (8, 9), (5, 6), and (3, 4) are rectangular extractable, as well
as (7, 8, 9),(7, 8, 9, 5, 6), (5, 6, 3, 4), (7, 8, 9, 5, 6, 3, 4) and (1, 2, 7, 8, 9, 5, 6, 3, 4).

Horizontal and vertical single rows are defined as follows; A rectangular ex-
tractable X such that xk+1 − xk = 1 (1 � k � |X|) is a horizontal single row.
Similarly, X such that xk+1 − xk = −1 (1 � k � |X|) is a vertical single row.
The row length is defined by |X|.
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225 Structured Placement with Topological Regularity Evaluation

Fig. 6 An example of the extraction of row structures.

If a rectangular extractable subsequence X is composed of two or more horizon-
tal single rows that are stacked vertically, X represents the topology of horizontal
multi-row. vertical multi-row is defined analogously. Furthermore, in a multi-row
subsequence X, if each row has the same length, X composes a topology of an
array. The length of a multi-row or an array is defined as the number of single
rows.

The extraction of horizontal multi-rows is described as follows. The illustration
of an example is shown in Fig. 6.
( 1 ) Convert a given sequence-pair into corresponding single sequence S.
( 2 ) Divide S into subsequences S1/S2/ · · · /Si/ · · · /Sl such that sk+1 − sk = 1

where sk, sk+1 ∈ Si. For example, given S = (1, 2, 7, 8, 9, 5, 6, 3, 4, 10), the
subsequences are (1, 2)/(7, 8, 9)/(5, 6)/(3, 4)/(10).

( 3 ) For each subsequence Si, let the minimum number and the maximum
number be mSi

and MSi
, respectively. In the example, {(m,M)} =

{(1, 2), (7, 9), (5, 6), (3, 4), (10, 10)}.
( 4 ) For each adjacent pair of subsequences, Si and Si+1, we say they are vertical

stackable if mSi
−MSi+1 = 1. Extract all vertical stackable pairs. The ver-

tical stackable pairs in the example are ((7, 8, 9), (5, 6)) and ((5, 6), (3, 4)).
( 5 ) Concatenate two or more stackable pairs if they have a common subse-

quence. As the result, the concatenated subsequence corresponds to a hor-

izontal multi-row. In the example, ((7, 8, 9), (5, 6), (3, 4)) forms a multi-row.
Note that if each single-row has the same length, the multi-row corresponds
to an array.

Theorem 4.1 (Row and Array Extraction) Given a sequence-pair, all the
multi-rows and arrays with the maximal length that are included in the sequence-
pair can be extracted in time complexity O(n), where n is the amount of blocks.
proof: First, we prove that the procedure described above can extract all multi-
rows and arrays with the maximal length from the sequence-pair.

In step (2), a set of horizontal single-rows is obtained. In step (4), since mSi
−

MSi+1 = 1, mSi
> MSi+1 . This means ∀su ∈ Si > ∀sv ∈ Si+1. Then, all blocks

in Si+1 are placed above all in Si.
Let Si and Si+1 be (a, a + 1, a + 2, . . . , a + p) and (b, b + 1, b + 2, . . . , b + q),

respectively. Because mSi
= a and MSi+1 = b+q, mSi

−MSi+1 = a− (b+q) = 1,
that is, a = (b + q) + 1. It is proved that (Si, Si+1) is rectangular extractable as
follows;
max(MSi

,MSi+1) − min(mSi
,mSi+1) + 1

= max(a + p, b + q) − min(a, b) + 1
= (a + p) − b + 1 = ((b + q) + 1) + p − b + 1
= p + 1 + q + 1 = |Si| + |Si+1|.

Therefore, Si and Si+1 compose two horizontal single-rows stacked vertically, and
their stacked structure is rectangular extractable, that is, a multi-row.

Then, consider a concatenation of a multi-row X = X1/X2/ · · · /Xk and a
subsequence Si. Si, X as well as Xj(j = 1, . . . , k) are the subsequences of S. X

and Si are adjacent in S as · · · /X1/X2/ · · · /Xk/Si/ · · ·. Note that, since X is a
multi-row, MX1 ≥ mX1 > MX2 ≥ mX2 > . . . > MXk

≥ mXk
.

From the condition in step (4), since mXk
− MSi

= 1, mXk
> MSi

, that is,
MX ≥ mX > MSi

≥ mSi
. Hence, all the blocks in Si are placed above all the

blocks in X.
Moreover, MX − mX + 1 = |X| and mXk

− MSi
= mX − MSi

= 1. By the
similar discussion as above,
max(MX ,MSi

) − min(mX ,mSi
) + 1

= MX − mSi
+ 1 = (|X| + mX − 1) − mSi

+ 1
= |X| + (MSi

+ 1) − mSi
= |X| + |Si|.
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226 Structured Placement with Topological Regularity Evaluation

Therefore, X and Si are stacked vertically, and their stacked structure is rectan-
gular extractable.

