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With the growing complexity of consumer embedded products and the im-
provements in process technology, multiprocessor system-on-chip (MPSoC) ar-
chitectures have become widespread. These MPSoCs include not only mul-
tiple processors but also multiple dedicated hardware accelerators that can
be designed from software programs, written in high-level languages like ‘C’,
using high-level synthesis tools (HLS). Traditional techniques of HW/SW co-
simulation are very slow and time consuming when used for exploring HW/SW
partitioning strategies. There is a strong need for methodologies that quickly
and accurately estimate the performance of such complex systems. In this pa-
per, we present a system level performance estimation method for exploring
the trade-off between hardware and software implementations in such “hybrid”
MPSoC architectures. The key feature of our performance estimation is the
unified timing model, in the form of a program trace graph (PTG) for both
software executions on processors as well as the hardware blocks (finite state
machines) synthesized by a HLS tool. The RTL code from the HLS tool is
analyzed and its state transition graph is transformed into the PTG, which was
originally developed for software timing annotations. These PTGs represent
the workload of the computation that is driven by program execution traces in
the form of ‘Branch Bitstreams’. Our methodology allows highly accurate per-
formance estimation under the existence of data dependent behavior of software
and hardware components.

1. Introduction

The embedded systems for information equipment such as cellular phones,
household information devices and in-vehicle information equipment are becom-
ing increasingly sophisticated. The embedded systems of today are often de-
veloped as fully integrated systems on one single chip. As embedded systems
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are becoming more and more complex, in terms of speed and performance, the
number of processing cores on a chip tends to increase rapidly. Next-generation
embedded multimedia systems will often be built on multi-processor systems
on a Chip (MPSoC) to obtain a high computing power at a relatively low en-
ergy cost. To increase the performance and achieve real time goals, hardware
(HW) IP blocks are also integrated into MPSoC. MPSoC is becoming a much
more prevalent design style in the quest, to achieve tight time-to-market design
goals, high levels of performance and flexibility, and at the same time, low-cost
and power-efficient implementations. These benefits come at the cost of higher
system complexity. Traditional HW/SW co-design techniques for design space
exploration and HW/SW partitioning are evolved around a uni-processor model.
Now in the era of MPSoC, where an application will be divided into several SW
nodes and HW nodes, new design methodologies are required to address the var-
ious design challenges 1) in MPSoC design and architecture exploration. One of
the main design challenges is the necessity for fast exploration of multiple HW
and SW implementation alternatives with accurate estimations of performance,
energy, and power, in order to adjust the MPSoC architecture at an early stage
of the design process. In this paper we will focus on a fast unified performance
estimation methodology to estimate the combined performance of multiple SW
and HW bound components in an application with high accuracy. In our previous
paper 2), we have proposed the trace-driven workload simulation method for an
MPSoC composed of SW components (processors) only. In our performance esti-
mation framework, workload models in the form of program trace graphs (PTG),
are automatically generated from the application source code. The program ex-
ecution trace is encoded in the form of a branch bitstream that is generated by
executing the instrumented source code on the host machine. Any data depen-
dent behavior of the application can be completely reproduced with the PTG
workload driven by the branch bitstream. Our methodology results in a highly
accurate performance estimation. We applied the same methodology when simu-
lating HW components. We use a novel method of extracting the timing model of
the HW components generated by a commercial high-level synthesis (HLS) tool.
We analyze HDL code generated by the HLS tool and back-annotate the timing
information to the PTG generated from the source code. With this approach, we
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can quickly estimate the performance of the target MPSoC with mixed SW and
HW components. Our technique avoids the use of slow RTL simulation of HW
components. The rest of the paper is organized as follows: In Section 2 we will
present a brief overview of related work which will be followed by our SW/HW
partitioning framework in Section 3. In Section 4 we will explain our unified per-
formance estimation methodology for HW and SW nodes. Experimental results
will be presented in Section 5, which will be followed by a conclusion and future
work in Section 6.

