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Macroblock Feature Based Adaptive Propagate

Partial SAD Architecture for HDTV Application

Yiqing Huang,†1 Qin Liu†1 and Takeshi Ikenaga†1

A macroblock (MB) feature based adaptive propagate partial SAD archi-
tecture is proposed in this paper. Firstly, by using edge detection operator,
the homogeneous MB is detected before motion estimation and three hardware
friendly subsampling patterns are adaptively selected for MB with different ho-
mogeneity. The proposed architecture uses four different processing elements to
realize adaptive subsampling scheme. Secondly, in order to achieve data reuse
and power reduction in memory part, the reference pixels in search window are
reorganization into two memory groups, which output pixel data interactively
for adaptive subsampling. Moreover, a compressor tree based circuit level op-
timization is included in our design to reduce hardware cost. Synthesized with
TSMC 0.18 um technology, averagely 10 k gates hardware can be reduced for the
whole IME engine based on our optimization. With 481 k gates at 110.5 MHz,
an 720-p, 30-fps HDTV integer motion estimation engine is designed. Com-
pared with previous work, our design can achieve 39.8% reduction in power
consumption with only 3.44% increase in hardware.

1. Introduction

The H.264/AVC video coding standard can achieve superior coding perfor-
mance than previous standards such as H.261, MPEG-2, H.263, MPEG-4, etc 14).
The superiority of this standard is due to many new techniques such as variable
block size (VBS), multiple reference frame (MRF), In-loop deblocking filter, con-
text aware binary arithmetic coding (CABAC) and so on. For example, in VBS
technique, the block matching process of motion estimation (ME) can be exe-
cuted on inter modes of 16×16, 16×8, 8×16 and 8×8 modes. In case of 8×8
mode, it be can further divided into 8×4, 4×8 and 4×4. So, the ME becomes
more accurate, which results in high compression rate. However, the adoption of
new techniques also bring about huge computation complexity 7), which makes
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Fig. 1 Bottom-up flow of VBS in hardware implementation.

hardware implementation a tough task.
In Ref. 8), it points out that the huge throughput of ME part makes it a must

to divide hardwired ME engine into integer motion estimation (IME) engine and
fractional motion estimation (FME) engine. In order to have high data reuse and
achieve complexity reduction 8), the implementation of VBS-IME in hardware is
based on ‘bottom-up’ flow, as shown in Fig. 1. The sum of absolute difference
(SAD) of small 4×4 mode is generated at first. The SADs of modes above 4×4
are all based on the accumulation of sixteen 4×4 SADs. In Ref. 2), it analyzes the
existing VBS-IME architectures and proposes two efficient IME engines, namely
propagate partial SAD (PPSAD) and SAD Tree architectures, for different ap-
plications. For high definition television (HDTV), since the contribution of small
inter modes (8×4, 4×8 and 4×4) is very trivial, many designers use mode re-
duction technique which removes the inter modes below 8×8 to save hardware
cost and computation 5),10). In Ref. 5), it optimizes the previous PPSAD 2) ar-
chitecture and provides a MRPPSAD which can achieve low hardware cost and
higher parallelism feature. With improved parallelism feature, the MRPPSAD
architecture is competitive to SAD Tree in HDTV application. So far, all the
previous works are fixed architectures which do not take the feature of the pic-
ture into consideration. In HDTV application, the feature among frames and
MBs may vary a lot because of large image size and variation among different
scenes. In Ref. 4), it uses Sobel edge detection method to analyze edge infor-
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mation within MB and multiple reference frame motion estimation (MRF-ME)
is adaptively controlled. In fact, the edges within MB is a direct reflection of
MB’s feature. In our paper, we proposes a edge detection based adaptive prop-
agate partial SAD architecture for HDTV application. Since we target HDTV
format, the mode reduction technique is also used in our proposed architecture.
The Prewitt edge detection operator is used to classify MB types and subsam-
pling patterns are selected adaptively for homogeneous ones. With this flexible
architecture and optimized memory organization, the whole IME’s complexity
and power consumption can be reduced. Moreover, a circuit optimization on
8×8 based processing element array is given out to reduce hardware cost of our
design.

