IPSJ Transactions on System LSI Design Methodology Vol. 3 57-68 (Feb. 2010)

Regular Paper

Custom Instruction Generation for Configurable
Processors with Limited Numbers of Operands *!

KENSHU SETO! and MASAHIRO FuJiTat?

This paper presents a novel framework to generating efficient custom instruc-
tions for common configurable processors with limited numbers of I/O ports in
the register files and fixed-length instruction formats, such as RISCs. Unlike
previous approaches which generate a single custom instruction from each sub-
graph, our approach generates a sequence of multiple custom instructions from
each subgraph by applying high-level synthesis techniques such as scheduling
and binding to the subgraphs. Because of this feature, our approach can pro-
vide both of the following two advantages simultaneously: (1) generation of
effective custom instructions from Multiple Inputs Multiple Outputs (MIMO)
subgraphs without any change in the configurable processor hardware and the
instruction format, and (2) resource sharing among custom instructions. We
performed synthesis, placement and routing of the automatically generated Cus-
tom Functional Units (CFUs) on an FPGA. Experimental results showed that
our approach could generate custom instructions with significant speedups of
28% on average compared to a state-of-the-art framework of custom instruction
generation for configurable processors with limited numbers of I/O ports in the
register file and fixed-length instruction formats.

1. Introduction

Instruction-set extensible processors (or configurable processors) are becoming
popular as basic processing elements for complex SoCs. Examples of such pro-
cessors include Xtensa ??), MIPS with CorExtend'®, Altera Nios IIY, Toshiba
MeP 22 and all of the examples are RISC-type processors. Application-specific
custom instructions can be added to these processors to accelerate complex
C/C++ applications in low design cost with flexibility to design changes. These
custom instructions are implemented in the extra hardware called custom func-
tional units (CFUs).

11 Tokyo City University
12 The University of Tokyo
*1 This paper is the journal version of the paper 18) with extended experimental results.

57

To develop efficient configurable processors quickly for various application pro-
grams, design tools that can automatically generate high-quality custom instruc-
tions and CFUs are necessary. To satisfy such requirements, a number of tech-
niques for automatic custom instruction generation have been published, and
some successful commercial tools exist such as XPRES?” and CORXpert ',
These techniques typically enumerate subgraphs from a given application pro-
gram as candidates for custom instructions®:®:19:19 A set of subgraphs that
maximizes speedups are selected for custom instructions.

Pan, et al. reported that Multiple Inputs, Multiple Outputs (MIMO) subgraphs
with more than 2 inputs and 1 output can achieve significant speedup compared to
subgraphs with up to 2 inputs and 1 output 2. By relaxing I/O constraints, more
subgraphs become candidates for custom instructions and hence more speedups
can be generally obtained. Configurable processors are, however, usually RISC
processors and the numbers of operands for each custom instruction are limited
because of the restrictions on (1) the number of register file I/O ports and (2) the
length of instruction formats. Existing approaches -1 for custom instruction
generation had difficulties to realize general MIMO subgraphs as custom instruc-
tions for such processors, since these approaches had to select subgraphs that
satisfied too restrictive I/O constraints, typically, 2 inputs and 1 output.

To tackle the problem, this paper proposes a novel approach that generates
effective custom instructions from MIMO subgraphs for configurable processors
with limited numbers of operands per custom instruction, such as RISC proces-
sors. Differently from previous work which generates a single custom instruction
from each enumerated subgraph, our work generates a sequence of multiple cus-
tom instructions by applying high-level synthesis techniques such as scheduling
and binding to the subgraphs. Because of this novelty, our approach, for the first
time, provides both of following advantages at the same time:

(1) Our approach generates effective custom instructions from MIMO sub-
graphs without any change in the common RISC-type configurable pro-
cessor architecture in terms of the processor hardware or the instruction
format.

(2) Our approach enables resource sharing among custom instructions, so re-
source usage of CFUs can be significantly reduced.

© 2010 Information Processing Society of Japan

58 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

Our approach can be used in conjunction with the recent approach that increases
the limited data bandwidth by the use of local memories in CFUs 7.

This paper is organized as follows. Section 2 describes related work. Section 3
proposes the target architecture of our approach. Section 4 shows the overall
flow and an illustrative example of our framework. In Section 5, experimental
results and discussions are presented and Section 6 concludes this paper.

2. Related Work

One of the main issues that are addressed in this paper is the generation
of custom instructions from general MIMO subgraphs. As explained in Sec-
tion 1, custom instructions with larger numbers of operands usually provide bet-
ter speedups. Some advanced configurable processor generation environments
such as ASIP Meister ¥, LISA ' and XPRES Compiler 2 support generation
of VLIW-based configurable processors which can execute MIMO custom instruc-
tions without difficulty. RISC-based configurable processors such as Xtensa 72,
MIPS with CorExtend '®), Altera Nios II Y, Toshiba MeP ??, however, allow cus-
tom instructions to access limited numbers of operands (for example, 2 inputs and
1 output), so those RISC-based processors have difficulties in executing MIMO
custom instructions. Recently, several work have been published to tackle this
problem.

Sun, et al. added special registers outside a configurable processor in order to
make custom instructions read/write extra operands from/to the special regis-
ters 1. Data transfer operations such as MOV instructions, however, are neces-
sary between the processor register file and the special registers, so the execution
cycles are wasted by the data transfer operations. Differently from the approach,
the custom instructions generated by our approach perform both computation
and data transfer simultaneously, so that the impact of the data transfer overhead
is minimized.

Cong, et al. added shadow registers to an base processor to increase the number
of inputs for custom instructions?. These shadow registers are written at the
write-back stage of the base processor pipeline. An extra control bit is needed
in the instruction format to specify whether the shadow registers are written or
not for each instruction. Their work successfully increases the number of inputs

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

operands for custom instructions. Their method, however, does not address the
method to increase the number of output operands, so that it cannot handle
MIMO subgraphs. In addition, their method cannot achieve data forwarding
of the operands stored in the shadow registers, so that the speedup would be
degraded because of the pipeline hazard.