2. Related Work

There is a need for new methodologies of fast and accurate design space explo-
ration for MPSoC design. These new methodologies should enable an MPSoC
designer to analyze different MPSoC solutions with complex embedded applica-
tions in a short period of time. These new methodologies should also be able to
consider realistic inputs of the final working environment to cover the variations
in data loads at runtime. Various simulation-based methods exist in the litera-
ture for estimating the performance of SW only systems using single processors.
These methods include sampling-based simulation 3),4) and hybrid simulation 5),6).
These techniques combine native execution speed with the accuracy of ISS for
some parts of the code. Another approach is to apply source-level timing annota-
tion of the target processor for generating a timing model during software execu-
tion 7),8). Here, the timing information can include both static timing (obtained
at compilation time) and dynamic timing (caches and branch predictions) 8). In
the case of an MPSoC, statistical workloads have been used to model MPSoC
subsystems such as bus traffic 9) or NOCs 10) for certain application domains such
as networking 11). Another approach is to employ system-level simulation on the
target MPSoC architecture, driven by application software with timing annota-
tion which can evaluate the impacts of an interconnect architecture and memory
subsystems in detail 12),13). Our cycle-accurate workload model for SW compo-
nents is derived from the static timing model, whereas dynamic timing is not
directly addressed in our current framework. Our simulation framework includes
bus traffic modeling induced by inter-processor communications, but currently
does not generate memory traffic. For early design space exploration of a system

consisting of HW/SW blocks, several co-simulation techniques have been pro-
posed, both at transaction and cycle-accurate levels, using hardware description
languages (HDLs) and SystemC. Nevertheless, although these complex combined
SW techniques achieve accurate estimations of the system performance, they are
very slow due to the synchronization between different simulators. Moreover,
higher abstraction-level simulators do attain faster simulation speeds, but at the
cost of a significant loss in accuracy, hence, they are not suitable for fine-grained
architectural tuning. Applying these techniques to a complex MPSoC of today
and of the future, which will consist of several dozens of HW blocks and SW
blocks will be either time consuming or inaccurate. Our technique enables fast
design space exploration for HW/SW partitioning while eliminating the use of
a HDL simulator. In Ref. 14), architectural level performance estimation for IP
based systems is proposed. Their proposed architecture level estimation method
is based on the construction and analysis of an Execution Dependency Graph.
They assume that the timing information of the HW bound part of the applica-
tion is readily available. A. Allara presented 15), a HW/SW estimation model for
TOSCA environment. They are statistically computing the timings for various
SW and HW nodes; while their simulation speed is limited to few hundreds of
events per CPU second. In Ref. 16), a trace driven HW/SW co-simulation tech-
nique using virtual synchronization between component simulators is introduced,
achieving a simulation speed of several hundred kilo cycle/sec. The technique uses
a HDL simulator to capture HW execution trace, which limits the overall simu-
lation speed to several hundred cycles/sec. In contrast, our simulation technique
does not use HDL simulator to capture HW execution, instead the execution
trace is constructed by parsing the HDL code, generated by the HLS tool, which
consist of an FSM. The overall simulation speed is several hundred million cy-
cle/sec, with highly accurate system performance estimation. Another approach
to enhance the simulation speed is by modeling various MPSoC components at a
higher abstraction level. In Ref. 17), authors have proposed a TLM based mod-
eling of an MPSoC for performance estimation. Their approach involves TLM
modeling of various MPSoC components. Using PVT-TA model they were able
to accelerate simulation speed by up to 18 times, but the accuracy of performance
estimation was degraded due to communication error. Their PVT-EA model can

IPSJ Transactions on System LSI Design Methodology Vol. 3 194–206 (Aug. 2010) c© 2010 Information Processing Society of Japan



196 A Unified Performance Estimation Method for Hardware and Software Components in Multiprocessor System-On-Chips

achieve higher accuracy at the cost of reduced simulation speed.