The rest of paper is organized as follows. In Section 2, the impact of subsam-
pling and edge detection on image is analyzed. After that, the edge detection
based adaptive subsampling algorithm is given out. Section 3 describes the pro-
posed architecture for adaptive subsampling scheme. The memory organization
and circuit optimization are discussed in detail. Section 4 shows the experimental
results and comparisons with others’ works. The paper is concluded in Section 5.

2. Impact of Subsampling and Edge Detection

In the image processing filed, subsampling is a useful technique for both soft-
ware and hardware. The idea of subsampling algorithm is to use part of candidate
pixels to represent the original full pixel image. The are abundant subsampling
pattern in software field. However, in hardwired field, comparing with previous
standards which do not have VBS feature, the hardware data flow and data reuse
problems in VBS based H.264/AVC standard degrade the efficiency of many ir-
regular subsampling or fast motion estimation pattern such as N-queen 13) and
UMhexagon patterns 3). For VBS-IME engine, many designers prefer directly half
or quarter subsampling technique, which apply one subsampling pattern during
the whole IME process. Figure 2 is an example of three hardware friendly
subsampling patterns and full pixel pattern (pattern 4). Pattern 1 is the quar-
ter subsampling pattern which uses 1 pixel to represent four pixels (surrounding
3 pixels and itself). Pattern 2 and 3 are horizontal and vertical half subsampling
respectively. In these two patterns, each pixel represents itself and its horizontal

Fig. 2 Subsampling patterns and full pixel pattern.

Table 1 Quality comparison.

BR BD PSNR BD
Subsampling Direct Adaptive Direct Adaptive

Knightshields 720p 2.19% 0.23% −0.07 dB −0.01 dB
Crew 720p 0.55% 0.25% −0.02 dB −0.00 dB

Sunflower 1080p 3.54% 0.98% −0.08 dB −0.02 dB
Pedestrian 1080p 1.70% 0.39% −0.05 dB −0.01 dB

etc no B Slice, CAVLC, GOP is IPPP

or vertical neighbors. For VBS-IME, the candidate pixels for block matching
process are reduced 75% or 50% by adopting pattern 1 to 3. In Ref. 6), it also
adopts direct half subsampling in its design. However, the direct subsampling
will cause video quality degradation inevitably because of feature loss caused by
subsampling pattern. Table 1 shows the video quality comparison between full
pixel pattern and direct quarter subsampling pattern. The full search algorithm
which has the best video quality is used as a comparison. We use Bjøntegaard 1)

delta PSNR (PSNR BD) and delta bit rate (BR BD) to analyze the video qual-
ity. It is shown that, compared with full search, about 2.19% bit rate increase is
caused by direct subsampling in knightshields 720p case. For crew 720p, the bit
rate increase is less severe (0.55%). In case of HDTV1080p format, up to 3.54%
and 1.70% BDBR gain for Sunflower 1080p and Pedestrian 1080p respectively.
Considering the huge bit rate in HDTV application, such kind of increase is not
trivial.

Judging from the real HDTV pictures, there are many MBs in each picture and
each MB will have different feature according to the content of image. So, the
‘blind subsampling’ on all the MBs within the frame will consequently increases
the bit rate which is a reflection of matching accuracy. It is obvious that, for
homogeneous MB which has small pixel difference, the subsampling will not
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cause great damage. In case of nonhomogeneous MB, full pixel block matching
will ensure accurate ME process. In Ref. 4), it points out that many textures and
edges exist in nonhomogeneous MBs and edge detection is useful for MRF-ME
process. In Ref. 11), edge operator is used to filter out candidate INTRA modes.
In fact, edge detection is also an efficient way to classify MB types.

In our paper, in order to release extra computation and hardware resources
incurred by edge detection, we use Prewitt edge operator 15), which uses 6 pixels
to generate one gradient value.