Oppositely, for a multi-row X = Sp/Sp+1/ . . . /Sp+q−1, assume that q is the
maximal extractable length starting from Sp, i.e. q is the row number of X,
and assume that each Si (i = p, . . . , p + q − 1) is a horizontal single-row, then
Si+1 (i = p, . . . , p+ q− 2) is stacked on Si vertically, and MSi

≥ mSi
> MSi+1 ≥

mSi+1 , so
max(MSi

,MSi+1) − min(mSi
,mSi+1) + 1 = |Si| + |Si+1|;

MSi
− mSi+1 + 1 = (MSi

− mSi
+ 1) + (MSi+1 − mSi+1 + 1);

mSi
− MSi+1 = 1.

So Si and Si+1 is recognized as vertical stackable pair in the step (4). Step (5)
concatenates all the subsequences in X into one sequence corresponding to a
multi-row, with the largest number of stacked single rows. Then X is extracted
with the maximal length.

This is why the above procedure attains the multi-row of the maximal length.
Analogously, vertical multi-rows can be obtained. In the extraction of vertical

multi-rows, S is divided into subsequences such that sk+1 − sk = −1 in step
(2). Besides, in step (4), we can also extract horizontal stackable pairs such that
MSi

− mSi+1 = −1 for Si and Si+1.
Then we explain the linear time complexity.
A sequence-pair can be converted into a single-sequence in linear time to the

amount of blocks. So step (1) has the time complexity of O(n).
Step (2) also needs an O(n) time complexity. After step (2), the S will be

divided into subsequences, the amount of subsequences is denoted by nsub, note
that nsub � n. The amount of blocks in each subsequence Si is denoted by ni,
and

∑
ni = n.

In step (3) for each subsequence Si, finding the minimum number and the max-
imum number needs the time complexity of O(ni), then the total time complexity
is
∑

O(ni), since
∑

ni = n, step (3) has the O(n) time complexity.
Step (4) and step (5) need the time complexity of O(nsub), since nsub � n, the

two steps also take time of O(n).
Each step of the extraction procedure needs the time complexity that is linear

to the amount of blocks, so the whole procedure takes the time complexity of

O(n). Then the theorem is proved.
4.2 Evaluation of Placement Regularity
The quality of a placement consists of topology quality and physical dimension

quality.
4.2.1 Topological Structure Value
We introduce the topological structure value, denoted by Vtop, which is measured

in terms of sizes and shapes of structures.
Let A and R be the sets of arrays and multi-rows, respectively. If an array a (a ∈

A) has k×l structure, the aspect of a is figured out by σ(a) = min(k, l)/max(k, l).
Analogously, we figure out the aspect σ(r) of a multi-row r (r ∈ R). Then the
topological structure value Vtop is defined as follows;

Vtop = α ∗
∑
r∈R

σ(r) + β ∗
∑
a∈A

σ(a), (1)

where α and β are coefficients to balance a trade-off among structure values.
4.2.2 Physical Dimension Cost
We also introduce the physical dimension cost, denoted by Cphy, which consists

of local compactness and local uniformity. Note that this cost can be calculated
before a compaction process of sequence-pair or single-sequence decoding.

In a multi-row r, a block assigned to the i-th row and the j-th column is denoted
by ri,j . Also, the width, the height and the area of ri,j are denoted by w(ri,j),
h(ri,j), and a(ri,j), respectively.
• Local compactness of a multi-row r,Ccmp(r).

If r is composed of horizontal single rows,

Ccmp(r) = max
i

(∑
j

w(ri,j)

)
∗
∑

i

max
j

(h(ri,j)) −
∑
i,j

a(ri,j), (2)

Otherwise,

Ccmp(r) =
∑

j

max
i

(w(ri,j)) ∗ max
j

(∑
i

h(ri,j)

)
−
∑
i,j

a(ri,j). (3)

• Local uniformity of a multi-row r, Cuni(r).
If r is composed of horizontal single rows,
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227 Structured Placement with Topological Regularity Evaluation

Cuni(r) =
∑

i

(max
j

(w(ri,j)) − min
j

(w(ri,j))), (4)

Otherwise,

Cuni(r) =
∑

j

(max
i

(h(ri,j)) − min
i

(h(ri,j))). (5)

The local compactness and the local uniformity as for arrays can be analogously
defined, but they are omitted here for the space. Finally, we define the physical
dimension cost Cphy as follows;

Cphy = α′ ∗
∑
r∈R

(Ccmp(r) + Cuni(r))

+ β′ ∗
∑
a∈A

(Ccmp(a) + Cuni(a)), (6)

where α′ and β′ are coefficients to balance a trade-off among costs.
4.3 Optimization Procedure
4.3.1 Dual Simulated Annealing
There is no limitation in usage of our evaluation in an ordinary simulated

annealing as long as Vtop and Cphy are incorporated into the objective such as
area and wire-length. However, sometimes, we may need somewhat constructive
features to successfully control the structures of a placement. In this section, we
propose a dual simulated annealing framework, and convey a constructive feature
to it. Our original objectives are Vtop and Cphy, that is, one is for the topology,
the other is for the physical dimension. The dual simulated annealing optimizes
topological and physical objectives separately and alternately at a step of each
temperature. The framework is as follows.