3. System-Level SW/HW Partitioning Methodology

3.1 Tightly-Coupled Thread Model for MPSoC Application Devel-
opment

Authors have previously proposed the application development framework for
an MPSoC based on the Tightly-Coupled Thread (TCT) model 18),19). In TCT
framework a designer starts from a pure sequential C description of the appli-
cation; the designer defines the system partitioning directly on the C programs.
The TCT compiler performs a complete inter-procedural dependence analysis
to extract all data dependencies between threads (including globals and pointer
dereferences), where message-passing (communication and synchronization) in-
structions between various processing cores and HW blocks are inserted auto-
matically by TCT compiler to guarantee the correct behavior of the original
sequential program (the current TCT compiler assumes a fully distributed mem-
ory system without any shared-memory access). A rich tool environment of
the TCT framework provides feedback to the designer which facilitates the tun-
ing of system partitioning and the original C code to expose more parallelism.
Using TCT tools, application developer can obtain an estimate of parallel exe-
cution time, sequential execution time, and communication bandwidth for each
thread-to-thread connection and processor utilization. In TCT MPSoC design
framework HW/SW partitioning is carried out by declaring a thread scope. A
thread scope indicates a separate parallel process, which we simply refer to as
threads, to be executed on a (separate) processor/HW block. Thread scope’s
statement syntax is given as:

THREAD (name) { statements }

Any C statement (including function calls and nested thread-scopes) can be in-
cluded inside the thread-scope region as long as the thread-scope forms a Single-
Entry Single-Exit (SESE) region. Thread annotations can be inserted manually
or through the MAPS framework 20). MAPS assists the designer with rich pro-
gram analysis capabilities to emit thread annotated code semi-automatically.

Fig. 1 JPEG encoder program with thread scopes for the top function.

These tightly-coupled threads operate in a functional pipeline manner, achieving
a high degree of parallelism. The TCT compiler also guarantees that the behav-
ior of the parallelized code and the original sequential code is identical where
race condition and deadlocks are automatically avoided.

Figure 1 shows an example of a C program for the top function of the JPEG
encoder (modified from the original source by Ref. 21)). In function JPEG top,
there are five thread scopes inserted in to the code. The base-thread handles the
file input and RGB-YCbCr conversion. Thread Dsamp handles the down conver-
sion of Cb/Cr components. Thread scope BLKcore contains three threads Y0, Y1
and C which call the core function BLK8x8 for the six component blocks. Solely
inserting thread scopes may not result in speed up because of data dependency
between threads. So, to improve the performance of the code we usually look for
data dependencies between threads and try to remove them. This is a manual
iterative process, incorporating feedback from different tools in the TCT envi-
ronment, e.g., trace scheduler, call graph, program graph, and data dependency
graph. We also look for parts of code inside threads which are data independent
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Fig. 2 TCT MPSoC design framework flow.

of each other to further extract parallelism.
3.2 TCT Communication Model and HW Generation
For some of the functionalities in application-specific MPSoCs, HW implemen-

tation may be desirable in terms of speed and area, but with the sacrifice of SW
programmability. In our framework, these HW functional blocks are modeled in
the same way as SW functional blocks under our TCT framework. As shown in
Fig. 2, an application developer will start from a sequential C code and partition
the code in several threads. An application developer has the freedom to assign
each parallelized thread to run as a dedicated HW, or run as SW on a processor.
For threads run as HW nodes, C code with communication APIs for a target HLS
tool will be generated for each of the threads. The C code will be synthesized
by a commercially available HLS tool “eXCite” 22) to obtain RTL code. Threads
to be run as SW nodes will be compiled for TCT processor. TCT compiler also
generates partitioned C source for all threads with communication and synchro-
nization operations, which are inserted as macro calls. These communication
macros can be redirected to parallel processing API calls such as MPI, and also

Fig. 3 Sample C-code for eXCite.

