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To perform functional formal verification, model checking for assertions has
attracted attentions. In SystemVerilog, assertions are allowed to include “local
variables”, which are used to store and refer to data values locally within asser-
tions. For the purpose of model checking, a finite automaton called “checker”
is generated. In the previous approach for checker generation by Long and
Seawright, the checker introduces new state variables corresponding to a local
variable. The number of the introduced state variables for each local variable,
is linear to the size of a given assertion. In this paper, we show an algorithm
for checker generation in order to reduce the number of the introduced state
variables . In particular, our algorithm requires only one such variable for each
local variable. We also show experimental results on bounded model checking
for our algorithm compared with the previous work by Long and Seawright.

1. Introduction

Hardware systems have continued getting larger in scale and more complex,
and it becomes more and more important to verify systems at their design pro-
cess. For this purpose, assertion-based verification has been proposed. Assertion-
based verification is a method, in which specifications are described as assertions
and the assertions are checked in dynamic method (e.g., simulation) or in static
method (e.g. model checking). An assertion is a certain kind of a temporal logic
formula, which expresses temporal relationship between boolean formulas. There
are standardized assertion description languages such as SystemVerilog Assertion
(SVA) 1), Property Specification Language (PSL) 2).

Model checking is a formal verification method, which checks exhaustively
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whether a given assertion holds on a given design. Model checking has attracted
attentions as a verification method for assertion-based verification.

In SVA, we can use local variables in assertions. Local variables are used to
store and refer to data values locally within assertions and are used, for example,
for checking data consistency of a FIFO system.

In this paper, we focus on model checking of assertions with local variables. In
order to perform model checking, the given assertion is converted into a finite
automaton called “checker”. This conversion procedure is called “encoding asser-
tions”. Long and Seawright have proposed an algorithm for converting an SVA
assertion into a checker 8). In order to handle local variables, their algorithm
introduces “storing variables”, or “storage”, to store data values in a generated
checker. Here, we distinguish local variables used in an assertion from the corre-
sponding storing variables in a generated checker. The algorithm by Long and
Seawright produces a checker with storing variables of which number is linear to
the size of the assertion.

We can expect that reducing the number of storing variables in a checker can
improve the computational requirement in model checking. In this paper, we
show a checker generation algorithm for verifying assertions using only one storing
variable for each local variable. Since our algorithm does not change much the
number of computational steps required in the model checking procedure, the
improvement in terms of run-times is limited. In this sense, the contribution of
this paper is mainly the improvement in memory requirement.

We show experimental results for comparing with the previous work by Long
and Seawright. In this experiment of bounded model checking, we check data
consistency for a delay circuit and a FIFO circuit and measure the verification
time and memory requirement. Our algorithm improved by 10–30% on memory
requirement for both the delay circuit and the FIFO circuit.

We explain the related works in Section 2, assertions we handle in this paper in
Section 3, our algorithm in Section 4, and show experimental results in Section 5,
respectively. Section 6 concludes this paper.

2. Related Works

In some previous works 9),10), an encoding algorithm for assertions without
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local variables has been proposed. As a theoretical result, the model checking
problem for SVA assertions with local variables has been shown as EXPSPACE-
complete 11).

Long and Seawright have proposed an encoding algorithm for assertions with
local variables 8). In their work, they restrict that the substitution for local
variables occurs only at the left-hand side of implication operators. In their
algorithm, they introduce a new input variable for each branch originated from
“or” operator and “[∗1:$]” operator. As is stated in Section 1, they introduce
storing variables, which correspond to local variables in a given assertion. They
deploy a cascade of storing variables for local variables. The number of storing
variables for each local variable is linear to the size of an assertion.

Furthermore, the assertion assumes “abstract syntax” of SVA 1), where a de-
scription such as “##100” is expanded by one hundred of ’##1’s. This implies
100 storing variables in a checker for each local variable. As compared with their
work, our algorithm requires only one storing variable for each local variable.