Equation (1) is used to approximately calculate gradients of each pixel. The
Gx(i, j) and Gy(i, j) are gradient of P (i, j) in x (horizontal) direction and y
(vertical) direction respectively.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Gx(i, j) = |P (i − 1, j − 1) + P (i − 1, j) + P (i − 1, j + 1)

−P (i + 1, j − 1) − P (i + 1, j) − P (i + 1, j + 1)
Gy(i, j) = |P (i − 1, j − 1) + P (i, j − 1) + P (i + 1, j − 1)

−P (i − 1, j + 1) − P (i, j + 1) − P (i + 1, j + 1)

(1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

all Gx(i, j) < Thr X, HHMB

all Gy(i, j) < Thr Y, V HMB

both Gx(i, j) < Thr X and Gy(i, j) < Thr Y, DHMB

Otherwise, NHMB

(2)

Based on the Prewitt operator, our MB classification method is shown in
Eq. (2). An MB is defined as horizonal homogeneous MB (HHMB) if only all
its x direction gradients within that MB are smaller than a predefined threshold
(Thr X). Similarly, vertical homogeneous MB (VHMB) is the MB with only all
its y direction gradients within the Thr Y . For deep homogeneous MB (DHMB),
all its x and y direction gradients are within threshold. Otherwise, it is a non-
homogeneous MB (NHMB). In our paper, we treat motion in x and y direction
equally and set Thr X equal Thr Y . From exhaustive experiments, the thresh-
old here is empirically defined as 4 times of quantization parameter (QP). The
three hardware friendly subsampling patterns in Fig. 2 are selected adaptively for
different homogeneous MB. In detail, pattern 1 is applied on HMMB, pattern 2
is for VHMB and pattern 3 is used for DHMB. For NHMB, the original full pixel

pattern is used. The video quality improvement by our adaptive subsampling
algorithm is also demonstrated in Table 1. It is shown that the bit rate and
PSNR are greatly improved than direct subsampling.

In the hardware, the adaptive subsampling is not suitable for existing archi-
tectures such as PPSAD 2) and MRPPSAD 5) because of low data reuse. For
example, in each clock cycle, the MRPPSAD will load 16 pixel data from mem-
ory to processing element (PE) array. If current MB is a DHMB or HHMB,
50% pixels are wasted since they are not needed for SAD calculation in adaptive
subsampling algorithm. Moreover, modifications in the memory and architecture
levels are also required for the original design in order to have efficient hardware
data flow and low power dissipation.

3. Adaptive Propagate Partial SAD Architecture

3.1 System Architecture
Figure 3 is our proposed adaptive subsampling based propagate partial SAD

architecture (APPSAD). Since the proposed architecture is target for HDTV
application, the mode reduction in Ref. 5) is also adopted to save complexity and
hardware cost, which means that inter modes below 8×8 is discarded. Compared
with fixed PPSAD architecture in Refs. 2) and 5). Two major optimizations is
applied in the architecture level.

Firstly, in the previous PPSAD architecture, 64 PEs are grouped together
and used to accumulate one 8×8 SADs. In our architecture, the original fixed
structure is modified for adaptive algorithm. Figure 4 (a) is the intuitive imple-
mentation of adaptive algorithm on previous architecture. PEs with black color
are activated for all the patterns just like conventional PEs (we call it PE CONV)
while PEs represented with triangle, square or grey circle are pattern dependent
ones, which will be activated or deactivated according to different subsampling
patterns. Besides, since the number of partial SADs will vary based on different
subsampling patterns, some multiplexors are added into the architecture to en-
able adaptive feature. For example, when vertical subsampling is adopted, all the
PEs on even lines of Fig. 4 (a) are bypassed by configuring all the multiplexors.
It is obvious that in the intuitive way, many multiplexors are required, which will
intensify the complexity in control logic. The hardware size will also be dilated
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Fig. 3 Adaptive propagate partial SAD architecture.

consequently due to this operation. In our design, as shown in Fig. 3, we group
all the PEs according to their types. For example, all the PE CONV within one
8×8 block are grouped together and we use only one multiplexor to realize control
logic of adaptive algorithm. Thus, 75% number of multiplexors are removed.

Secondly, besides conventional PE (PE CONV), extra three different PEs exist
in our design, namely PE DHS, PE DVS and PE FPS, which is represented with
square, triangle and grey circle in Fig. 4 (a), respectively. Each of these elements

Fig. 4 8x8 PE array in PPSAD architecture.

are activated or deactivated at different subsampling patterns. In detail, PE DHS
is disabled in horizontal subsampling case and PE DVS is deactivated in vertical
subsampling case. As for PE FPS, it is only enabled for full pixel block matching
situation (NHMB case). For PE CONV, their status are always ‘ON’ no matter
what sampling pattern the system selects. In the detail design, we simply send
one disable signal to the PE to be deactivated and the output result of such
PE will turn to constant zero. So, under different subsampling patterns, the
architecture can enable corresponding PEs for the block matching process. Many
absolute difference calculations are saved and power dissipation is reduced in the
architecture level consequently.