1: SP := GenerateInitialSP();
2: P := GeneratePlacement(SP);
3: for (Temperature decreasing) do
4: E := Etop(P);

/* topological optimization */
5: for (Topological structure searching) do
6: SP1:= MoveTopologicalStructure(SP);
7: P := GeneratePlacement(SP1);
8: E1 := Etop(P);
9: if IsAccept(temperature, E, E1) then
10: SP := SP1;

11: E := E1;
12: KeepBestSoFar(SP, E);
13: end if
14: end for
15: P := GeneratePlacement(SP);
16: E := Ephy(P);

/* physical optimization */
17: for (Physical structure searching) do
18: SP1:= MovePhysicalStructure(SP);
19: P := GeneratePlacement(SP1);
20: E1 := Ephy(P);
21: if IsAccept(temperature, E, E1) then
22: SP := SP1;
23: E := E1;
24: KeepBestSoFar(SP, E);
25: end if
26: end for

27: end for

The cost function Etop and Ephy will be described in section 4.3.3.
4.3.2 Moves
In the above framework, the topology is optimized between line 5-14, while

the physical dimension is done between line 17-26. We apply different moves
to the different optimization, MoveTopologicalStructure and MovePhysicalStruc-
ture, they are explained as a combinations of FullExchange and HalfExchange
introduced in13). For the completeness, we briefly describe them here.
• FullExchange: Pair interchange of two blocks in both Γ+ and Γ−.
• HalfExchange: Pair interchange of two blocks in either Γ+ or Γ−.
MoveTopologicalStructure: We execute HalfExchange on a sequence-pair to

generate another sequence-pair. This move changes the sequence-pair and opti-
mizes the topology.

MovePhysicalStructure: We apply FullExchange and HalfExchangeKeep-
ingStructure to a sequence-pair. MovePhysicalStructure optimizes the physical
dimension, meanwhile tries not to destroy the topology resulted from MoveTopo-
logicalStructure. The operation of HalfExchangeKeepingStructure is interchange
of two subsequences in both Γ+ and Γ−, it is designed to keep the inner topologies
of multi-rows and arrays. Since a multi-row and an array are both rectangular
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228 Structured Placement with Topological Regularity Evaluation

extractable, each structure corresponds to a subsequence of the sequence-pair.
Then, we apply a subsequence-exchange keeping blocks order inner the subse-
quences.

4.3.3 Cost Function
In the above framework, we use two cost functions, Etop and Ephy. Given a

placement P along with its sequence-pair, we calculate the primary objective such
as the chip area or the wire length. The chip area is calculated as the bounding
box area of P , and the wire length is measured by the half-perimeter estimation.
We describe about the primary objective in experiments, here it is denoted by
F (P ). Then both functions, Etop and Ephy, are calculated as follows;

Etop(P ) =
F (P )

g(Vtop)
, (7)

Ephy(P ) = F (P ) ∗ g(Cphy). (8)
g is a conversion that maps an input value to another value within [1.0, 1.1), and
it is defined as;

g(x) = 1.0 + 0.1 exp
(

xm ln(0.5)
x + ε

)
, (9)

where xm is an average value of {x} and ε is a value small enough to ignore. The
meaning of the function g is to be likely to degrade F (P ) within 10% to obtain
better topological structure value or less physical dimension cost.

5. Symmetry-Oriented Structured Placement

In analog circuits, partnered devices are often required to be placed symmetri-
cally because of their sensitivities, matching the partnered devices helps to avoid
both high offset voltage and degradation of power supply rejection ratio 6).We
propose the symmetry-oriented structured placement making a placement natu-
rally go to symmetrically.

5.1 Generation of Symmetry Structure
Firstly, we introduce the generation of symmetry structure without specifying

any pair of devices or name of any block. Let a sequence-pair of n blocks be
SP = (Γ+,Γ−), and let the reverse sequences of Γ+ and Γ− be Δ+ and Δ−
respectively. Γ+(k) (1 � k � n) and Δ+(n−k+1) correspond to the same block as
well as Γ−(k) and Δ−(n−k+1) do to the same block. Originally, a sequence-pair

Fig. 7 An example of sequence-pair with horizontal symmetry topology.

is defined by the arrangement of blocks from the left-side to the right-side over the
chip, we call such a sequence-pair LR-SP. On the other hand, if a sequence-pair is
defined from the right-side to the left-side, the sequence-pair is called RL-SP. We
notice that RL-SP is (Δ−,Δ+). If block x is the i-th in Δ−, we denote Δ−(i) = x,
as well as Δ−1

