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When designing today’s highly complicated systems consisting of several
hardware and software modules, it is essential to estimate the performance
such as worst-case or best-case execution time in early design stages. Such
estimation is essential to explore architecture and hardware/software partition-
ing in system-level design. A maximum execution time estimated topologically
without considering false-paths is longer than the real. In this paper, we pro-
pose an static estimation method of maximum execution time in system-level
designs, considering false-paths. Also, we adopt an approximation approach in
order to avoid the path explosion problem. The experimental results show that
our method can provide much smaller estimated maximum execution time than
the method without considering false-paths. At the same time, the results show
us that the maximum execution time can be estimated to a very small range,
by applying both simulation-based method and our static method.

1. Introduction

To efficiently design System-on-a-Chips (SoCs), which consists of both software
and hardware, system-level design methodology has been introduced to improve
the productivity. In system-level design, designers start from abstracted design
descriptions of systems considering both hardware and software parts, which re-
sults in that designers can take several advantages such that faster simulation,
more flexible hardware/software partitioning, and less amount of design descrip-
tions, compared to designing from RTL (Register Transfer Level). At the same
time, system-level design enables us to verify/estimate designs from very early
design stages, which can reduce the risk of reworking in preceding design stages.
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One of the most important issues in system-level design is to estimate the
performance (worst-case or best-case execution time) of a given design so that
designers can judge whether the design satisfies the required performance or not.
If designers can recognize in system-level that the performance does not satisfy
the requirement, it should be solved in system-level by refining architectures,
hardware/software partitioning, or algorithms. When the performance problem
is found in the later than RTL, designers have to refine the architectures or the
circuits in RTL or even back in system-level. However, the estimated execution
time in system-level can be different from that of synthesized circuits. Even
in such cases, the execution time estimation in system-level is still important
since we can know relative execution time and explore better architectures and
hardware/software partitioning. Therefore, the method we propose in this paper
can contribute to supporting architecture exploration in system-level.

For logic gate circuits, maximum (or minimum) execution time analysis is
mainly performed statically by the topological traverse of circuits. Throughout
this paper, we refer to all estimation methods that do not need input patterns as
static method, while some static methods that estimate the maximum execution
time only by topological traverse of circuits or design descriptions as topological
method. This static timing analysis (STA) techniques have been established to
estimate the timing of a given circuit without feeding any input patterns. How-
ever, the estimated maximum execution time by STA is usually longer than the
real when false-paths in the circuit are not avoided. It means that the accu-
racy of the static methods depends on how many false-paths are detected and
avoided from the estimation. Currently, there are several estimation methods
for system-level designs. However, in those methods, designers have to specify
false-paths manually, which is not a practical way for today’s large designs hav-
ing a great number of false-paths. Therefore, static execution time estimation
methods which can automatically avoid false-paths are required.

Based on the discussion above, in this paper, we propose a maximum execution
time estimation method for system-level designs. The target designs can have
parallel behaviors and synchronizations among them, which need to be taken
into account in system-level design. Also, they are assumed to be written in C-
based language such as SpecC 1) or SystemC 2), which are usually used to describe

69 c© 2010 Information Processing Society of Japan



70 Performance Estimation with Automatic False-Path Detection

designs in system level. In this work, we assume SpecC is used to describe the
behaviors, but our proposed method is applicable even if designs are described
in other C-based languages. When a given design under estimation is very large,
the estimation takes too long time since it must keep the path conditions for
all execution paths in order to detect false paths. To overcome this problem,
our proposed method approximate the intermediate estimation results when a
number of execution paths under estimation exceeds to some specified threshold.
This approximation can reduce the runtime of the performance estimation by
limiting the number of paths under estimation up to the threshold. Thus, the
smaller the threshold is, the faster we can get the estimation result. However,
when the approximation is carried out, the estimation results may less accurate
since the intermediate estimation results are abandoned, which results in that
some false-path cannot be detected. Through the experiments, we show that our
proposed method is applicable to large designs and its results are much better
than ones without considering false-paths. In addition, applying both random
simulation based estimation and our static estimation method, we can get a small
range of possible maximum execution time of the designs.