In a previous work 12), a checker generation method was proposed, in which the
number of storing variables for a local variable is one. This method, however,
can handle assertions which have only one substitution for a local variable at
the left-hand side of implication operators. It also assumes only bounded model
checking as a formal verification method.

3. Assertions

In this section, we explain the syntax, semantics and restriction for assertions
we handle.

3.1 Syntax
We define the syntax S of assertions as in Fig. 1, where b is a logical formula,

v is a local variable name, e is a expression. A, P and R are called assertion,
property and sequence respectively. Note that, in particular, the implication
operator |-> can be used only once.

In this paper, we assume “concurrent assertion”, where the assertions are re-
quired to be checked at every cycle.

We call the left-hand side of an implication operator “LHS”, and the right-
hand side “RHS”. If there is not any implication operator in a sequence, then

A ::= assert property P
P ::= R // sequence

| (P ) // property
| (R |-> R) // implication

R ::= b // logical formula
| (1, v = e) // substitution for

// local variables
| (R) // parenthesis form
| R ##1 R // concatenation
| R ##0 R // fusion
| R or R // “or” form
| R [*0] // null repetition
| R [*1:$] // unbounded repetition

Fig. 1 Syntax S of assertions.

the overall sequence is “RHS”.
The syntax S is a subset of an abstract syntax of SVA 1). All SVA descriptions

can be written by using the abstract syntax. For example, a cycle non-overlapping
implication operation “R1 |=> R2” can be described as “(R1 ##1 1) |-> R2”,
and null or unbounded repetition operation “R1 [∗0:$]” can be described as “R1

[∗0] or R1 [∗1:$]”.
Our working example is as follows:

(a, n = 0) ##1 (b, n = n + 1)[∗1 : $] ##1 c

|-> c [∗1 : $] ##1 (d & n ! = 3) (1)

3.1.1 Abstract syntax and Syntax S
Since syntax S is a subset of the abstract syntax, some SVA formulas cannot be

described. For example, an operator “intersect” which expresses product for two
sequences is not allowed in syntax S. Thus, operators “within” and “throughout”,
which are defined by the operator “intersect”, cannot be described.

This can become a problem, when we write assertions for practical designs. It
is, however, known that handling “intersect” operator causes high computational
complexity in model checking. Even without local variables, model checking
assertions with “intersect” operator is known to be an EXPSPACE-complete
problem 11). Development of an efficient algorithm remains a future work.

All of the other operators, which include cycle non-overlapping implication
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• “R1 |-> R2”
⇐⇒ For any word u0..j such that R1 holds, R2 holds for the word uj...

• “b”
⇐⇒ The truth of logical formula b is determined over the first letter of the word u.

• “R1 ##1 R2”
⇐⇒ There exist words x,y such that R1 holds for the word x and R2 holds for the word
y and u = xy.

• “R1 ##0 R2”
⇐⇒ There exist words x,y,z such that R1 holds for the word xy and R2 holds for the

word yz and u = xyz and |y| = 1.
• “R1 or R2”

⇐⇒ R1 holds for the word u or R2 holds for the word u.
• “R1 [∗0]”

⇐⇒ |u| = 0.
• “R1 [∗1:$]”

⇐⇒ There exists i (i ≤ 1) such that u = u1u2 · · ·ui and R1 holds for the all words
u1, u2, · · · , ui.

Fig. 2 Satisfiability of each description of syntax S.

operator and null or unbounded repetition operator, can be described in syntax
S.

3.2 Semantics
Assertions are defined using logical variables. Since we handle finite automata,

we relate logical variables in the assertions to alphabet for the finite automata
as follows: a letter l in alphabet Σ is defined as a combination of assignments for
logical variables used in the assertion. For example, if logical variables a, b and
c are used, then Σ is {000, 001, 010, · · · , 111}. Then, the truth-value of a logical
formula without temporal operators can be determined over each letter.

In the following, we handle only finite words.
At first, we explain briefly the satisfiability of each description in syntax S as

shown in Fig. 2 for a given finite word u. Here, x, y, z are finite words.
The first letter of a word w is 0th letter of w. Let ui..j (i ≤ j) be the word

which is the sequence of letters from ith to jth in the word u, ui.. (i ≥ 0) be the
word which is the sequence of letters from ith in the word u, |u| be the length of
the word u.