3.2 Memory Organization
In the memory level, the original memory structure also needs to be modified

to improve data reuse. In Ref. 9), it uses a memory overlapping algorithm to
fully utilize pixel data loaded from memory. In our design, we divide memory
pixels into four types, namely even-row, odd-row, even-column, odd-column, as
shown in the left part of Fig. 5. All the square pixels in Fig. 5 are odd-row-odd-
column pixel (Poo); the triangle represents even-row-even-column pixels (Pee);
for circle and diamond symbols, they are odd-row-even-column pixel (Poe) and
even-row-odd-column (Peo) respectively.

In the second step, all pixels are grouped together according to their types.
Since there four patterns (including full pixel pattern) in our design, two memory
groups are needed to store them. For instance, in case of NHMB and VHMB,
the required pixel number (16 pixels per clock) for APPSAD architecture is two
times of HHMB and DHMB cases (8 pixels per clock). So, as shown in Fig. 5, two
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Fig. 5 Pixel classification and memory organization.

memory groups, namely Mem GA and Mem GB, are used in our design. Each
group contains several one-pixel width memory bars.

All the Poo (Part OO) and Peo (Part EO) are stored in Mem GA while the
other two type pixels (Part OE and Part EE) are stored in Mem GB. To im-
prove the IO bandwidth utilization and erase bubble clock cycles of PPSAD
based architecture 2), we further separate each group into 2 sub-group, namely
Mem GA 1, Mem GA 2, Mem GB 1 and Mem GB 2, and apply memory map-
ping algorithm 9). Figure 6 gives out an example. We assume that search
range size is 48 in width (W=48) and 32 (H=32) in height. Last fifteen rows
and columns are added for block matching on the boundary parts. One row
and column is added for hardware implementation. So, the search window size
is (W+16)×(H+16). Based on our pixel classification, the size of each part in
Fig. 5, for example Part OO, is 32×24. As shown in Fig. 6, we separate the last 8
rows of each part and apply memory overlapping algorithm 9) on both Mem GA 1
and Mem GA 2. So, the clock bubble in PPSAD based architecture is removed.
Each memory group contains eight memory bars, which makes 100% IO band-
width utilization for different subsampling patterns. In our paper, we only focus
on the IME’s on-chip memory and do not deal with pixel organization of off-chip

Fig. 6 Memory separation and overlapping.

frame memory. The original Level C or Level D 12) off-chip to on-chip data reuse
scheme and their corresponding scan order still can be used for the whole encoder
system. So, the required off-chip to on-chip memory bandwidth is the same with
Level C or Level D scheme. The proposed pixel classification can be done in the
encoder’s system level, which is not ascribed to the IME engine’s job.

Thirdly, the data flow of our architecture is different from previous design.
Figure 7 is our memory data loading flow for four types of patterns. To simplify
the explanation, Mem GA 1 and Mem GA 2, Mem GB 1 and Mem GB 1 are
merged together in our description.

As shown in Fig. 7, there are two stages in HHMB case. In the 1st Stage, the
Part Sel signal chooses data from Mem GA, which means that only Part OO
and Part EO are the candidate Parts. The pixel data are loaded interactively
from these two parts and Mem GB is set to idle state, which saves power of
Mem GB part. Based on our data organization style, the memory address control
is also simplified. The difference of succeeding two addresses is only the height
of Part OO. For example, we assume that there are h addresses in each bar of
Part OO. In 2nth cycle, one pixel row at address m of Part OO is loaded, in
the next cycle ((2n + 1)th cycle), another pixel row from Part EO is required for
the APPSAD structure based on pattern 2 of Fig. 2. The address of this pixel
row will be (m + h). The address generation of NHMB case and HHMB’s 2nd
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Fig. 7 Data flow of APPSAD architecture.

Stage can be traced by analogy. When all the pixels in Part OO and Part EO of
HHMB case are loaded, it turns to 2nd Stage, during which only Part EE and
Part OE are candidate parts and power dissipation for Mem GA can be saved.