to other HLS tools’ communication APIs. As shown in the generated C code in
Fig. 3, there are three communication operations defined in the TCT model:
• Control token (CT) sends an activation token to the target thread
• Data transfer (DT) sends data to the target thread
• Data synchronization (DS) checks if the data is received
Here, a DT-node does not require a matching receive operation at the receiver

end, thus the data transfer occurs asynchronously with the receiver thread state.
A finite-size buffer is allocated for individual data at the receiver, and the DT-
node stalls while the receiver buffer for that particular data is full, where a
DS-node stalls while the data buffer is empty. A CT-node is modeled in the
same way as a DT-node in terms of the buffer model, where it also stalls if the
receiver’s control token buffer is full. Data buffers and control token buffers are
consumed at thread-end node at the receiver thread.

Additionally, DT-nodes and CT-nodes are blocked if the receiver is occupied
by other transactions or if the bus is occupied. These communication proto-
cols were originally implemented in our prototype TCT-MPSoC 23), where the
TCT-PE contains a dedicated communication module to implement the asyn-
chronous (non-blocking) message passing with low setup time (4 to 6 cycles) and
burst transfer of 4 bytes/cycle through a high speed interconnect realized as full
crossbar connection.

The eXCite tool provides message channels with several options such as FIFOs
and handshaking protocols. For interfacing eXCite message channels with TCT
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communication protocols, the HDL code of a communication bridge is automat-
ically generated by the TCT compiler along with C code for eXCite Fig. 4. The
C code is compiled by eXCite to generate HDL code of a HW block. The bridge
consists of FIFO memory and channel control logic. Bridge will first receive data
or control tokens from a processor and store it in the FIFO. A read operation at
the eXCite HW will read data/ control tokens from the bridge FIFOs via a block-
ing channel. If the read operation at the HW occurs before the bridge receives
any data/control token from a processor, it will block the communication until it
receives a data/control token. A write operation at the HW first sends a request
token containing the target processor ID and port ID to the bridge where it is
converted into a TCT request signal and sent to the target processor. When the
request is acknowledged by the target processor, the bridge will raise the ACK
signal of the channel and the eXCite HW will start the data transfer through a
dedicated FIFO channel. Figure 5 shows plug & play HW block for TCT MP-
SoC.

Fig. 4 TCT-eXCite communication bridge.

Fig. 5 Plug and Play HW block for TCT MPSoC.

4. MPSoC Performance Estimation Methodology

4.1 Trace-Driven Workload Model for SW Components
Our novel MPSoC performance estimation methodology is based on the trace-

driven workload simulation framework 2). Its key concepts are the branch bit-
stream, enabling efficient encoding of the program execution trace, and the pro-
gram trace graph (PTG), for modeling the software execution timing. The branch
bitstream is generated through source-level instrumentation for emitting branch
condition bits in the execution order to a file which is then executed on a host
machine.

PTG is generated by analyzing the source code and extracting timing informa-
tion from the compiler’s back-end code generator. An example of PTG is shown
in Fig. 6, where a PTG-node consists of function-start, function-end, branch and
call. PTG-edge corresponds to the code segment without conditional jumps, and
the timing information is annotated on the PTG-edge.

Also in Fig. 6, the branch bitstream of 1011001 is shown this represents the
program execution trace. This branch bitstream can be decoded back to the
sequence of PTG-edges by traversing the PTG and reading the branch bitstream
one bit at a time upon reaching a branch node to decide which branch path to
continue traversing. The particular branch bitstream in Fig. 6 will result in a
sequence (e0 e1 e7 e9 e2 e3 e3 e4 e5 e7 e8 e6). The total execution cycle count can
then be simply computed as:

Fig. 6 Program trace graph (PTG).
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Fig. 7 Thread-PTG-sync-nodes for modeling communications.