The rigid semantics of SVA is shown in Annex E of literature 1). In this section,
for brevity, we overview it with the terminology of a nondeterministic automaton,
rather than in the style of the original semantics.

Fig. 3 A finite automaton for the LHS.

Since an assertion P can be regarded as a certain kind of regular expression, it
can be converted into a nondeterministic automaton, except for substitution for
local variables and reference to them.

Figure 3 shows a finite automaton corresponding to the LHS in assertion (1),
where the double circle means an accepting state, and the state labeled by f

is a failing state. The structure corresponding to (b, n = n + 1)[∗1 : $] in the
LHS may not look usual. This is introduced in this form so that we can use this
automaton in the explanation of our algorithm.

Suppose that we have a finite sequence u of a given design and try to check
whether assertion P does not fail for u. We can construct a nondeterministic
automaton MP for P . This automaton has an accepting state set A and a failing
state set F . A failing state in F is the state to which MP makes a transition for
inputs such that no explicit transition is specified in the description of P .

The problem to solve is basically equivalent to that of checking whether none
of the suffix of u fails in MP . The reason we have to consider all the suffixes
is that we assume concurrent assertions. Here, for word u = u′u′′, we call u′

“prefix” and u′′ “suffix”.
Furthermore, suppose that w, which is a suffix of u, is given as an input sequence

for MP , then we have multiple state transition sequences, or “threads” in MP .
Figure 4 shows how multiple threads occur for word w, when it is given to

the finite automaton in Fig. 3.
If some thread reaches an accepting state for every suffix w, then it is said that

P “holds” for u. If “all” of the threads reach failing states for some suffix w, then
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Fig. 4 Multiple threads for word w.

it is said that P “fails” for u. Otherwise, that is, if some of threads reach failing
states and the rest of them reach the state which are neither accepting states nor
failing states for every suffix w, then it is said that P is “pending” for u.

In this paper, we focus on checking whether an assertion fails or not, that is,
we distinguish “fails” from “pending or holds”. The other types of check can also
be handled with some modification.

As for implication operators, we have to be careful about its semantics. Let us
consider an assertion P |-> Q. To check whether P does not fail for u, we have
to check the following for every suffix w of u. Here we define w′ = w0..j and
w′′ = wj... Note that the last letter of w′ is the first letter of w′′.

For every w′ which has a thread ending at an accepting state of MP ,
there exists a thread for w′′ ending at some state which is not in the
failing state set of MQ.

In other words, we have to check whether, for every w′ accepted by MP , MQ

does not fail for w′′.
Figure 5 shows how the LHS and the RHS in assertion (1) are converted to

two automata MP and MQ, and how they behave for a given word w. As for
substitutions, we explain soon in this section. Since the LHS and the RHS of the
assertion must be treated separately, the two automata are not concatenated at
this step, but the edge between state 3 and state 4 in the both automata should
be regarded as the same edge.

The SVA semantics related to local variables requires us to handle substitutions
along each thread separately. Suppose that MP has two threads t1 and t2 for an

Fig. 5 Two automata for P |–> Q.

input sequence w. If t1 has a substitution for a local variable x at the second
cycle and t2 has at the third, then the value to be stored at x can be different,
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when evaluation on MQ starts. These two threads must be handled separately.
Figure 5 also shows how the results of substitutions in MP should be propa-

gated to MQ for a given word w. This example shows substitutions along three
threads.

This way of handling threads can cause a problem in generating a checker. If we
determinize MP with a standard technique such as subset construction, threads
are merged and a substitution at a cycle can be overwritten by that at another
cycle, which leads to an incorrect result.

3.3 Restriction
Assertions we handle must satisfy the following restriction.

( 1 ) The substitution for local variables occurs only at LHS.
( 2 ) In “R1 |-> R2”, R2 must not be R[∗0].
( 3 ) In “R1 ##0 R2”, either R1 or R2 must not be R[∗0].