For VHMB case, it also consists of two stages. In each clock cycle, both memory
groups are activated because the required number of pixels for APPSAD structure
is doubled (16 pixels) according to pattern 3 of Fig. 2. Specifically, in 1st Stage,
only Part OO and Part OE are candidate parts. Two pixel rows are loaded
simultaneously from low address to high address cycle by cycle. When all the
pixels are loaded, it turns to 2nd Stage, which only requires pixels from Part EO
and Part EE. The pixel assemble module (PA Module) combines the two rows
together and outputs the assembled 16 pixels to the APPSAD architecture.

For DHMB case, since subsampling is adopted both horizontally and vertically,
the pixels of different types are loaded one part by one part. So, there are four
stages in all. In each stage, the pixel row of specific part is loaded from low
address to high address cycle by cycle.

As for NHMB case, only 1 stage exists based on full pixel pattern in Fig. 2. As
shown in Fig. 7, in the 2nth clock, the pixel rows from Part OO and Part OE are
loaded simultaneously. In the succeeding (2n+1)th cycle, two rows from Part EO
and Part EE are loaded. The whole process continues until all the pixels in the
memory are loaded.

Furthermore, for HHMB and DHMB cases, the required number of pixels in
each clock cycle is 8, which is half of the VHMB and NHMB cases. So, only
one memory group is enabled within each stage and the power consumption of
another group can be saved. Therefore, the proposed pixel organization can keep
high data reuse while achieve lower memory power dissipation.

3.3 Compressor Tree based Eight Stage Circuit Optimization
The proposed APPSAD architecture can realize adaptive subsampling algo-

rithm by introducing some multiplexors and optimizing previous PE array. The
hardware size will also be dilated compared with original PPSAD structure. In
our previous work 5), we adopt circuit optimization to remove the adder within
each PE. However, one adder still exists in generating partial result at each
stage. In this work, we further improve our previous design by using 4-2 and
3-2 compressors to manually build up our compact architecture. Thus, all the
unnecessary adders within each stage are removed.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
IS = A ⊕ B ⊕ C

ICO = (A · B) + (A · C) + (B · C)
S = IS ⊕ D ⊕ ICI

CO = (IS · D) + (IS · ICI) + (D · ICI)

(3)

{
S = A ⊕ B ⊕ C

CO = (A · B) + (A · C) + (B · C)
(4)

In TSMC library, compressor tree is a widely used design ware to achieve com-
pact hardware structure. Generally, the 4-2 and 3-2 compressor trees are efficient
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Fig. 8 Compressor tree symbols.

in generating superior structure. In our design, we use these two compressor trees
to build up our compact architecture.

Figure 8 is the library symbol of these two compressor trees. For 4-2 com-
pressor trees (called CMPR42X1), there are five inputs and three outputs. A, B,
C, and D represent the 4 input bits data to be compressed. ICI is the immediate
carry in flag of previous compressor. The 4-bits input data are compressed into
2-bits of partial product (S, CO). An immediate carry-out output bit to the fol-
lowing compressor unit is needed. In CMPR42X1, it also contains an internal sum
(IS), which relays data during compression. The logic equation of CMPR42X1
is shown in Eq. (3). When multiple-bits width input is used, the CMPR42X1
can be configured to multiple-bits application. In Fig. 8 (c), an example of com-
pressing 4-bit width input data by connecting four 1-bit width CMPR42X1 is
shown. The principle of 3-2 compressor tree (CMPR32X1 in Fig. 8 (b)) is sim-
ilar to CMPR42X1 and logic equation of CMPR32X1 is shown in Eq. (4). The
configuration of multiple-bits width input on this design ware is also feasible.

Figure 4 (b) is one 8×8 PE block of Fig. 3 (left-up 8×8 block, for example), the
original architecture has 64 PEs arranged in 8 rows (0th to 7th) and 8 columns
(0th to 7th). Based on the absolute difference operation, each PE will generate
one residue value between reference pixel and current pixel. Like Ref. 5), we