Pozzi, et al. proposed an approach to generate custom instructions from MIMO
subgraphs with unlimited numbers of I/Os for configurable processors with lim-
ited numbers of I/O ports in the register file, and achieved significant perfor-
mance improvement !”. Their approach introduces pipeline registers into the
subgraphs and execute each subgraph in multiple cycles in order to satisfy the
register file I/O port constraints. More specifically, their work enumerates all the
scheduling of MIMO subgraphs under register file I/O port constraints, and ob-
tains the scheduling results with the minimum latency and the minimum number
of pipeline registers. Our work is similar to theirs, however, their work did not
address the important issues to encode increased number of operands in the fixed-
length instruction formats and requires significant changes in the base processor
pipeline. These issues are addressed in this paper.

Jayaseelan, et al. proposed an architectural framework to generate custom in-
structions from subgraphs with up to four input and one output operands by

¥ To maximally

exploiting forwarded operands in the base processor pipeline
use the forwarded operands in custom instructions and reduce extra MOV in-
structions, their work uses ILP-based instruction scheduling. Their approach
could successfully generate custom instructions that improved the speedup for
RISC-type processors without any change to the RISC-type instruction format.
Their approach, however, requires a simple change in pipeline control logic to
provide forwarded operands correctly to custom functional units (CFUs) in case
of cache misses. In addition, their approach cannot generate custom instructions
from MIMO subgraphs.

Another issue that is tackled by our approach is resource sharing among cus-
tom instructions. This issue is very important especially when many custom
instructions or custom instructions that use expensive resources are generated.
Brisk, et al. proposed a method to share functional units among subgraphs and
reduced the hardware area significantly ®. Zuluaga, et al. builds on the work ® to

© 2010 Information Processing Society of Japan

59 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

take clock period constraints into consideration while resource sharing?¥. The
previous approaches do not address the important issue of increasing limited
data-bandwidth, however, our approach can perform both resource sharing and
enhancement of data-bandwidth of custom instructions simultaneously.

One of the main features of our work is that our approach typically generates a
sequence of multiple custom instructions from each subgraph, while all previous
approaches, as far as the authors know, generates a single custom instruction from
each subgraph. Because of this feature, our work brings the following advantages
simultaneously: (1) our approach requires no modification to the existing RISC-
type configurable processors and instruction formats in order to generate custom
instructions from MIMO subgraphs, and (2) our approach can share resources
among custom instructions, so the resource usage in the CFUs can be significantly
reduced. These advantages will be demonstrated by the experimental results
presented in Section 5.

3. Target Architecture

Before describing our method to generate custom instructions, we first explain
the target processor architecture on which our method is based.

3.1 Instruction Encoding

Our approach can use common RISC-type instruction formats without any
change in order to implement custom instructions. An example of such formats
is shown in Fig.1. It is a typical RISC instruction format with three register
operands that is actually used in Nios II?. The first field (OPCode) is a 6-bit
op-code field and has a fixed value for custom instructions. The next field n
(CustomInstKind) specifies which custom instruction to execute. Since the field
has 8 bits, we can add at most 256 different custom instructions. When we need
to add more than 256 custom instructions, we can use an external configuration
register that works as the extended CustomlInstKind field that supplementarily
specifies those extra custom instructions. To use the extra custom instructions,

31 2726 2221 1716151413 65 0
[" rRs | Rt [Rd |][] [n(custominstkind)] OPCode

Fig.1 Instruction format for custom instructions.

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

configurable processors need to place appropriate values in the configuration reg-
ister. Rs and Rt represent the indices of source registers and Rd represents the
index of a destination register. The 14th, 15th, 16th bits are used to control the
accesses to the operands. As shown in the format, a custom instruction can read
at most two operands and write at most one operand from/to the register file in
the configurable processor. The custom instructions in Nios II are represented
by the following assembly format:
custom n, Rd, Rs, Rt
This assembly format will be used in Fig.5 (h) that is explained in Section 4.2.

3.2 Configurable Processor

Figure 2 illustrates an example configurable processor architecture for our cus-
tom instruction generation. In this paper, we assume that the base configurable
processor has a 5-stage, single-issue, in-order pipeline. As shown in Fig. 2, the
hardware for custom instructions is attached to the pipeline of the configurable
processor. If the fetched instruction is a custom instruction, it is decoded not
only by the decoder in the configurable processor, but also by the Custom In-
struction Decoder (CID). Our approach for custom instruction generation does
not require any change in the base configurable processor, as will be illustrated
in Section 4.2.

Base Configurable Processor :
IF ID EX MEM ___ WB'|

Inst.

Decoder |4 GPRs
Mem

Custom Inst.
Field (n)

Control
Custom Inst.|Signals Custom
Decoder Funlj::]lgnal
(CID) (CFU)

Hardware for Custom Instructions

Fig.2 Target architecture.

© 2010 Information Processing Society of Japan

60 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

3.3 Hardware for Custom Instructions

As shown in Fig. 2, the hardware for custom instructions consists of the Custom
Instruction Decoder (CID) and Custom Functional Unit (CFU). All the custom
instructions generated from a given application program or even from a set of
application programs can be implemented by a single CID and a single CFU. The
control signals decoded from the custom instruction field (n in Fig. 1) by the CID
are sent to the CFU via the pipeline register. As shown in Fig. 2, the CFU can
read at most two operands Ra, Rb, and write at most one operand Rw from/to
the register file of the base processor in exactly the same way as ALU instructions
in the base processor. These operands are specified in the instruction encoding
of Fig.1 as Rs, Rt and Rd respectively. Although not explicitly encoded in the
instruction format in Fig. 1, the custom instructions generated by our work access
external special registers in the CFU implicitly, as explained in Section 4.2.