These restrictions reduce the expressive power, but we think it is rare to de-
scribe assertions which do not satisfy the restrictions. In particular, assertions
which do not satisfy the restriction (2) or (3) always fail for any sequences accord-
ing to the semantics. Therefore, it makes no sense to describe these assertions.
Furthermore, as for restriction (1), for example, there is no such example listed
in the section of “Assertion Cookbook” in one of the standard textbooks 5) on
assertion-based design.

4. Algorithm

4.1 Overview
The output of our algorithm is a set of transition functions of a checker corre-

sponding to a given assertion.
We generate a finite automaton corresponding to the assertion, and then, tran-

sition functions. Since assertions can be regarded as regular expressions, we
can use a standard recursive algorithm for conversion to a nondeterministic au-
tomaton, which can be found, for example, in some standard textbook 13). In
order to perform model checking, the automaton must be determinized as in
automaton-based model checking (See, for example, literature 3)). Although the
determinization is done during automaton generation, this is the basic approach
done in the previous works 8)–10),

We also take the approach in this direction. The difference lies in how to
handle substitutions in the LHS, and how to implement the mechanism to check
the “always” property, that is, to check whether the assertion holds at every
cycle. The latter is the requirement for concurrent assertions.

The algorithm is composed of 3 main steps (1)–(3) shown in the below. At
each step, the following sub-steps are performed.
( 1 ) Conversion to a finite automaton.

( a ) Conversion from an assertion to a nondeterministic finite automaton.
( b ) Storing information related to substitutions in the assertions.
( c ) Determinization of the automaton corresponding to the LHS.
( d ) Concatenation of the two automata corresponding to the LHS and

the RHS.
( e ) Modification of the automaton for handling the “always” property.

( 2 ) Generating transition functions from the automaton.
( a ) Determinization of the automaton.
( b ) Addition of substitutions to the transition functions.

( 3 ) Generating a temporal logic formula for model checking.
Before explaining the details of the above procedures, we show the key ideas

together with an example.
4.2 Key Ideas
Naturally, the automata we can obtain from assertions such as those shown in

Fig. 5, can be used for checker generation. We modify them to produce a checker.
In the following, we refer to the storage to store data values in a generated

checker as “storing variables”. They correspond to local variables in an SVA
assertion. We distinguish local variables from storing variables, depending on
where the variables are used.

In order to determinize the automaton corresponding to the LHS, we introduce
new logical variables, which are regarded as input variables. These variables are
used to determinize the non-deterministic branches caused by “or” operator and
“[∗1:$]” operator in the LHS. Implicitly assumed “always” for SVA concurrent
assertions is handled similarly by introducing a new logical variable which selects
the starting cycle of the generated checker.

Figure 6 shows how a new logical variable bREP is introduced to determinize
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Fig. 6 Determinization by new input variables.

a nondeterministic branch in the LHS. The figure also shows how threads occur
for word w, according to the combinations of the values for the logical variable
bREP . Note that, when values for the logical variable is fixed at each cycle, only
one thread is executed. For example, if the values of bREP are ∗ ∗ 110, then the
uppermost thread runs for word w, where ∗ represents either 0 or 1 (don’t care).

Figure 7 shows the result of concatenating of the two automata of the LHS
and the RHS. Note that the edge from state 3 to state 4 is merged. This figure
also shows how a logical variable, bSTART , is introduced for selecting the starting
cycle of the generated checker. An additional transition function forces the logical
variable to become 1 only once along any possible sequence on input variables
(See Section 4.4 for the detail).

In general, the new logical variables are introduced so that, once values for the

Fig. 7 A resulting automaton.

logical variables are fixed at each cycle, the checker starts only once, and only
one thread of the automaton corresponding to the LHS is executed. As a result,
overwriting to a local variable from different threads can be avoided. This is also
the reason that only one storing variable is necessary for each local variable.

A model checker checks whether a given property holds for each of all of possible
input sequences. Thus, all of possible threads starting at an arbitrary cycle are
verified.