do not directly get the result value from each PE. Instead, we only execute
the subtraction operation and keep the most significant bit (MSB) and absolute
difference result (abs) of each PE. So, like Ref. 5), the adders within each PE
are removed in our design. However, as shown in Fig. 4 (b), one adder still exists
in each 8×1 stage to accumulate not only the partial SAD of the current stage
but also the result from upper stage. Considering the 8-stage based APPSAD
structure, with the increase of stage, the hardware size and power consumption
of these adders become serious. In fact, the adders from the 1st stage to the
7th stage are all redundant and only the final result at the 8th stage is the
needed 8×8 SAD value. Thus, in our design, we propose a compressor tree based
circuit optimization for 8×8 based APPSAD structure. For one 8×8 PE block in
Fig. 4 (b), we have 64 abs (absXY: X=0 to 7, Y=0 to 7) and 64 MSB (renamed
as cXY: X=0 to 7, Y=0 to 7) as input data. Here, absXY and cXY represent
the abs and MSB value on the Xth row and Yth column of one 8×8 PE block.
Based on these input data, we manually build up our adder tree circuit to remove
all the unnecessary adders within the 8×8 PE block. The other three 8×8 PE
blocks in Fig. 3 are optimized in the same way.

Figure 9 is the proposed compressor tree based circuit optimization. Here
we show the first three stages as an example. Based on the pipeline feature
of proposed architecture, the whole 8×8 PE array has to be built up in eight
compression stages in similar way. The square dot in the graph represents the bit-
insert in head, which means that one bit is inserted in the beginning of the byte.
For example, in Fig. 9, by using CMPR42X1 to compress the Layer-1 in Stage-1,
we obtain two output bytes ([8:1] and [7:0]) and one carry-out bit (ico). Here, ico
is the 8th bit of output result; and we name [7:0] and [8:1] as CMPR42X1 S[7:0]
and CMPR42X1 CO[8:1] respectively. As shown in the bottom right corner of
Fig. 9, we combine the ico with CMPR42X1 S[7:0] to form CMPR42X1 S[8:0] as
one input of next compression layer. The square dot is drawn here to indicate
this operation. Similarly, the diamond dot in Fig. 9 represents the bit insert in
tail, which indicates that the combination of one bit and one byte occurs in the
end of this byte. For example, as shown in bottom right of Fig. 9, after the
Layer-1 compression of Stage-1, we combine c02 with CMPR42X1 CO[8:1] to
form CMPR42X1 CO[8:0] as the input of next compression layer. One diamond
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Fig. 9 8x8 PE circuit optimization.

dot is added here to indicate this operation.
In the Layer-1 of Stage-1, we use two CMPR42X1 to achieve the compression

of abs00 to abs07, c00, and c01. In the Layer-2 and Layer-3, a CMPR42X1 and
CMPR32X1 compressor are used to output the sum (O1 S[9:0]) and carry out
(O1 C[8:0]) of the first stage. In Stage-2 and Stage-3, the circuits are also built
on CMPR42X1 and CMPR32X1 based on similar way. From Stage-1 to Stage-
7, two registers are used to store temporary results of each stage. An adder is
applied at Stage-8 to output the final 8×8 SAD value.

4. Experiments and Comparisons

In this section, experiments and comparisons with other works will be given

Fig. 10 IME engine with APPSAD architecture.

Table 2 Synthesis result and comparison.

Designs SAD Tree 2) PPSAD 2) MRPPSAD 5) ours ours
Technology 0.18 um 0.18 um 0.18 um 0.18 um 0.18 um
Frequency 110.8 MHz 110.8 MHz 110.5 MHz 110.5 MHz 150 MHz

PE Array & Cur.MB 88.6 k 81.5 k 68.7 k 70.4 73.3
Whole Engine - - 465 k 490 k 509 k

Optimized - - - 481 k 498 k
Flexibility No No No Yes Yes

out. Firstly, we set specification as HDTV 720p@30 fps as a case study. The
search range is [−64,+63) in width and [−32,+31) in height. Fifteen bottom
pixel rows are added for block matching of search points on the last row. One
extra pixel row is included for hardware design. The final search window size
is 144×80. Figure 10 is the block diagram of whole IME engine based on our
APPSAD architecture. Eight parallel APPSAD structures are used and we only
adopt one reference frame. The Prewitt edge detector analyzes the homogeneity
of input MB. Based on the throughput requirement of our specification, the
minimum work frequency is 110.5 MHz . The synthesis result of our design is
shown in Table 2. We pick 110.5 and 150 MHz as two synthesis points and
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compare with previous designs. The memory is excluded in this table. It is
shown that compared with MRPPSAD architecture, the hardware cost of our
design is increased by 2.47% for a single PE Array with Cur.MB part and 5.37%
for the whole IME engine. Compared with full mode PPSAD and SAD Tree
architectures, our design still outweighs them in hardware cost because of mode
reduction method. Here, compressed tree based circuit level optimization is not
adopted. As for the whole IME engine under 110.5 MHz work frequency, our
design will incur 25 k gates mainly because of pixel assemble module, and extra
control logic.