4. Our Approach

In this section, we present our method that can generate effective custom in-
structions for RISC-type configurable processors with limited operands in custom
instructions from general MIMO patterns and that enables resource sharing at
the same time by utilizing high-level synthesis. As previously mentioned, our
approach uses the target architecture shown in Fig. 2.

4.1 Overall Flow

Figure 3 shows the overview of our approach. The inputs to the flow are
(1) application program that are to be accelerated with custom instructions, (2)
input data for the application program, (3) a component library in which the
information on area, delay of each function unit is described, and (4) constraints
for custom instructions, for example, on the number of source and destination
operands, the clock period, the number of multipliers or the number of custom
instructions, etc. The outputs of the flow are (1) a synthesizable RTL description
for a Custom Functional Unit (CFU) and a Custom Instruction Decoder (CID)
and (2) an assembly code with custom instructions.

As shown in Fig. 3, the application program is parsed by the compiler frontend
so that optimized intermediate representation (IR) of the application program,
namely, Control Flow Graphs (CFGs) and Basic Blocks (BBs) are generated.

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

Application program

| Compiler frontend |

| Profiling Input data

| Subgraph enumeration |
|

v

| 1) Scheduling | Component
¥ Library

| 2) Subgraph selection |
i

Constraints
(clock period,
1/0 ports, etc)

| 3) Resource binding |

I
v

| Code & RTL generation |

Assembly RTL code of
code with aCFU
Custom insts. and a CID

Fig.3 Overview of our approach.

With input data, we perform profiling of the application program to obtain infor-
mation such as the execution count of each BB. Using the profiling information,
we find critical BBs and then generate data-flow graphs (DFGs) for the BBs.
Here, the critical BB is the BB whose execution time occupies the large part
of the total execution time. Note that the resulting custom instructions by our
approach may change significantly when the input data change, because critical
BBs may change by using different input data. We implemented the flow in
Fig. 3 on top of LLVM compiler infrastructure 2V, and used the profiling function
in LLVM to obtain the execution count of each BB with the input data.

From the bottleneck DFGs, we enumerate subgraphs. Our approach can gener-
ate custom instructions not only from connected subgraphs but also disconnected
subgraphs. These subgraphs may have any numbers of I/Os. We use an efficient
ILP-based subgraph identification algorithm® without imposing any 1/O con-
straints for subgraphs. After the subgraphs are identified, the following three
steps (scheduling, subgraph selection and resource binding) are performed.

© 2010 Information Processing Society of Japan

61 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

4.1.1 Scheduling

We schedule all the enumerated subgraphs under I/O constraints. For the
scheduling algorithm, we can use any scheduling algorithms in high-level synthe-
sis ¥ as long as they can satisfy the imposed I/O constraints. In this paper, we
use list scheduling.

After scheduling, we obtain the scheduling latency (or the number of execution
cycles) H(G) of each bottleneck subgraph G. Our approach generates a single-
cycle custom instruction from each control step of the scheduled subgraphs. Thus,
G is executed by a sequence of H(G) custom instructions. When a subgraph G
is executed in S(G) cycles without custom instructions, then the gain by using
custom instructions in terms of the reduction in the number of execution cycles
for G is given by

. S(G)
Gain(G) = G (1)

4.1.2 Subgraph Selection

From the scheduled subgraphs, we select a set of subgraphs for custom in-
struction generation so that the total gain is maximized while the number of
custom instructions does not exceed the maximum allowed number of custom
instructions (For example, 256). Our approach uses a simple greedy algorithm
as shown in Fig. 4 which is similar to the previous work®. In Fig. 4, procedure
FindBestGain() returns the subgraph with the best gain from the set of sub-
graphs T' using formula (1), and procedure NumberO fCustomlInsts() returns
the number of custom instructions generated from a set of subgraphs.

4.1.3 Resource Binding

After subgraph selection, we bind operations and variables in the selected sub-
graphs to I/O ports, functional units and registers. In the binding, we can choose
to perform resource sharing or not to for resources except I/O ports of the register
file. We always have to share I/O ports. When we choose not to share resources,
unique functional unit or register is allocated for each operation or variable in
the selected subgraphs, and each of the operation or variable is bound to the
corresponding unique functional unit or register. When we share resources, we
can use any binding algorithms in high-level synthesis *. In this paper, we use
left edge algorithm *® that minimizes the numbers of 1/O ports, functional units

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

Algorithm Subgraph Selection

I": Set of scheduled subgraphs
I'’: Selected subset of I'
Nmaz: Maximum number of custom instructions
O(G): Set of subgraphs that overlap with a subgraph G
Ghest: A subgraph that is returned by FindBestGain() procedure
I+ ¢
while (I" # ¢) {
Grest — FindBestGain(T")
if (NumberO fCustomInsts(I' U{Grest}) < Nmaz) {
F/ — F/ U {Gbest}
I'—T-— O(Gbest)

}

I'—T-— {Gbest}
}
return I

Fig.4 Algorithm used in subgraph selection.

and registers.

After binding, we have all necessary information to generate hardware for cus-
tom instructions, namely, a CFU and a CID. In addition to the generation of
RTL for the CFU and the CID, parts of software (assembly code) are replaced
by the sequences of custom instructions.

4.2 An Illustrative Example

Figure 5 illustrates our approach with a simple example. Figure 5(a) is an
example of bottleneck basic blocks (BBs). It is translated to the data flow graph
(DFG) shown in Fig. 5 (b) where t1, ..., t7 represent temporary variables. In this
paper, we use the subgraph identification algorithm * which identifies subgraphs
with unlimited numbers of I/Os from the DFG by excluding memory operations
as in Fig.5(c). An example G of such subgraphs is shown in Fig.5(d) and it
is a MIMO subgraph with 3 inputs and 2 outputs. For simplicity, we explain
our approach by using a connected subgraph, however, our approach can handle
disconnected subgraphs without difficulty and these disconnected subgraphs are
executed in parallel with the proposed custom instructions.