4.3 Conversion to a Finite Automaton
(a) Conversion to a nondeterministic finite automaton

We convert a given assertion into a nondeterministic automaton. Since an
assertion can be viewed as a kind of a regular expression, this can be done in
rather a straightforward recursive manner.

Its acceptance condition, however, is different from the conventional definition.
What we are interested in is to check whether a behavioral sequence of a design
does not fail the assertion. Thus, we introduce a special state called a failing state
in this automaton as we explained in Section 3.2. If some of the threads reach
some accepting state for any sequence (behavior) of designs, then the assertion
is satisfied.

Since transitions which do not have any next state are not allowed for model
checking, we add self-loop transitions labeled with 1 (true) for all the accepting
states and the failing state in the resulting automaton. By constructing the
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automaton appropriately, we can have only one failing state.
(b) Storing information related to substitutions

For description “(1, v = e)” which indicates the substitution for a local variable,
we keep records of the following items in order to generate a transition function
including a storing variable at a later step.
• Local variable name v

• Substituted expression e

• Transition at which the substitution occurs, which includes a current state,
a next state and a transition condition

(c) Determinization of the LHS automaton
Next, we determinize the nondeterministic automaton corresponding to LHS.

The determinization can be achieved by introducing new logical variables for non-
deterministic branches. We show how to handle the nondeterministic branches
originated from “or” operator and “[∗1:$]” operator which occur in the LHS.
Note that the conversion result for these operators at the RHS remains as a
usual nondeterministic automaton at this step, and is determinized when transi-
tion functions are generated. Here, “trans(i, j, e) is true for a transition” means
that the transition has current state i, next state j and transition condition e.

For description “R1 or R2”, first we make automata MR1 and MR2 correspond-
ing to R1 and R2 respectively. In order to select MR1 or MR2 deterministically,
we introduce a new logical variable bOR. Let q0 be an initial state of MR1 .
For any transition such that trans(q0, s, cond) is true for MR1 , we modify the
transition condition cond to a new transition condition “cond ∧ bOR” as shown
in Fig. 8. For MR2 , we modify the transition condition cond to a new transi-
tion condition“cond ∧ ¬bOR” similarly. Intuitively, if bOR = 1 holds, then the
automaton selects MR1 , and if bOR = 0 holds, then the automaton selects MR2 .

For description “R1 [∗1:$]”, we at first make automaton MR1 and add a copy
state corresponding to an initial state. Next, we add transitions for repetition of
R1 by making transitions to the copy state from the states which can reach some
accepting state of MR1 with only one transition. Note that the copy state with
a transition to some accepting state comes to have a self-loop, based on this way
of construction.

In order to select “repetition of R1” or “exiting from R1” deterministically, we

Fig. 8 “R1 or R2”.

Fig. 9 “R1 [∗1:$]”.

introduce a new logical variable bREP . Let S be the state set from which the
automaton can reach one of accepting states with only one transition. For any
transition such that ∃s ∈ S, trans(s, s′, cond) is true for MR1 , if s′ is included in
the accepting state set, then the transition condition cond is modified to cond ∧
¬bREP . Otherwise, that is, if s′ is the copy state, then the transition condition
cond is modified to cond ∧ bREP as shown in Fig. 9. Intuitively, if bREP = 1
holds, then the automaton selects repetition, and if bREP = 0 holds, then the
automaton selects exiting the repetition.

For description “R1 [∗0]” corresponding to the null sequence, a nondeterministic
branch also occurs. In order to determinize this nondeterministic branch, we
introduce a new logical variable similarly.
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(d) Concatenation of the two automata
After determinization of the LHS, two automata are concatenated. In syntax

S, we have to handle cycle overlapping implication operator |->. This is done
by merging each pair of the edges of the following two types.
• The edges to the accepting states of the LHS.
• The edges from the initial states of the RHS.

Each of the resulting merged edges comes to have, as its label, the logical con-
junction of two logical conditions in the original edges in the LHS and the RHS.