− (x) = i. Similar notation is also used for Δ+. In a placement
presented by RL-SP, for every block pair (a, b), a is left to b (equivalently, b is
right to a) if Δ−1

− (a) > Δ−1
− (b) and Δ−1

+ (a) > Δ−1
+ (b). Analogously, a is below

b (equivalently, b is above a) if Δ−1
− (a) > Δ−1

− (b) and Δ−1
+ (a) < Δ−1

+ (b). In the
example of Fig. 5, LR-SP is (Γ+,Γ−) = (b, d, a, c; a, b, c, d), while the RL-SP is
(Δ−,Δ+) = (d, c, b, a; c, a, d, b).

The RL-SP can also induce a single-sequence, which is defined as S(k) =
Δ−1

− (Δ+(k)). If the LR-SP and the RL-SP induce the same single-sequence,
that is,

Γ−1
+ (Γ−(k)) = Δ−1

− (Δ+(k)) (1 � k � n), (10)

then we say that the sequence-pair has a horizontal symmetry topology. Fig-
ure 7 shows an sequence-pair with horizontal symmetry topology. The LR-
SP(Γ+,Γ−) = (adcbe, daceb) and the RL-SP(Δ−,Δ+) = (becad, ebcda) intro-
duce the same single-sequence which is (21354), so the sequence-pair has a hori-
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Table 1 An example of single-sequence generation with a horizontal symmetry topology.

k x n − k + 1 n − x + 1 Γ− and Δ− check-list
initial (-, -, -, -, -) (1, 2, 3, 4, 5)

1 2 - - (2, -, -, -, -) (1, 3, 4, 5)
1 2 5 4 (2, -, -, 5, -) (1, 3, 4)
2 1 - - (2, 1, -, 5, -) (3, 4)
2 1 4 5 (2, 1, -, 5, 4) (3)
3 3 - - (2, 1, 3, 5, 4) (-)

zontal symmetry topology.
In the following, we introduce the generation of a single-sequence with an ar-

bitrary horizontal symmetry topology. A horizontal symmetry topology has a
single vertical axis. It can be also extended to a horizontal axis or plural axes.
( 1 ) Make a check-list of (1, 2, . . . , n). Set Γ+ as (1, 2, . . . , n), Δ+ as (n, n −

1, . . . , 1), Γ− and Δ− as empty, and k = 1.
( 2 ) Stop the procedure if all the numbers have been assigned to Γ−, that is,

the check-list is empty.
( 3 ) Assign an arbitrary number x in the check-list to Γ−(k), and remove x

from the check-list. This step assigns a block to an arbitrary position.
( 4 ) Assign n − k + 1 to both Δ−(x) and Γ−(n − x + 1), and remove n − k + 1

from the check-list. This step assigns another block into the symmetric
position(symmetrical to the block assigned in step (3)).

( 5 ) Increment k until Γ−(k) is not assigned yet, and return to step (2).
An example is shown in Table 1 and Fig. 8. Γ−(k) and Δ+(k) (or Γ+(k) and

Δ−(k)) correspond to a symmetry-pair. Note that if they correspond to the same
block, it means a self-symmetry.

Furthermore, in the table, x = 2 and x = 1 are chosen arbitrarily (see step
(3) above). If we take other choices, the resultant Γ− would be different. In
other words, we can control the generation of a single-sequence with a horizontal
symmetry topology by choosing these numbers.

Consider the implementation of a symmetrical placement from a sequence-
pair with a horizontal symmetry topology. Prior works 1),2) introduce a special
calculation to place a pair of blocks imposed a symmetry-constraint on so that
the y-axis becomes the center between them and their y-coordinates are the
same 1),2). But, it suffers from the time-consuming calculation of y-coordinates,

Fig. 8 An example of generation of symmetry structure.

because it often needs several iterations to align y-coordinates of a horizontal
symmetry-pair. However, we can give a single path calculation of y-coordinates of
symmetry-pairs as long as the sequence-pair has a horizontal symmetry topology.

In a placement with horizontal symmetry topology, if the y-coordinates of each
symmetry-pair are same, the placement is called vertical feasible.

Theorem 5.1 Given an asyclic vertical constraint graph Gv induced by a
sequence-pair with a horizontal symmetry topology, the calculation of all y-
coordinates of a vertical feasible placement satisfying Gv with a horizontal sym-
metry topology, is linear in the time complexity to the edge number of Gv.
proof: Because the given sequence-pair has a horizontal symmetry topology,
it is obvious that if blocks of each symmetry-pair have the same height, their
y-coordinates are also the same after the longest path calculation of the vertical
constraint graph.