The filled rectangle nodes I1, 12 and I3 represent input variables (corresponding

© 2010 Information Processing Society of Japan

62 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

Id t4, (t3) ® N3
mul 15, t1, t2 t7
v 02
mul 16, t2, t4 12 ©,
add t7, 5, t6
st (t1), t5 ® o1
1
(a) Basic Block (b) DFG (d) A subgraph G
RbRa Rw
| custom 1 | | custom 2 |

/—H/—H
i cstep! : cstep2

sjeuBis jou0)

Id r4, (r3)
custom 1 r5,r1, r2
custom2 r7,r4
st (r1),r5

(e) Scheduling (Latency = 2) (f) Binding (g) Custom Function Unit (CFU) (h) Code with Custom Inst.

Fig.5 Our approach illustrated with an example.

to register file read operations) and O1 and O2 represent output variables (corre-
sponding to register file write operations). It contains three internal operations
N1, N2 and N3.

In this paper, we schedule the MIMO subgraph under the I/O constraints of 2
inputs and 1 output per clock cycle as shown in Fig. 5 (e), and make a single-cycle
custom instruction from each control step (cstep) of the scheduled subgraph. We
assumed that the sequence of multiplication and addition operations can be exe-
cuted in the target clock period. Our approach can generate custom instructions
from multi-cycle operations as long as they are executed by pipelined functional
units. In this example, two custom instructions (custom 1 and custom 2) are
made from the two control steps (cstepl and cstep2) respectively. As a result,
the MIMO subgraph is executed in 2 cycles by the sequence of the two custom
instructions. Since the subgraph is executed in 3 cycles by the base instructions
of the configurable processor, the gain is Gain(G) = 3 = 1.5.

For simplicity in illustration, assume that only one subgraph shown in Fig. 5 (e)
is selected for custom instructions. Figure 5 (f) shows a binding result for the
selected subgraph. Each input variable is bound to a register file read access

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

(either Ra or Rb) and each output variable is bound to a register file write access
(Rw). Temporary variables that are live across different csteps are bound to the
special registers in the CFU. For example, the temporary variable t2 and t5 are
bound to the special registers vl and v2 respectively. In general, such special
registers can be shared among different temporary variables that are written by
different custom instructions. In the case of Fig. 5 (f), this does not happen, since
t2 and t5 have overlapping lifetime. The multiplication operations (N1 and N2)
are bound to the same multiplier (MUL) since they are executed in different
control steps. Because of the sharing of MUL, an input multiplexer is required
at the input of MUL, as shown in Fig.5(g). The addition operation (N3) are
bound to an adder (ADD).

Figure 5 (g) is the resulting CFU by our work. As stated previously, the control
signals are generated by decoding the custom instruction specifier n in Fig. 1 using
the CID, and the control signals are used as the control inputs for the multiplexers
and write-enable signals for the special registers in the CFU.

Figure 5 (h) is the resulting assembly code with the custom instructions. The
operations in the selected subgraph are replaced with the sequence of custom
instructions. After the replacement, register allocation is performed for the tem-
porary variables in the code generation phase of the compiler. In Fig.5 (h), t1,
t2, t3, t4, t5, r7 are allocated to the registers rl, r2; r3, r4, r5, r7 in the base
processor, respectively. t2, t5 are also assigned to the external registers vl and
v2, and t6 is reduced to a bus wire because of the chaining.

In the assembly code, custom 1 implicitly moves r2 to vl and writes v2, and
custom 2 implicitly read vl and v2. These special registers vl and v2 are not
explicitly encoded in the custom instruction format, however, and are implicitly
specified in the custom instruction specifier n in Fig. 1, so that our approach
can use the RISC-type instruction format in Fig.1 while increasing the data
bandwidth of custom instructions. The reordering of custom instructions by
compiler optimizations must be prohibited, since that may change the execution
results.

4.3 Execution of Custom Instructions

Figure 6 (a) shows the execution of the generated assembly code with the cus-
tom instructions in the processor pipeline. Custom instructions generated by our

© 2010 Information Processing Society of Japan

63 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

RbRa Rw RbRa Rw
1

Cycle { Cycle { Cycle { Cycle i Cycle { Cycle { Cycle i Cycle
1 2 3 4 5 6 7 8

Clock [T "L L_ LT L L{ LI L

| i
Id IF D | EX [MEM | wB : N I =
| B 1=
custom 1 IF ID | EX [MEM| wB [L
ofv2)
custom 2 IF D EX | MEM | WB
ot - ADD}-
IF ID | EX | MEM | wB Sl

(a) Execution of the custom instructions (b) Execution of custom 1 (c) Execution of custom 2

at Cycle at Cycle 5

Fig.6 Execution of custom instructions in processor pipeline.

approach can use the existing forwarding unit in the configurable processor, so
that the pipeline hazards are minimized as in the same way as the base instruc-
tions of the configurable processor. As shown in Figs. 5 (h) and 6 (a), custom 2,
for example, read the register r4 that are written by the ld instruction before
the write-back (WB) stage of the 1d instruction without stalling the pipeline by
using the data forwarding unit.

Figures 6 (b) and (c) show how custom 1 and custom 2 are executed by the
CFU. As shown in Figs. 6 (b) and (c¢), the custom instructions generated by our
approach (custom 1) not only perform computation such as multiplication, but
also perform data transfer between the register file in the configurable processor
and the special register (v1) in the CFU simultaneously. In the execution cycle
of custom 2, the special registers vl and v2 are read immediately after the write
access to vl and v2 at the execution cycle of custom 1. Since the execution of
custom 1 and custom 2 do not occur in the same cycle, the multiplier (MUL) is
chosen to be shared.