T =
c(e0) + c(e1) + c(e7) + c(e9) + c(e2) + c(e3)+
c(e3) + c(e4) + c(e5) + c(e7) + c(e8) + c(e6)

}
(1)

where c(ei) is the cycle count on PTG-edge ei .
4.2 MPSoC Trace-Driven Workload Simulation
MPSoC applications based on TCT model consist of several threads. We con-

struct a PTG for each Thread and call it ‘Thread Program Trace Graph‘ (T-
PTG). A T-PTG corresponds to the PTG that is enclosed by the SESE thread-
scope region. As shown in Fig. 7, each T-PTG is terminated by thread-start
and thread-end nodes instead of function-start and function-end nodes in the
normal PTG. Figure 8 shows a simplified block diagram of our Trace Workload
Simulator (TWS), which consists of a global scheduler and TWS kernel. Each
TCT thread includes TCT communication operations which interact with other
processors through MPSoC interconnect. For modeling these system-level syn-
chronization events, the communication operations (CT, DT and DS) appear as
distinct PTG-sync-nodes in the T-PTG, where these T-PTG-sync-nodes serve as
anchor points for our MPSoC workload simulator kernel to update its internal
status, such as channel buffers and interconnect occupancy, and if needed, adjust
its simulation clocks by inserting wait states on blocked events.

4.3 Timing Extraction of HW Components
For modeling the timing behavior of the HW components synthesized by the

HLS tool, we utilize the same PTG representation generated from the original
source program and extract the cycle count on each PTG-edge by analyzing the
state machine description in the generated RTL code. Generated RTL contains

Fig. 8 MPSoC trace-driven workload simulator.

a single algorithmic state-machine and a datapath. The datapath is composed of
components (e.g., adder, subtractor, shifter, etc.) taken from eXCite’s database
suitable for RTL synthesis and simulation. Blocking channels are used for input
and output operations. We are not using pipelining option for HW generation
in the HLS tool setting. All function calls except main() in a C description are
inlined in the generated RTL code. In order to make the timing extraction an
automated process, we rely on several assumptions and a priori knowledge of
the generated RTL code (we use Verilog RTL output for this analysis). These
assumptions are independent of C source code, but changes in HLS tool set-
tings/versions may affect some of the assumptions (different names for signals
and registers) which will lead to slight modifications in TCT compiler:
• Generated RTL consists of a single state machine and the order of message

channel accesses in the original C code is preserved in the state machine.
Also, the general control flow structure in the original C code is preserved in
the RTL state transition structure.

• Signal naming conventions such as state register, channel signals, and signals
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Fig. 9 Conditional state transition code.

corresponding to the original C code are known. This is essential for identi-
fying the correspondence between the state transitions in the RTL and the
control flow in the original C code.

• State transition structures arising from message channel accesses are known
for each channel type. These channel access state transitions correspond to
TCT communication operations.

This timing extraction is conducted using the following steps:
( 1 ) State transition graph extraction: RTL code is first parsed and the

state transition information including the state transition condition expres-
sions are extracted to construct the state transition graph (STG). Figure 9
shows a section of generated RTL code with condition state transition from
state XE ST51 to XE ST4. The code corresponds to TCT communication
operations and in this case, the state transition condition is determined by
the acknowledge signal (yx hs pe hw port info ack i) from the bridge.

( 2 ) STG reduction: Unconditional state transition edges (STG-edges) are col-
lapsed and the number of consecutive unconditional STG-edges is anno-
tated to the conditional STG-edge that connects to the first unconditional
STG-edge. This reduced STG, in essence, has the same structure as PTG
with additional STG edges representing message channel accesses.

( 3 ) Communication node extraction: A group of STG-edges having condi-

tional expressions on channel signals are extracted and matched against
known state transition structures for TCT communication operations (CT,
DT, DS). Figure 9 shows a section of generated RTL for a CT opera-
tion. Such STG-edge group is replaced by the corresponding communica-
tion state node, further reducing the STG.