Secondly, we apply compressor tree based circuit optimization on APPSAD
architecture. The optimized result of whole engine which consists of 8-set APP-
SAD architectures is shown in the second last line of Table 2. About 9 k and 11 k
hardware can be reduced for 8 parallel APPSAD architectures under 110.5 and
150 MHz frequency points respectively. So the overall hardware increase of whole
IME engine is reduced to only 3.44% compared with MRPPSAD architecture.

Thirdly, we pick two typical HDTV 720p format sequences to test gate level
power consumption. Table 3 and Table 4 demonstrates the percentage of four
types of MB within first 6 frames. It is shown that spatial homogeneity always
exists in video sequences and there are more homogeneous MBs in Crew 720p
than Stockholm 720p sequence. Since the HHMB and DHMB cases only have
one memory group activated, with higher HHMB and DHMB ratio, more power
can be saved in the memory part of Crew 720p sequence. Figure 11 is the
power consumption comparison between our work and previous design. In order
to make a clear comparison, no speed-up algorithm such as coarse-to-fine search
is adopted. The power consumption of SRAM is demonstrated individually be-
sides the whole encoder’s power dissipation. Since we rearrange the reference
pixel data into two memory groups and only one memory group is enabled in
case of HMMB and DHMB situation, the overall memory power consumption is
lower than previous design which use all the memory bars. About 11.6% and
24.9% power consumption in memory part can be reduced for stockholm 720p
and crew 720p, which is in accordance with the ratio of homogeneous MBs in two
sequences. Apart from memory, the adaptive architecture can also adjust itself
for MB with different homogeneous feature, which reduces power consumption

Table 3 Ratio of homogeneous MB in Stockholm.

Stockholm HHMB (%) DHMB (%) VHMB (%) NHMB (%)
1st Frame 15.33 47.75 7.13 29.79
2nd Frame 15.44 47.41 6.77 30.38
3rd Frame 14.72 47.58 7.02 30.68
4th Frame 15.30 48.11 6.86 29.73
5th Frame 15.25 48.00 6.61 30.14
6th Frame 15.22 47.63 6.88 30.27
Average 15.21 47.75 6.88 30.17

Table 4 Ratio of homogeneous MB in Crew.

Crew HHMB (%) DHMB (%) VHMB (%) NHMB (%)
1st Frame 5.86 77.80 10.30 6.04
2nd Frame 5.25 81.80 8.58 4.37
3rd Frame 5.36 81.72 8.75 4.17
4th Frame 5.19 81.77 8.88 4.16
5th Frame 5.11 81.94 8.91 4.04
6th Frame 4.91 82.72 8.36 4.01
Average 5.28 81.29 8.96 4.47

Fig. 11 Power consumption comparison.

in architecture level. Overall, 25.4% and 39.8% power dissipation is reduced for
stockholm 720p and crew 720p sequences.

Furthermore, the architecture level’s flexibility in our design is meaningful for
power aware system according to different applications. Trade-off between video
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quality and power consumption can be easily controlled by our proposed APP-
SAD architecture.

5. Concluding Remarks

The Prewitt edge detection is used to analyze the homogeneity of macroblocks
and three hardware friendly subsampling patterns are adaptively selected for the
block matching process of integer motion estimation. With adaptive subsampling
algorithm, the computation complexity for homogeneous MB is relieved and the
video quality is maintained compared with direct subsampling method. The
proposed APPSAD architecture realize the adaptive subsampling algorithm by
introducing four different processing elements. To improve the data reuse and
reduce power consumption, the reference pixels are classified into four types and
two memory groups are used. Furthermore, a compressor tree based circuit
optimization is proposed in our architecture, which averagely reduces 10 k gates
hardware for the whole IME engine. Based on our APPSAD architecture, an
HDTV 720p@30 fps IME engine is implemented with 481 k logic gates and it can
achieve 39.8% reduction in power dissipation at 110.5 MHz.
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