There are two caveats in the generated custom instructions: (1) When a cache
miss occurs while custom instructions execute, the processor pipeline is stalled
in the same way as base instructions stall pipeline in case of cache misses, and
(2) any pair of interrupt routines, A and B, that may be executed concurrently
cannot use custom instructions that share external registers in the CFU to avoid
corruption of data in the external registers.

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

5. Experimental Results

In this section, we evaluate our approach in terms of performance and resource
usage. In particular, we compare the evaluation results by three approaches: (1)
previous work by Jayaseelan, et al.'®, (2) our work without resource sharing,
and (3) our work with resource sharing. In our work, we can choose to perform
resource sharing or not. In the evaluation of performance, we use not only the
execution cycle, but also the clock frequency (or equivalently, critical path delay)
of the configurable processor with custom instructions, since both of them are
important in performance evaluation.

5.1 Experimental Setup

We implemented our approach in Fig.3 in C4++ on top of an existing com-
piler framework. We estimated the execution cycles of basic blocks (BBs) and
programs statically by the numbers of instructions weighted by the execution
cycles of each instruction. We defined critical BBs as the ones whose numbers
of execution cycles were more than 0.5% of the total number of execution cycles.
We used the subgraph identification algorithm ¥ without imposing the I/O con-
straints for subgraphs. We excluded memory access operations, floating-point
operations and division operations from subgraphs. For the identified subgraphs,
we performed list scheduling'® with the resource constraints of up to 2 inputs
and 1 output on I/O accesses. After list scheduling, we selected subgraphs us-
ing the algorithm in Fig.4, and carried out left edge binding of I/O ports for
the selected subgraphs followed by the generation of the Verilog-HDL file of the
Custom Functional Unit (CFU). We did not generate the Verilog-HDL file of
the Custom Instruction Decoder (CID), since it is unlikely to be on the critical
path of the configurable processor system and the resource usages of the CIDs
are most likely much smaller than those of CFUs.

We used Quartus II 8.1 Subscription edition ¥ to perform synthesis, placement
and routing of the CFUs and to obtain the information on critical path delays
and resource usages of the CFUs. We used Altera Stratix II (EP2S180F1508C3)
for a target device. We chose 6.5 ns as the target clock period for the configurable
processor system, since the critical path delay of the configurable processor Altera
Nios II/f with 16 KB I-Cache, 16 KB D-Cache, and an SDRAM controller was

© 2010 Information Processing Society of Japan

64 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

Table 1 Benchmark programs.

Name Description insts. TBB | BB %

rawcaudio | ADPCM audio encoder 110 17 7 99.9
rawdaudio | ADPCM audio decoder 100 18 9 99.9
det Forward 8 x 8 DCT 258 10 2 99.2
idct Inverse 8 x 8 DCT 338 27 18 99.1
gouraud Gouraud shading 51 4 1 100
fft Complex FFT 148 10 4 99.5
viterbi Viterbi trellis decoder 188 4 1 99.3
sha Secure hash algorithm 1,493 28 4 99.7

djpeg JPEG image decoder 244,554 | 3,186 12 | 90.9

6.5 ns. The resource usage of the configurable processor system was 4,463 ALUTs
(Adaptive LUTS), 4,259 registers and 8 8-bit multipliers.
In this experiment, we used the following formula to compute the speedups by
custom instructions.
Cyclenocust X CProcust 2)
Cyclecyst X CPeyst
where Cyclenoeust and Cycleq, s are the numbers of execution cycles when a

Speedup =

benchmark is executed without and with custom instructions, respectively, and
CPocust and CP,y,4 are the critical path delays of the configurable processor
system without and with custom instructions, respectively. As mentioned above,
we chose CPpocust to be 6.5ns. We denote the critical path delay of a CFU as
CP,yy, and we used the following formula to obtain CFeys:
CPeyst = maz{CProcust, CPefu} (3)

Table 1 shows benchmark programs we used in this experiments. We picked
up the benchmarks from MediaBench (djpeg, rawdaudio, rawcaudio), MiBench
(sha with loops unrolled). Other benchmarks (dct, idct, gouraud, fft and viterbi)
are performance intensive loops in digital signal processing. In Table 1, the
first column (Name) represents the name of each benchmark, the second column
(Description) briefly describes each benchmark, the third column (insts.) is the
number of instructions in each benchmark, the fourth column (TBB) shows the
total number of BBs in each benchmark, and the fifth column (BB) presents the
number of critical BBs in each benchmark. The sixth column (%) expresses the
number of execution cycles spent in the critical BBs as a percentage of the total
number of execution cycles.

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

5.2 Comparison with Previous Work

We compare our work with the previous work ¥, since it is the state-of-the-
art framework that generates efficient custom instructions for the configurable
processor with limited I/O ports in the register file and limited operands in the
instruction format. The previous work exploits the forwarding mechanism in
RISC processors, so that any subgraph with up to 4-input and 1l-output can di-
rectly become a custom instruction for RISC processors with two source and one
destination operands. More specifically, we compare custom instructions gener-
ated by our work with those generated for the architecture with four read ports
in the register file and enough space to encode these operands in the instruction
format. This architecture and custom instructions which is compared with our
work provides the best speedup that can be achieved by the previous work 4 and
the same resource usages in the CFUs as the work '4). In this experiment, we did
not perform resource sharing except I/O ports in the binding step to maximize
the speedups by our work.