( 4 ) Timing annotation on the PTG from reduced STG: The reduced STG
has a very similar structure to the PTG constructed from the original C
code, with one significant difference, that is, function calls are inlined in
the state machine (in the case of eXCite tool). Distinctive PTG nodes
(thread-start, thread-end, CT, DT and DS nodes) can be directly matched
against the communication nodes in the reduced STG by examining their
state transition condition channel signals. As discussed previously, the se-
quence of message channel accesses is assumed to be preserved, and under
this assumption, the matching of PTG and reduced STG becomes a fairly
straightforward task of traversing both graphs starting from thread-start
node while circumventing the differences in call structures. After identify-
ing the matching edges, the cycle count on the STG-edge, i.e. the number
of unconditional state transitions, are back annotated to the PTG-edge.

Figure 10 (a) shows the STG of the RTL generated from the C code in Fig. 3
where the unconditional STG-edges are collapsed and cycle counts are anno-
tated on the conditional STG-edges. State transition conditions with hsXXack
indicate the message channel handshaking (XX indicates the channel ID) which
corresponds to one of the TCT communication operations. The following eXCite
channels are used for various TCT communications:
• hs100: read channel for receiving the control token for thread activation

(state S51 in the Fig. 10 (a))
• hs14: read channel for receiving array data coef [64] (state S48)
• hs1000: write channel for CT, DT request or signaling thread termination.

Their distinction can be determined by the constant values written on this
channel. Here, state S50 corresponds to CT operation (sending control tokens
to other processors), S47 corresponds to a DT request on the output data
coef2 [64], and S43 corresponds to thread termination. For DT operation,
after the DT request is acknowledged, additional write FIFO channel is used
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Fig. 10 (a) Reduced state transition graph (b) program trace graph.

with a counter for controlling the burst transfer of array data (state S44).
After identifying the channel handshaking state transitions, and matching with

the TCT communication operations, we perform graph matching against the
corresponding PTG in Fig. 10 (b), generated directly from the original C code
and annotate the timing information (cycle counts on STG-edges) to the PTG-
edges.

4.4 Discussion
On nearly all of our test cases so far, our HW timing extraction methods de-

scribed in the last section have been successful in completing the graph matching
between the reduced STG from the RTL analysis and PTG from the original C
code. As described earlier, we rely on the assumption that the message chan-
nel access order in the C code is preserved in the RTL state machine. This
assumption, together with the knowledge of the naming conventions for eXCite
channel signals, allows us to precisely identify the TCT communication opera-
tions on the HDL code. We believe that this assumption is valid for most HLS
tools since changing the channel access order may easily destroy the higher level
communication protocol between the SW and HW, therefore HLS tools must be

conservative in implementing the channel access state transitions. On the other
hand, the core control flow structure of the application, especially the condi-
tionals in the C code, also needs to be preserved in the RTL as well. Although
this was the case for the tested eXCite HLS tool under the default synthesis
settings, we may expect to see some aggressive optimization techniques in HLS
which alter the control flow structures in the original C code which will make
the graph matching problem, between the STG and PTG, non-trivial. This issue
shall be addressed in our future works. Although the current implementation of
our TWS framework is targeted at the TCT model and its MPSoC architecture
model, we believe that the concept of PTG-sync-nodes that bridges the PTG
semantics and the TWS kernel can eventually be extended to other MPSoC pro-
gramming models and MPSoC architecture models. Synchronization primitives
used in common parallel programming models (MPI, OpenMP) and RTOS-based
multitask programming can be modeled as PTG-sync-nodes, where the TWS ker-
nel shall be extended to handle the behavior of these additional PTG-sync-node
types. Complex MPSoC architectures with memory subsystems and NOCs would
require more substantial extensions on the TWS kernel for generating accurate
data traffic induced by memory accesses and through the NOC infrastructure.

5. Experimental Results

To confirm the effectiveness of our proposed methodology we have conducted
a series of experiments on the single-processor models, MPSoC as well as Hybrid
MPSoC which include SW and HW components and have compared them against
the instruction-set simulator (ISS) for TCT-PE and RTL simulation for each type
of HW/SW combinations.