Based on the semantics of the implication operator, all of the failing states in
the LHS are changed to the accepting states of the resulting automaton.
(e) Modification of the automaton for handling the “always” property.

At first, we modify the nondeterministic automaton in order to select a starting
cycle. Since assertions are required to be checked at every cycle, the automaton
must start at every cycle. For this purpose, we introduce new logical variables
bSTART and bCHECK . The following shows transition functions for bSTART and
bCHECK , where next(b) indicates the next value of a variable b and {a0, · · · , an}
indicates selecting a value a1, · · ·, an nondeterministically. The initial value
of bSTART is 0 or 1, bCHECK is 0. We modify the automaton so that only if
bSTART = 1 holds, the automaton starts and otherwise, the automaton waits at
the initial state.

next(bSTART )

=

{
0 (bSTART ∨ bCHECK holds)
{0, 1} (otherwise)

next(bCHECK)

=

{
1 (bSTART ∨ bCHECK holds)
0 (otherwise)

4.4 Generating Transition Functions
(a) Determinization of the automaton

We determinize the nondeterministic automaton and generate transition func-
tions. For determinization, we adopt one-hot coding.

Let Q be the state set of the automaton. For each state s ∈ Q, we introduce a
new logical variable bs. The following shows a transition function for each logical

variable bs. Here, Sprev(s) indicates the state set to which the automaton can
reach from the state s with one transition and cond(s, s′) indicates the transition
condition labeled with the transition from the state s to the state s′. If s is the
initial state, then the initial value of a logical variable s is 1, otherwise, the initial
value is 0.

next(bs) =
∨

i∈Sprev(s)

(bi ∧ cond(i, s))

(b) Addition of substitutions to transition functions
We introduce a storing variable stv for each local variable v. Note that the

records about substitutions, which include a local variable name and substituted
expression and a transition (current state, next state and transition condition),
are kept at the assertion conversion step. Let (v, (s, s′, cond), e) indicate that an
expression e is substituted for a local variable v at the transition whose current
state is s, next state s′ and a transition condition is cond. Suppose that we have
lvi = (v, (si, s

′
i, condi), ei) (i = 1, · · · , n) for each local variable v. The following

shows a transition function for a storing variable stv corresponding to v.

next(stv) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e0 (bs0 ∧ cond0 holds)
e1 (bs1 ∧ cond1 holds)

·
·
·

en (bsn
∧ condn holds)

stv (otherwise)

Once values of bOR, bREP and bSTART are fixed at every cycle, only one thread
is executed as for the LHS. Thus, at any cycle, only one transition is activated.
Therefore, more than one condition cannot be satisfied at the same time in the
above transition function.

Finally, we generate a checker as a set of the above transition functions .
4.5 Generating a Temporal Logic Formula
We combine the checker generated in the previous section with a given design,

and perform model checking. For model checking, we generate a new property as
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follows. The following property is described in linear temporal logic (LTL), where
“G p” indicates that p always must be true. Here, Q, QLHS and qF indicate the
state set, the state set of the left-hand side of an implication operator and the
failing state respectively. Note that the number of failing states is at most one.

G ¬ (bqF
∧

∧
s∈(Q−QLHS−{qF })

(¬bs))

If this property fails, the given assertion fails for the given design. Otherwise,
that is, if this property holds, the given assertion does not fail for the given
design.

4.6 Comparison
In the previous work by Long and Seawright 8), logical variables similar to

ours are introduced. Their checker, however, does not have the logical variables
corresponding to bSTART , and, as a result, multiple threads are allowed to run.
This implies that more than one threads could traverse each single transition
edge of a checker at a time. The logical variables are used to choose only one
thread at each branch originated from “or” operator and “[∗1:$]” operator, once
values for the logical variables are fixed at each cycle. Figure 10 shows how
such a logical variable, bSEL, is introduced.

Then, multiple threads can occur, but no threads overlap with each other along
any transition edge. The number of threads at a time is limited to the number of
transition edges, which is roughly linear to the size of the assertion descriptions.
So is the number of necessary storing variables, because each thread may require
one storing variable.