Table 2 summarizes the results of the comparison. In the table, codesize shows
the code size and cycle shows the number of execution cycles. In the second col-
umn and the third column, the code size and the number of execution cycles
(Cyclenoeust in (2)) in the case of the base processor without custom instruc-
tions are shown respectively. In the table, sg represents the number of selected
subgraphs, N shows the total number of operations executed in all the custom
instructions, and ci represents the number of custom instructions generated. In
case of the previous work ') the number of custom instructions (ci) is exactly
equal to the number of selected subgraphs (sg), since each subgraph (with up
to 4-input and l-output) corresponds to a custom instruction. lut, reg, and mul
shows the number of ALUTs (adaptive look-up tables), the number of registers
and the number of 8-bit dedicated hardware multipliers used in the Stratix II
FPGA, respectively. In the table, columns cp [ns] represent the critical path de-
lays of the CFU in the unit of nano seconds, and these numbers correspond to
CP.¢, in formula (3). In the same columns, the numbers shown in parentheses
are the critical path delays of the system including both the configurable proces-
sor and the CFU, and these numbers correspond to C P, in formula (2). cycle
in the 10th and 20th columns represent the numbers of execution cycles of each

© 2010 Information Processing Society of Japan

65 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

Table 2 Comparison between previous work 14) and our work.

benchmark Original Previous work (ideal case of 14)) Our work without resource sharing
Resource usage Performance Resource usage Performance

codesize cycle codesize | ci N lut mul cp [ns] cycle s-up | codesize | sg ci N lut reg mul cp [ns] cycle s-up
rawcaudio 110 9.28 M 94 8 24 380 0 6.3 (6.5) 6.93M | 1.34 89 4 17 38 643 655 0 5.3 (6.5) | 6.19M | 1.50
rawdaudio 100 608.4 M 87 5 18 309 0 5.8 (6.5) | 447.8M | 1.36 89 4 9 20 278 233 0 4.6 (6.5) | 474.5M | 1.28
dct 258 2,024 180 30 | 108 955 224 11.7 (6.5) 1,528 1.32 132 2 26 152 1,523 1,719 224 | 6.7 (6.7) 1,016 1.93
idct 338 2,511 262 30 | 106 870 320 11.5 (6.5) 1,989 1.26 229 2 36 145 1,803 3,232 | 320 | 6.0 (6.5) 1,639 1.53
gouraud 51 19.5 M 29 5 27 190 24 4.8 (6.5) 8.50M | 2.29 25 1 7 33 445 562 24 | 6.1(6.5) | 6.50M | 3.00
fft 148 6,042 128 8 28 304 104 4.2 (6.5) 5,082 1.19 118 5 33 63 909 1,116 120 | 6.0 (6.5) 4,629 1.31
viterbi 188 435 138 25 | 75 121 0 4.5 (6.5) 335 1.30 108 4 36 116 1,018 844 0 5.5 (6.5) 275 1.58
sha 1,493 162.6 M 1,491 1 3 32 0 0.8 (6.5) 156.2M | 1.04 547 3 | 107 | 1,053 | 14,570 | 19,273 0 5.7 (6.5) | 110.7M | 1.47
djpeg 244,554 4.94M 244,450 | 69 | 173 | 1,626 272 11.5(6.5) | 4.33M | 1.14 | 244,424 | 9 56 186 2,939 3,318 280 | 5.8 (6.5) | 4.15M | 1.19
average - - - - - - - - - 1.36 - - - - - - - - - 1.64

benchmark, and correspond to Cyclecyst in (2). s-up shows the speedup results
computed by formula (2). On average, the ideal speedup of the work ¥ was 1.36,
and the speedup achieved by our approach without resource sharing was 1.64.

The code sizes with custom instructions were consistently smaller than those
without custom instructions, since a custom instruction contained multiple base
instructions. Mostly, the code sizes with our work were smaller than those with
the previous work '), This was because more base instructions were contained
in the set of generated custom instructions by our approach than in those by the
previous approach.

The number of custom instructions generated by our work (ci) is usually larger
than the number of custom instructions generated by the previous work (sg),
since our work typically generates a sequence of multiple custom instructions
from each subgraph. The number of custom instructions generated by our work
was at most 107 (for sha benchmark), and all of the custom instructions can be
implemented in Nios II, since the instruction format allows up to 256 custom
instructions. By comparing columns N in Table 2, we see that our work enables
more operations to be executed in custom instructions compared to the previous
work.

The columns lut in Table 2 show that the custom instructions generated by our
work use more ALUT resources compared to the previous work. This is because
our work executes more operations by custom instructions compared to the pre-

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

vious work as stated above, so that more functional units are allocated in CFUs.
In addition, the custom instructions generated by our work require registers to
store temporary variables in external special registers in order to increase data-
bandwidth, whereas the custom instructions generated by the previous work '¥
do not use external registers. The numbers of 8-bit multipliers used in our work
were almost the same as those used in the previous work.

Now, we compare the custom instructions generated by the previous work and
our work in terms of performance improvement. As shown in formula (2), per-
formance is the product of the number of execution cycles required to execute
a benchmark, and the critical path delay of the configurable processor system.
In the previous work, the critical path delays of the CFUs (cp [ns]) were smaller
than the critical path delays of the configurable processor (6.5 ns) except dct, idct
and djpeg as shown in Table 2. Thus, the latency of all the custom instructions
for the benchmarks except dct, idct and djpeg was one cycle. The CFUs of dct,
idct and djpeg contained many 8-bit dedicated hardware multipliers. Since these
multipliers were placed in special and limited locations in the Stratix IT device,
many use of the multipliers caused unexpected interconnection delays, so that the
critical path delays of some custom instructions were longer than estimated. Such
custom instructions were executed as multi-cycle custom instructions so that the
critical path delay of the whole system was not degraded at all. Therefore, the
critical path delays C P,y of the configurable processor system with custom in-

© 2010 Information Processing Society of Japan

66 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

Table 3 Effect of resource sharing.