5.1 Cycle Estimation of SW Components
Table 1 shows the set of benchmarks used to evaluate the cycle estimation per-

formance of the single-processor model. Here, “# inst” is the number of TCT-PE
instructions in each program, “# cycles” is the total number of execution cycles,
“ISS (sec)” is the ISS simulation time, “ISS (cycles/sec)” is the ISS simulation
speed, and “native (sec)” is the native execution time (all applications were com-
piled with Microsoft Visual C++ .NET with -O2 optimization). Table 2 shows
our trace-driven workload simulator (TWS) performance without PTG reduc-
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Table 1 Benchmark programs for single-processor cycle estimation.

#inst #Cycles ISS (sec) ISS (cy-
cles/sec)

native (sec)

prime500k 100 629,940,586 13.328 47.26M 0.083
string 273 900,232,697 31.266 28.79M 0.172
alphabet 113 716,650,704 25.328 28.29M 0.193
JPEG 1,673 433,010,644 16.829 25.73M 0.076

Table 2 Trace-driven workload simulator (TWS) performance (without PTG reduction).

#PTG-
edges

#branch bits TWS (sec) TWS (cy-
cles/sec)

TWS speedup

prime500k 29 53.99M 0.218 2,889M 61.14
string 52 136.18M 0.515 1,748M 60.71
alphabet 21 101.04M 0.375 1,911M 67.5
JPEG 336 27.48M 0.141 3,071M 119.35

tion. Here, “# PTG-edges” is the total number of PTG-edges, “# branch bits”
is the length of the branch bitstreams, “TWS (sec)” is the TWS simulation time,
“TWS (cycles/sec)” is the effective TWS simulation speed, and “TWS speedup”
is the speedup over ISS. Even without the PTG reduction, we can observe the
enormous speed advantage of our TWS over ISS, where the effective TWS sim-
ulation speed ranges from 1.7 to 3.0 billion cycles per second, while achieving
absolute cycle accuracy, that is, the TWS cycles, counts match exactly with the
ISS cycle counts.

Figure 11 shows the processing times inside the TWS workflow that are nor-
malized against the native execution time in Table 1. Here, “BB-gen” is the
native execution time of the applications instrumented with branch bitstream
generation, and “BB-gen+div” is the execution time with branch bitstream gen-
eration and integer division latency profiling. We can observe that the instru-
mentation overhead for the branch bitstream generation is quite small, ranging
from 1.40 to 2.25, and even with the division latency profiling, the overhead in-
creases only by up to 2.75. “BB-scan” is the processing time of enumerating the
PTG-edge occurrences from the generated branch bitstreams that is performed
prior to the PTG reduction. Each of these applications in this single-processor
case reduces to a single PTG-edge whose edge cycle match exactly with the ISS

Fig. 11 Relative processing times against native execution.

Table 3 Cycle count for hw blocks.

Thread #Cycles HDL
Sim.

#Cycles Esti-
mated

Estimation
Error%�1

DCT 424 412 2.83
RGB 1877 1813 3.40

cycle count.
5.2 Cycle Estimation of HW Component
To validate our method for HW cycle estimation we conducted a series of

experiments using a JPEG encoder. This application was chosen because it is
a real-world multimedia processing problem, its complexity is not-so-high, and
it possesses enough features that can be used to verify our design methodology.
We used a reference program made available by the Independent JPEG Group 8).
We partitioned the sequential code into 8 parallel threads. We selected DCT and
RGB threads to run as HW nodes. Estimated clock cycles for a single iteration of
8x8 DCT by our TWS simulator were 412, while from HDL simulation 424 cycles
were recorded. Similarly we got 1813 cycles for conversion of 384 RGB pixels to
YCbCr color space from our TWS simulator, while from the HDL simulator 1877
cycles were recorded, as shown in Table 3.