Let each symmetry-pair be (b, b′). Give the maximum height of b and b′ to
both vertices corresponding to b and b′. Then, calculate the longest path from
the grand source to each vertex. Note that the longest path calculation is linear
to the number of edges. Therefore all the y-coordinates can be determined in the
time complexity to the edge number of Gv during searching the longest path.

5.2 Initial Placement for Optimization
A normal simulated annealing procedure is adopted to execute the symmetry-

oriented optimization, and it stars from a symmetrical initial placement. We
generate a single-sequence satisfying a topological complete symmetry, then as-
sign blocks into the single-sequence to generate the symmetrical initial place-
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ment. There are symmetry-pair numbers and self-symmetry numbers in the
single-sequence of initial placement, we set a limitation on the amount of self-
symmetry numbers in order to avoid too many self-symmetry blocks. If two
numbers consist one symmetry-pair, one number calls the other partner. In this
assignment, blocks are classified according to their size so that blocks of the
similar size belong to the same group and the partner is chosen from the same
group.

5.3 Moves
We propose new move operations to maintain the topological symmetry during

the SA process. For the chosen blocks a and b, our moves are explained as a
combination of FullExchange(a, b) and HalfExchange(a, b), same as mentioned
before.

In the following, we describe all the moves used in the symmetry-oriented
optimization. The simulated annealing controls the selection of moves according
to random values. The partner of block a is denoted by a′. If a is a self-symmetry
block, a′ is equal to a.
• RotateBlock(a): Rotate the block a by 90 degree,
• FlipBlock(a): Flip the block a.
• FullExchangeOfSymm(a, b): Let the partners of a and b be a′ and b′, re-

spectively. If a′ is equal to b, or if a and b are both self-symmetry blocks,
apply FullExchange(a, b). Otherwise, apply both FullExchange(a, b) and
FullExchange(a′, b′). Examples are shown in Fig. 9. Note in the Fig. 9 D, a

is a self-symmetry block, i.e. a′ is a. a and b are interchanged in both Γ+

and Γ−, then a′ (a itself) and b′ are interchanged similarly. This move will
change the sequence-pair but not the topology of the placement, since the
single-sequence is the same before and after the move.

• HalfExchangeOfSymm(a, b): Let the partners of a and b be a′ and b′, respec-
tively. If a′ is equal to b, or if a and b are both self-symmetry blocks, apply
HalfExchange(a, b). Note that in this exchange, two self-symmetry blocks
will be turned into a symmetry-pair, while a symmetry-pair will be separated
into two self-symmetry blocks. Examples are shown in Fig. 10 A and B. Oth-
erwise if a and b are not partner for each other, apply HalfExchange(a, b)
on Γ+(or Γ−) and HalfExchange(a′, b′) on Γ−(or Γ+). Examples are shown

Fig. 9 Moves Keeping Symmetry: FullExchangeOfSymm on two blocks a and b.

in Fig. 10 C and D. Note that in the Fig. 10 D, the self-symmetry block a

and another block b are interchanged in Γ+, then a′ (a itself) and b′ are
interchanged in Γ−. This move changes the placement’s topology, symmetry
partners are even separated into self-symmetry blocks like in Fig. 10 A, while
our cautious measures keep the placement still topological symmetrical after
the change.
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Fig. 10 Moves Keeping Symmetry: HalfExchangeOfSymm on two blocks a and b.

5.4 Cost Function
A symmetry structure can also be evaluated with respect to topology and

physical dimension. Given a symmetry x, |x| denotes the amount of total blocks
and |xself | denotes the amount of self-symmetry blocks. b′ denotes the partner
of the block b. The topology quality of a symmetry x is valued as:

Vtop(x) = |x| − |xself |, (11)
and we evaluate its physical dimension quality by defining the local symmetricity

as:

Csym(x) =
∑

b,b′∈x

|w(b) − w(b′)| ∗ |h(b) − h(b′)|. (12)

Since the regularity is also preferred, we incorporate the evaluation of symmetry
and regularity into the cost function as follows, so that not only do the resultant
placements exhibit excellent symmetry, they show good regularity as well.
• The Topological structure value:

Vtop = α ∗
∑
r∈R

σ(r) + β ∗
∑
a∈A

σ(a) + γ ∗ Vtop(x) (13)

where the first two items are the same as in formula (1), α, β andγ are
coefficients to balance a trade-off among structure values;

• The Physical dimension cost :

Cphy = α′ ∗
∑
r∈R

(Ccmp(r) + Cuni(r))

+β′ ∗
∑
a∈A

(Ccmp(a) + Cuni(a)) (14)

+γ′ ∗
∑
x∈X

Csym(x),

where the first two items are the same as in formula (6), α′, β′ andγ′ are
coefficients to balance a trade-off among structure values;

• Then cost function used in symmetry-oriented SA procedure is designed as
follows:

E(P ) =
Area(P ) · WLen(P )

g(Vtop)
∗ g(Cphy), (15)

where Area(P ) and WLen(P ) are the chip area and the wire length of P

respectively, g is the same as in formula (9).
5.5 Optimization under Constraints
Although our structured placement does not depend on constraint, the control-

lability of the initial placement makes it not difficult to combine the constraint-
driven approaches with ours. For a specified pair of blocks which should be
symmetrical, i.e., they need to satisfy one symmetry constraint, we assign them
into a symmetry-pair and keep them as the partner of each other, the flip and
rotate operations will be executed on both blocks. Since the placement’s topol-
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Fig. 11 Physical skewed symmetry structure.

ogy may change because of the moves, block and its partner might be separated
into self-symmetry blocks, blocks even exchange their partners with other blocks.
The moves that may violet the constraints (such as Fig. 9 D) are not allowed for
the blocks bonding with constraints. Then the specified blocks satisfy the con-
straints, putting other blocks symmetrically helps to thermal distribution and
symmetrical routing, meanwhile regularity is also preserved.

5.6 Physical Skewed Symmetry Structure
Because of the limitation of the block’s size or shape, a complete symmetry

placement may lead to too much compromise on chip area and wire length. Fig-
ure 11 shows an example with 5 blocks: a, a′, b, c, and d. a and a′ have the same

size and shape. A complete symmetry-oriented placer trends to get a placement
like Fig. 11 A, which is complete topological symmetry, but might be not so good
at the area usage. And there could be another solution like Fig. 11 B, which can
not be obtained by a complete symmetry placement, but the placement still looks
symmetrically because the area of it’s left side and right side are almost same.
In order to make improvement on such kind of topological complete symmetry
placement, we insert some dummy blocks into the single-sequence, and the size of
each dummy block is 0. In a symmetry structure, if a block’s symmetry partner is
a dummy block, we say that they are formulated as a Physical Skewed Symmetry
Structure.

During the generation of the initial placement and the optimization, the single-
sequence keeps being topological symmetry. The dummy blocks are ignored in
the symmetry coordinate calculation, so it is possible to generate a physical
skewed symmetry placement including non-symmetry parts. As a result we can
get a more compacted placement. In Fig. 11 C, dummy blocks b∗, c∗ and d∗

are inserted into the single-sequence, and form a topological complete symmetry
placement, finally can get the result like Fig. 11 B.

6. Experiments

6.1 Structured Placement
We tested our structured placement tool for analog block designs. We prepared

13 instances of analog block sets from industries. The amount of blocks and nets
of each data are shown in Table 2. To make our contribution distinct, we also
implemented a normal block placement based on sequence-pair, this placement
optimizes the primary objective described later by a standard SA. We compared
the results with respect to the chip area, the wire length, and the structure
coverage. The structure coverage is the ratio of the number of blocks composing
topological arrays or rows to the total number of blocks.

First, we set the primary objective as the chip area. The numerical data of
the results is shown in Table 2. For all instances, the ratio of the area by our
structured placement to that by the normal placement is less than 1.05, while the
structure coverage of the normal placement and that of our structured placement
are quite different, 7.9% and 78.4% on the average respectively. The resultant
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Fig. 12 Resultant placements of data A, B, and C, where the primary objective is the chip
area: “normal” and “struct” are normal placement and our structured placement,
respectively. It can be seen that the routing channels in the structured results are
simpler and more regular.

placements of data A, B, and C by both tools are shown in Fig. 12.
Second, we set the primary objective as the product of the chip area and the

wire length. The numerical data of the results are shown in Table 3. Compared
the results by our placement to those by normal placement, the ratio of the prod-
uct of the chip area and the wire length is 0.978 on the average. The introduced
regularity barely deteriorate the placement quality of chip area and wire length.
Besides, the structure coverages are 9.6% and 73.5% on the average respectively.
The resultant placements of data I and L by both tools are shown in Fig. 13.

Our method can obtain as many as possible regular structures, which conduce
to simple and regular routing channels. These results can be observed from
Fig. 12 and Fig. 13. For example, for data A in Fig. 12, it clearly shows that the
routing channels in the structured placements are simpler and more regular than

Fig. 13 Resultant placements of data I and L, where the primary objective is the product of
the chip area and the wire length.

those in the normal placement. Using these channels, the net bends during the
routing stage can be reduced, consequently introducing less vias and improving
the performance by reducing the RC delay of nets.