benchmark Our work with resource sharing
Resource usage (ratio) Performance

lut (ratio) reg (ratio) | mul (ratio) cp[ns] | s-up
rawcaudio 714 (1.11) 269 (0.41) - 5.8 (6.5) | 1.50
rawdaudio | 361 (1.30) | 110 (0.47) S| 47(65) | 1.28
det 2,285 (1.50) | 516 (0.30) | 65 (0.29) 9.1 (9.1) | 1.42
idct 2,398 (1.33) 646 (0.20) 189 (0.59) 79 (7.9) | 1.26
gouraud 659 (1.48) | 281 (0.50) | 16 (0.67) 7.7 (7.7) | 2.53
ft 1,218 (1.34) | 268 (0.24) | 32 (0.27) 8.5 (8.5) | 1.00
viterbi | 1,038 (1.02) | 160 (0.19) - | 58(65) | 1.58
sha 8,305 (0.57) | 2,313 (0.12) 6.9 (6.9) | 1.38
djpeg 4,262 (1.45) | 465 (0.14) | 31 (0.11) | 11.0 (11.0) | 0.70
average - (1.23) - (0.29) - (0.39) - | 1.41

structions generated by the previous approach was 6.5 ns for all benchmarks, so
the CFUs did not deteriorate the critical path delays of the overall system. By
using our work without resource sharing, only the CFU of dct benchmark had
slightly longer critical path delays of 6.7 ns than that of the system (6.5 ns). The
reason for the long critical path delay of dct in our work is the same as that for
dct, idct and djpeg in the previous work. For all benchmarks except dct, our
work could generate the CFUs whose critical path delays are shorter than that
of the configurable processor system (6.5ns). The numbers of execution cycles
with our approach were significantly fewer than those with the previous approach
except rawdaudio benchmark. In the rawdaudio, the previous work could achieve
better speedup, since it could generate a single-cycle custom instruction from a
bottleneck subgraph with three inputs, whereas our approach generated a se-
quence of two custom instructions from the same subgraph. In summary, our
work generated custom instructions whose performance is significantly (28% on
average) better than the state-of-the-art 4.

5.3 Effect of Resource Sharing

Table 3 summarizes the results of our work when we shared not only I/O ports
as in Section 5.2 but also multipliers and registers using left edge binding algo-
rithm *® in the binding step. The numbers of registers and multipliers were the
minimum, since left edge algorithm was used. The number of selected subgraphs
(sg), the number of custom instructions generated (ci), and the total number

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

of operations executed in all the custom instructions (N) are exactly the same
with and without resource sharing, so these numbers are not shown in Table 3.
Resource usage in the table shows the resource usage by our work with resource
sharing, and ratio in the parenthesis shows a ratio of resource usage by our work
with resource sharing to the resource usage by our work without resource sharing
which is shown in Table 2. From Table 3, we can see that our work with resource
sharing could reduce both the number of ALUTs and the number of registers
for sha benchmark. On average, the number of ALUTs increased by 23% when
resources were shared, since multiplexers were added in front of the registers
and multipliers. Significant reduction in the numbers of registers and multipli-
ers (71% and 61%, respectively) were observed because of the resource sharing.
For three benchmarks (rawcaudio, rawdaudio, and viterbi), our approach with
resource sharing could satisfy the system clock constraint (6.5 ns) while reducing
the number of registers significantly. For the remaining six benchmarks out of
nine, the critical path delays of the CFUs were larger than the critical path delay
of the configurable processor system (6.5ns), so we can see that it is better not
to perform resource sharing, if we need highest performance.

To know the effectiveness of resource sharing on area reduction, we roughly esti-
mated the total area of CFUs in terms of 2-input NAND gates by multiplying the
numbers of ALUTs (lut), the numbers of registers (reg) and the numbers of 8-bit
hardware multipliers (mul) in Tables 2 and 3 by 12, 10 and 400, respectively. We
had to use the rough estimation for the total area because Verilog-HDL files gen-
erated by our current tool contained instances of LPMs (Library of Parametrized
Modules) from Altera® and could not directly compiled to ASICs. The result of
rough estimation showed that our work with resource sharing reduced the area by
39% on average in terms of 2-input NAND gates compared to our work without
resource sharing.

Our work with resource sharing achieves moderate speedup (1.41%) com-
pared to the previous work ' (1.36%) with significant increase in the number of
ALUTs. Our work with resource sharing also requires registers, while the previ-
ous work ¥ does not. Our work with resource sharing, however, can be effective
when the number of available multipliers is limited and there are many multiply
operations in the target application, since our work with resource sharing requires

© 2010 Information Processing Society of Japan

67 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

less multipliers compared to the previous work ™.
6. Conclusions

We proposed a technique to generate custom instructions for configurable pro-
cessors with limited register file I/O ports and fixed-length instruction formats.
As a unique feature of our approach, it makes a custom instruction from each
control step of the scheduled subgraphs, and can perform resource sharing when
necessary in the binding step. Because of the feature, our approach provides both
of the following advantages simultaneously: (1) Generation of effective custom
instructions from general MIMO subgraphs without changing the pipeline and
the instruction format of the configurable processors, (2) Generation of a single,
area-efficient Custom Functional Unit (CFU) for a set of custom instructions
in which resources are shared among different custom instructions. Experimen-
tal results showed that our approach without resource sharing could generate
custom instructions with significant speedups of 28% on average compared to
the state-of-the-art previous work of custom instruction generation for common
configurable processors with limited register file I/O ports and fixed-length in-
struction formats. Therefore, we can conclude that our approach is a promising
way of generating performance-effective custom instructions for commonly used
RISC-type configurable processors with limited register file I/O ports and fixed-
length instruction formats.

References

1) Altera Corp.: http://www.altera.com

2) Altera Corp.: Nios II Custom Instruction User Guide.