5.3 Hybrid MPSoC Cycle Estimation
To confirm the effectiveness of our methodology for overall system performance

estimation we setup a HW platform for RTL simulation. Our test platform con-
sists of 8 TCT processors 23) connected via a full cross bar interconnects having
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Fig. 12 Testing platforms.

Fig. 13 Execution profiles of the 8 threads (a) 8 SW threads (b) 7 SW + DCT-HW (c) 7 SW + RGB-HW (d) 6 SW + DCT-HW
+ RGB-HW (THREAD #1 = RGB-thread, THREAD #5 = DCT-thread).

decentralized autonomous arbitration as shown in Fig. 12. First we run the par-
titioned application using 8 TCT processors Fig. 12 (a). In the second step some
processors were replaced by HW blocks, which were generated by the method
explained in Section 3, as shown in Fig. 12 (b). We conducted RTL simulations
for various HW/SW combinations, from running software on a single PE to using
multiple HW blocks. Our RTL simulation results are shown in Table 4. Later,
we used our trace workload simulator to simulate similar HW/SW co-design

Table 4 Simulation speed and accuracy.

#Threads
SW

#Threads HW #Cycles
HDL

#Cycles
TWS

Sim. Time
HDL (Sec)

Sim. Time
TWS (Sec)

Estimation
Error%�1

1 0 4503635 4486414 156 0.0 0.49
8 0 1221215 1191293 154 0.016 2.45
7 1(DCT) 1219175 1186627 291 0.0 2.67
7 1(RGB) 1050984 1011625 280 0.0 3.75
6 2(DCT+RGB) 1049431 1002200 234 0.0 4.50

strategies. The data from our workload simulator is also quoted in Table 1.
Although the maximum difference between the total cycle count estimated

with our TWS and the cycle count from the RTL simulator is around 4.5%, the
difference between estimated overall performance from an RTL simulator and our
workload simulator is quite small for different partitioning schemes. One of the

�1 Estimation Error = (HDL Cycles-Estm. Cycle)/HDL Cycle * 100
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Fig. 14 Execution schedule extracted from the trace-driven workload simulator (left: 8 SW threads, right: RGB-HW + DCT-HW).

reasons for the difference between RTL and the estimated cycle count is due to
not considering the communication delay, caused by buffering inside the bridge,
in our workload simulator.

With our simulation methodology we achieve accuracy as well as remarkable
simulation speeds as shown in Table 4. Figure 13 shows the execution profiles of
the 8 threads under different configurations. Here, the bottom red portion of the
bar graphs corresponds to the computation time, where other colors correspond
mainly to the idle times incurred by thread synchronization. The speedup of the
individual threads can be clearly seen, however these speedups of the individual
threads through HW implementation do not quite contribute to the overall per-
formance. This can be verified in Fig. 14, which shows the execution schedule
extracted from the trace-driven workload simulator, where the left view shows the
8 SW thread implementation and the right view shows the DCT-HW+RGB-HW
implementation. When these two threads are sped up by HW implementations,
other threads become the overall bottleneck. Our trace-driven workload simula-
tion framework provides analysis capabilities that offer significant assistance in
aiding the designer when visualizing the important design decisions.

6. Conclusions and Future Work

In this paper we proposed a novel performance estimation methodology based
on a unified timing model of HW and SW components using program trace
graphs. Our experimental result shows that the results are very close to the
simulation of RTL or ISS while achieving a remarkable speed advantage over RTL
and ISS simulation. Our technique enables us to quickly estimate the performance
of various types of HW/SW partitioning. Our current research was focused on
estimating timing performance. In future we will focus on the fast estimation of
power consumption and area usage for different combinations of HW and SW.
We will also enhance our tool set to give a designer a more detailed report of
system performance in terms of speed, power and area for different HW and
SW combinations. In future we will also address the limitations, discussed in
Section 4.4, of our current implementation.
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