Fig. 10 Thread selection by bSEL.

5. Experimental Results

We implemented our algorithm in C language, and performed experiments for
comparing our method with the previous work 8). As a verification method, we
adopt bounded model checking.

5.1 Environment and Examples
The following is our experimental environment:
• CPU: Pentium 4 2.4 GHz
• memory: 2 GB
• OS: Linux 2.4.20-8
• model checker: NuSMV 7)

We checked data consistency for a delay circuit and a FIFO circuit, and mea-
sured the verification time and memory requirement. We explain these designs
and assertions in the following.

The following shows the behavior of the delay circuit, where the bit width of
data is parameterized as width.
• Input signal: reqin
• Data: (INPUT) din, (OUTPUT) dout
• Length of delay: 5
• Behavior:

If reqin = 1 holds, it takes the data “din”, and 5 cycles later it outputs this
data to “dout”.

The following is an assertion for this delay circuit, where x is a local variable.
This assertion is for checking input-output data consistency.
assert property (

(reqin, x=din) |-> (##5 dout==x)

)

This can be expressed in syntax S as follows:
assert property (

(reqin ##0 (1, x=din))

|-> (1 ##1 1 ##1 1 ##1

1 ##1 1 ##1 dout==x)

)
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The following shows the behavior of the FIFO circuit, where the bit width of
data is parameterized as width.
• Input signal: reqin, reqout
• Internal signal: incnt, outcnt (4 bit)
• Data: (INPUT) din, (OUTPUT) dout
• Depth of FIFO: 10
• Behavior:

If reqin = 1 holds, it takes the data “din” and the tag “incnt”, and it incre-
ments “incnt”.
One cycle after reqout = 1 holds, it outputs the data to “dout”, and it in-
crements “outcnt”.

The following is an assertion for this FIFO circuit, where x and tag are local
variables. This assertion is for checking input-output data consistency.
assert property (

((reqin, x=din, tag=incnt) ##[1:$]

(reqout && tag==outnct))

|-> (##1 dout==x)

)

This can be expressed in syntax S as follows:
assert property (

((reqin ##0 (1, x=din) ##0 (1, tag=incnt))

##1 1[*1:$] ##1 (reqout && tag==outcnt))

|-> (1 ##1 d_out==x)

)

We checked the delay circuit and the FIFO circuit using bounded model check-
ing, where the bound of the bounded model checking is parameterized as k.

For the delay circuit and FIFO circuit, each parameter is set as follows. For
each setting, we measured the verification time and memory requirement.
• bound k: 10, 15
• bit width width: 4, 5, 6, 7, 8 bit
5.2 Experimental Results
Table 1 and Table 2 show the verification time for the delay circuit and the

FIFO circuit respectively.
Table 3 and Table 4 show the memory requirement for the delay circuit and

Table 1 Verification time (sec) for the delay circuit.

k width ours Ref. 8) improvement
4 0.6 0.7 14%
5 1.4 1.7 18%

10 6 3.5 4.2 17%
7 11.0 13.1 16%
8 35.2 38.3 9%
4 2.0 2.2 10%
5 5.3 6.0 12%

15 6 16.6 16.7 1%
7 55.9 56.0 0%
8 188 188 0%

Table 2 Verification time (sec) for the FIFO circuit.

k width ours Ref. 8) improvement
4 23.7 29.1 19%
5 62.2 73.5 15%

10 6 184 211 13%
7 345 421 18%
8 1022 1215 16%
4 144 258 46%
5 300 490 39%

15 6 804 1101 27%
7 2350 3214 27%
8 8167 10308 21%

Table 3 Memory requirement (MB) for the delay circuit.

k width ours Ref. 8) improvement
4 11.6 13.1 12%
5 14.4 17.4 18%

10 6 19.7 25.9 24%
7 31.0 42.9 28%
8 52.7 77.0 32%
4 13.1 15.2 14%
5 19.3 21.6 11%