3) ASIP Solutions, Inc.: http://www.asip-solutions.com/en/products.html

4) Atasu, K., Dundar, G. and Ozturan, C.: An Integer Linear Programming Approach
for Identifying Instruction-Set Extensions, Proc. 8rd IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis (CODES-
ISSS), pp.172-177 (2005).

5) Atasu, K., Pozzi, L. and Ienne, P.: Automatic Application-Specific Instruction-Set
Extensions under Microarchitectural Constraints, Proc. 40th Design Automation
Conference (DAC), pp.256-261 (2003).

6) Biswas, P., Banerjee, S., Dutt, N., Pozzi, L. and Ienne, P.: ISEGEN: Generation of
High-Quality Instruction Set Extensions by Iterative Improvement, Proc. Design,

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

Automation, and Test in Furope (DATE), pp.1246-1251 (2005).

7) Biswas, P., Dutt, N.D., Pozzi, L. and Ienne, P.: Introduction of Architecturally
Visible Storage in Instruction Set Extensions, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol.26, No.3, pp.435-446 (2007).

8) Brisk, P., Kaplan, A. and Sarrafzadeh, M.: Area-Efficient Instruction Set Syn-
thesis for Reconfigurable System-on-Chip Designs, Proc. 41st Design Automation
Conference (DAC), pp.395-400 (2004).

9) Clark, N., Zhong, H. and Mahlke, S.: Processor Acceleration Through Automated
Instruction Set Customization, Proc. International Symposium on Microarchitec-
ture, pp.129-140 (2003).

10) Clark, N.T., Zhong, H. and Mahlke, S.A.: Automated Custom Instruction Gen-
eration for Domain-Specific Processor Acceleration, IEEE Trans. Comput., Vol.54,
No.10, pp.1258-1270 (2005).

11) Cong, J., Han, G. and Zhang, Z.: Architecture and Compilation for Data Band-
width Improvement in Configurable Embedded Processors, Proc. 2005 IEEE/ACM
International Conference on Computer-Aided Design, pp.263-270 (2005).

12) CoWare, Inc.: http://www.coware.com

13) Gajski, D.D., Dutt, N.D., Wu, A.C.-H. and Lin, S.Y.-L.: High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic Publishers (1992).

14) Jayaseelan, R., Liu, H. and Mitra, T.: Exploiting forwarding to improve data
bandwidth of instruction-set extensions, Proc. 43rd Design Automation Conference
(DAC), pp.43-48 (2006).

15) Kurdahi, F.J. and Parker, A.C.: REAL: A program for REgister ALlocation, Proc.
24th Design Automation Conference (DAC), pp.210-215 (1987).

16) MIPS Technologies, Inc.: http://www.mips.com

17) Pozzi, L. and lenne, P.: Exploiting Pipelining to Relax Register-file Port Con-
straints of Instruction-Set Extensions, Proc. 2005 international conference on Com-
pilers, architectures and synthesis for embedded systems (CASES), pp.2-10 (2005).

18) Seto, K. and Fujita, M.: Custom Instruction Generation with High-Level Synthesis,
Proc. 6th IEEE Symposium on Application Specific Processors, IEEE, pp.14-19
(2008).

19) Sun, F., Ravi, S., Raghunathan, A. and Jha, N.K.: A Scalable Application-Specific
Processor Synthesis Methodology, Proc. 2003 IEEE/ACM International Conference
on Computer-Aided Design, pp.283-290 (2003).

20) Tensilica Inc.: http://www.tensilica.com

21) The LLVM Compiler Infrastructure: http://llvm.org/

22) Toshiba Corporation: http://www.semicon.toshiba.co.jp/eng/index.html

23) Yu, P. and Mitra, T.: Characterizing Embedded Applications for Instruction-Set
Extensible Processors, Proc. 41st Design Automation Conference (DAC), pp.723—
728 (2004).

24) Zuluaga, M. and Topham, N.: Resource Sharing in Custom Instruction Set Exten-

© 2010 Information Processing Society of Japan

68 Custom Instruction Generation for Configurable Processors with Limited Numbers of Operands

sions, Proc. 2008 Symposium on Application Specific Processors (SASP), pp.7-13
(2008).
(Received May 16, 2009)
(Revised September 4, 2009)
(Accepted October 31, 2009)
(Released February 15, 2010)

(Recommended by Associate Editor: Hiroyuki Tomiyama)

Kenshu Seto received the B.S. in electrical engineering, the
M.S. and D. Eng. in electronics engineering from the University of
Tokyo in 1997, 1999 and 2004, respectively. From 2004 to 2006, he

\ = was a researcher at VLSI Design and Education Center (VDEC),

‘ h University of Tokyo. He joined the Department of Electrical and

-~ Electronic engineering, Musashi Institute of Technology (renamed

as Tokyo City University) in 2007. His research interests include
high-level synthesis and compiler techniques for System-on-Chips (SoCs).

Masahiro Fujita received the B.S. degree in electrical engi-

l) neering in 1980, and the M.S. and Ph.D. degrees in information

"’?Vk i engineering from the University of Tokyo, Tokyo, Japan in 1982
o

i and 1985, respectively. From 1985 to 1993, he was a Research
‘?- Scientist with Fujitsu Laboratories, Kawasaki, Japan. From 1994

to 1999, he was the Director of the Advanced Computer-Aided

Design Research Group, Fujitsu Laboratories of America, Sunny-
vale, CA. He is currently a Professor in the Department of Electrical Engineering,
the University of Tokyo, Tokyo, Japan. He has been on program committees for
many conferences dealing with digital design and is an Associate Editor of Formal
Methods on Systems Design. His primary research interest is in the computer-
aided design of digital systems. Dr. Fujita received the Sakai Award from the
Information Processing Society of Japan in 1984.

IPSJ Transactions on System LSI Design Methodology Vol. 3 57—68 (Feb. 2010)

© 2010 Information Processing Society of Japan