It is observed that our placement is successful for the primary objective while
the cost function is designed to contain a factor to degrade the primary objective.
The reason can be guessed that pair-exchanging of structures in dual SA enables
a solution to escape from a local minimum. An observation of the similar kind
is seen in the cluster-constraint-driven approach. However, the pair-exchanging
of structures in our method does not depend on any constraint. Actually no
matter if the placement is of constraint or not of constraint, those blocks under
no constraint in the placement are automatically grouped into multi-rows or
arrays, and the multi-rows or arrays are manipulated as single objects. That is
why although our structured placement did not use any cluster constraint, the
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Table 2 Numerical data and results of analog block designs, where the primary objective is the chip area: “normal” and “struct” are
normal placement and our structured placement respectively. “str-cover” is the ratio of the number of blocks composing
topological arrays or rows to the total number of blocks . “area ratio” is the ratio of the area by “struct” to that by
“normal”.

data # blocks # nets normal struct area ratio

area (µm2) str-cover (%) area (µm2) str-cover (%) struct/normal
A 23 44 432,876 9 432,595 96 1.00
B 53 90 848,114 0 857,419 96 1.01
C 122 91 98,868 5 93,720 72 0.95
D 60 46 75,078 17 75,594 87 1.01
E 113 80 238,392 4 235,128 68 0.99
F 32 22 65,367 19 68,150 69 1.04
G 54 49 63,248 15 64,904 72 1.03
H 90 58 87,870 9 88,960 77 1.01
I 60 36 10,265 3 10,192 82 0.99
J 101 78 39,619 5 40,591 84 1.02
K 66 29 168,866 12 170,990 79 1.01
L 64 49 53,710 0 54,108 88 1.01
M 166 105 72,945 5 71,714 49 0.98
Average 7.9 78.4 1.00

Table 3 Numerical results of analog block designs, where the primary objective is the product of the chip area and the wire length:
“wire-len” is the wire length. “area*wire-len ratio” is the ratio of the area*wire-len by “struct” to that by “normal”.

data normal struct area*wire-len

area (µm2) wire-len (µm) str-cover area(µm2) wire-len(µm) str-cover ratio
(%) (%) struct/normal

A 444,566 14,488 26 463,810 15,717 87 1.13
B 970,759 43,554 11 973,116 44,693 71 1.03
C 104,895 9,326 5 99,231 10,612 64 1.08
D 81,073 5,794 17 79,605 6,250 62 1.06
E 261,332 19,926 7 296,800 13,985 73 0.80
F 67,680 2,632 13 72,380 2,491 91 1.01
G 72,192 3,750 15 68,906 3,241 87 0.82
H 97,280 9,412 9 89,694 9,249 66 0.91
I 10,779 2,413 7 10,554 2,205 78 0.89
J 41,800 3,695 2 40,460 3,779 71 0.99
K 173,870 3,529 3 173,040 3,620 64 1.02
L 58,629 5,603 9 57,002 5,361 83 0.93
M 77,451 12,997 1 80,575 13,126 58 1.05
Average 9.6 73.5 0.978
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Fig. 14 Resultant placements of data O, where the primary objective is the product of the
chip area and the wire length: “normal” and “symmetry” are normal placement and
out symmetry placement, respectively.

similar effect can be observed.
6.2 Symmetry-Oriented Structured Placement
We also implemented a symmetry-oriented structured placement, and per-

formed it on 14 instances.
6.2.1 Comparison with normal placement
Firstly, we compare our symmetry-oriented structured placement with normal

one. Figure 14 shows a pair of resultant placements. The results of normal
placement are well compact, but not well organized in local area, and lack sym-
metry. Our symmetry-oriented structured placement is well compact either and
distinguished for the perfect symmetry even no constraint is given. Since we
combined the evaluation of row and array structures, our placement also shows
good quality on local compactness and regularity. Our placement is strictly lim-
ited to be symmetrical, but the chip area and the wire length are not necessarily
increasing heavily due to this limitation. The numerical results are shown in
Table 4. The normal placement and our placement are denoted by normal and
symm, respectively. The table includes the results with respect to the chip area
and the wire length by both placement. The results show, as we expected, our
placement of a complete symmetry structure could be obtained by the compro-
mise of at most about 5 % on average, compared to the normal placement. Note
that our symmetry-oriented structured placement is very fast, this owes to the
topological symmetry enabling the simple calculation of vertical coordinate.

6.2.2 Physical Skewed Symmetry
Secondly, we demonstrate the effectiveness of physical skewed symmetry struc-

ture. For the same instances, we generated the dummy blocks as the 10%, 20%,

Fig. 15 Resultant placements of data J and H, where “normal”, “complete symmetry” and
“physical skewed symmetry” are normal placement, our complete symmetry place-
ment and physical skewed symmetry placement respectively.

and 30% of the amount of input blocks, and tested each case. The numerical test
results are shown in Table 5. In this table, values to chip area and wire length
are ratios to the chip area and wire length by symm in Table 4. The columns
of “Best” show the best result among those of “dummy 0%”, “dummy 10%”,
“dummy 20%” and “dummy 30%”. We attained the 6% and 14% reduction on
average with respect to chip area and wire length. Figure 15 shows the results
by normal, complete symmetry and physical skewed symmetry. We are con-

IPSJ Transactions on System LSI Design Methodology Vol. 2 222–238 (Aug. 2009) c© 2009 Information Processing Society of Japan