15 6 25.6 34.1 25%
7 42.7 59.1 28%
8 77.9 114 32%

the FIFO circuit respectively. The memory requirement was improved by 10-
30% for both the delay circuit and the FIFO circuit. The number of storing
variables is reduced in our method compared with the previous work 8), as shown

IPSJ Transactions on System LSI Design Methodology Vol. 2 80–92 (Feb. 2009) c© 2009 Information Processing Society of Japan



90 Checker Generation of Assertions with Local Variables

Table 4 Memory requirement (MB) for the FIFO circuit.

k width ours Ref. 8) improvement
4 26.3 31.1 16%
5 41.3 48.3 15%

10 6 70.2 83.0 16%
7 129 154 17%
8 252 293 14%
4 40.2 62.1 36%
5 66.1 88.6 26%

15 6 117 160 27%
7 219 275 21%
8 450 600 25%

Table 5 Total number of logical variables.

k width ours Ref. 8) improvement
4 4 20 80%
5 5 25 80%

10 6 6 30 80%
7 7 35 80%
8 8 40 80%
4 8 32 75%
5 9 36 75%

15 6 10 40 75%
7 11 44 75%
8 12 48 75%

in Table 5.
The number of the logical variables is equal to the bit width of the local variable.

In Table 5, the sum of the number of logical variables for all storing variables
is shown as total number of logical variables. In our method, since one storing
variable is allocated for each local variable, the total number of logical variables
is equal to the sum of the bit width of each local variable. In the previous work 8),
since the number of storing variable for each local variable is equal to the sum
of the number of “##1” operator and “[∗1:$]” operator and, as a result, the total
number of logical variables is equal to n times of the sum of the bit width of each
local variable, where n is equal to the sum of the number of “##1” operator and
“[∗1:$]” operator. In this experiment, n = 5 for the delay circuit, n = 4 for the
FIFO circuit. The bit width of the local variable tag in the FIFO circuit is 4 bit.
The total number of logical variables is improved by 75–80% compared with the

previous work 8).
5.3 Consideration
As compared with the previous approach 8), the reduction of the number of

variables is relatively large, but the improvement of performance is rather limited.
The Long and Seawright’s checker allows multiple threads to run at a time

for each of possible combinations of values on newly introduced variables. The
bounded model checker, using some SAT solver, virtually checks all of the mul-
tiple threads one by one. On the other hand, our checker allows only one thread
to run at a time by introducing bSTART , which chooses a starting cycle nonde-
terministically. The bounded model checker checks one thread at a time for each
of the all possible starting cycles.

This suggests that the number of computational steps necessary for bounded
model checking does not change much in both of the approaches. We think that
this is the reason that we can achieve only small or negligible improvement in
terms of run-times.

In particular, the improvement ratio worsens, when the bit width increases.
We think this is because the major bottleneck of computational complexity shifts
from the assertion to the design, when the bit width increases.

On the other hand, our algorithms always generates shorter descriptions of tran-
sition functions than the Long and Seawright’s algorithm. As a result, shorter
boolean formulas are generated inside the bounded model checker. In other
words, many distinct sub-formulas which occur in the Long and Seawright’s ap-
proach are represented by a fewer number of sub-formulas in our approach. We
think this is the reason that we can achieve better and stable improvement in
memory requirement.

6. Conclusion

We showed a checker generation algorithm for SVA assertions with local vari-
ables, in which the number of storing variables for each local variable is only one.
We also show the experimental results for a delay circuit and a FIFO circuit.
Compared with the previous work 8), the memory requirement was improved by
10–30%. As we discussed in Section 5.3, the number of computational steps
does not change much in our approach. The main contribution of our paper is
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improvement in terms of memory requirement.
Future works include extending the syntax assertions. In particular, handling

“intersect” operator efficiently would be important from a practical point of view.
Furthermore, in order to improve run-time performance, we could try some coding
method other than one-hot coding.

We also think that our approach can be applied to EUF-based model check-
ing 14), in which data and an operation are abstracted, respectively, by a variable
and a function symbol in the first-order logic.
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