236 Structured Placement with Topological Regularity Evaluation

Table 4 The numerical result of analog block designs, where“wlen” is the wire length, “normal” and “symmetry” refer to normal
placement and our symmetry placement respectively.

data # # normal symm (symm-normal)
/symm

blocks nets area(µm2) wlen(µm) time(s) area(µm2) wlen(µm) time(s) area wlen
(%) (%)

C 122 91 102,660 9,356 1,581 107,940 10,444 840 5.14 11.63
D 60 46 80,784 5,391 241 100,082 7,007 221 23.89 29.98
E 113 80 265,068 16,520 1,261 257,420 14,820 684 -2.89 -10.29
F 32 22 69,090 2,413 49 74,844 3,120 75 8.33 29.30
G 54 49 67,077 3,286 172 71,760 3,023 177 6.98 -8.01
H 90 58 94,105 9,680 700 103,968 9,786 497 10.48 1.10
I 60 36 12,683 2,465 236 13,008 2,530 238 2.56 2.61
J 101 78 42,452 3,392 1,868 45,456 4,692 1,148 7.08 38.31
K 66 29 173,631 4,124 632 193,953 3,699 534 11.70 -10.30
L 64 49 58,622 5,274 263 60,543 6,043 258 3.28 14.58
M 166 105 75,507 15,576 7,926 80,565 12,645 1,600 6.70 -18.82
N 60 44 159,799 3,715 463 163,681 3,010 352 2.43 -18.97
O 55 91 865,860 38,209 376 916,491 36,717 449 5.85 -3.91
P 22 53 543,753 8,390 29 497,151 10,107 56 -8.57 20.46

average: 5.93 5.55

Table 5 The numerical result of analog block designs using Physical Skewed Symmetry Structure.

data dummy 0% dummy 10% dummy 20% dummy 30% Best(0–30%)

area wlen #du- area wlen #du- area wlen #du- area wlen area wlen
(%) (%) mmy (%) (%) mmy (%) (%) mmy (%) (%) (%) (%)

C 100 100 12 91.2 111.7 24 102.3 106.6 36 98.6 113.3 91.2 100
D 100 100 6 91.1 75.7 12 91.2 83.2 18 85.5 81.7 85.0 75.7
E 100 100 11 124.9 104.7 22 125.5 98.4 33 114.2 99.8 100 98.4
F 100 100 3 96.9 130.4 6 98.3 103.9 9 96.4 83.3 96.4 83.3
G 100 100 5 109.0 97.3 10 99.2 108.5 16 98.6 108.7 98.6 97.3
H 100 100 9 89.3 103.3 18 95.9 96.6 27 94.4 96.4 89.3 96.4
I 100 100 6 84.2 80.6 12 90.3 82.6 18 96.5 76.0 84.2 76.0
J 100 100 10 89.8 81.4 20 90.6 85.3 30 89.2 75.9 89.2 75.9
K 100 100 6 112.5 84.4 13 100.8 85.4 19 99.4 91.8 99.4 84.4
L 100 100 6 99.8 98.5 12 100.8 95.4 19 102.5 106.7 99.8 95.4
M 100 100 16 102.2 107.3 33 98.6 73.2 49 99.6 94.7 98.6 73.2
N 100 100 6 94.0 141.3 12 98.7 118.5 18 101.7 109.4 94.0 100.0
O 100 100 5 98.2 93.2 11 129.5 153.9 16 96.2 105.3 96.2 93.2
P 100 100 2 106.1 113.9 4 104.6 63.9 6 100.2 73.2 100.0 63.9

average 99.2 101.7 101.9 96.8 98.0 94.0 94.4 86.6
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vinced that the insertion of the dummy blocks expands the solution space of the
symmetry-oriented structured placement, and helps to reduce the chip area and
wire length.

7. Conclusion

We introduced a new concept–structured placement, which makes use of the
regularity as a key criterion. The regularity is formulated in terms of topological
structures such as arrays and rows. We provided the extraction of the regular
structures from a single-sequence in O(n), as well as the way to evaluate the
structures. Also, we proposed a new SA framework, called dual simulated an-
nealing, where we convey a constructive feature to an SA framework so as to
optimize placements’ topological and physical properties separately and alter-
nately. Besides, we presented a symmetry-oriented structured placement which
can generate symmetrical placement with good regularity.

In experiments for analog block designs, the results by our structured place-
ment are arranged in an orderly manner, that is, it is composed of many regular
structures without increasing the chip area and the wire length, compared to the
existing placement. The experiments also demonstrate the effectiveness of our
symmetry-oriented structured placement.

We believe that there is no limitation in usage of our structured placement
in general placement and floorplanning framework. Actually, we are convinced
that it is necessary to combine the constraint-driven method with our structured
placement to develop a more practical tool. In future works, we will apply the
structured placement to analog floorplanning along with further practical exten-
sions.
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