The rest of this paper is organized as follows. In Section 2, we introduce
some related works. In Section 3, some preliminaries on system-level design
descriptions are provided. Then, in Section 4, our proposed method is described.
Experimental results are shown in Section 5. Finally, we give concluding remarks
in Section 6.

2. Related Works

In this section, existing performance estimation methods are introduced.
Originally, timing analysis technique is used to estimate the signal propagation

time in hardware circuits to identify the minimum and maximum delays. Since
a timing violation results in an incorrect output from the circuit, it is essential
to ensure the 100% satisfaction of timing requirements. Therefore, static timing
analysis (STA), which does not depend on input patterns and satisfies 100%
coverage, has been developed and used widely 4). Moreover, since the runtime of
static timing analysis based on topological traversal of the circuit (i.e., without
considering false-paths) increases only linearly in the size of the circuit, it is widely

utilized in industry. Static timing analysis is basically carried out on a timing
graph consisting of nodes and directed edges with the value of the delay between
two nodes. Also, an STA method which can handle user-specified false-paths is
proposed by Belkhale and Suess 5). In the method, a false-path is represented as
a tag in a timing graph.

On the other hand, worst-case execution time analysis of software programs is
rather harder than that of hardware circuits because it is undecidable in general
and equivalent to solving the halting problem. Puschner et al suggested the
restrictions to make this problem decidable: absence of dynamic data structures
such as pointers, recursion, and unbounded loops 6). Since these restrictions force
programmers to specify the actual loop bounds, several approaches to specify the
loop bounds and false-paths have been proposed. In particular, Park expresses
the set of all possible path sequences in a regular expression 7). In the work,
a language named Information Description Language (IDL) is provided for the
users to specify loop bounds and false-paths.

Malik and Li propose a method which does not explicitly enumerate program
paths by converting the problem of determining the bounds into an integer linear
programming (ILP) problem, in order to deal with the exponential increase of
the number of paths in the program 8),9). It is possible to formulate restrictions
on the program flows such as loop bounds or excluding path dependencies. Their
method is realized as a tool Cinderella 9).

To apply execution time estimation techniques in system-level designs, parallel
behaviors and communications/synchronizations among them should be taken
into account. In10),11), Siebenborn, et al. propose a communication analysis
method to detect the points of synchronization in SystemC. The communica-
tion analysis is carried out on a communication dependency graph (CDG), then
a timing constraint on each synchronization point is produced. After solving syn-
chronization problems, performance analysis is carried out in the form of ILP.

The techniques above can handle only user-defined false-paths. Then, we pro-
pose a method to automatically detect false-paths and avoid them from the esti-
mation results. In our method, to decide whether a path-condition is satisfiable,
we have to solve the satisfiability of logic equations including arithmetics. For
this purpose, we use SMT (Satisfiability Modulo of Theory) solver in our work.
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behavior B1(void){ behavior Main(void){

void main(void){ B1 b1;

... B2 b2;

} void main(void){

}; par{

behavior B2(void){ b1.main();

void main(void){ b2.main();

... }

} }

}; };

Fig. 1 Parallel execution.

3. Preliminaries

In this paper, the proposed method is described based on the syntax and se-
mantics of SpecC language. Note that the proposed method is applicable other
system-level design description languages that have the ability to describe paral-
lel behaviors and synchronization. SpecC is an extension of ANSI-C language in
order to describe hardware functionalities such as hierarchical structure, parallel
behavior, synchronization, execution time, communication, and state transition.
In the remaining of this section, we explain how parallel behaviors and synchro-
nizations are described in SpecC.

3.1 Parallel Behavior
Parallel behaviors in SpecC are described using par statements as shown in

Fig. 1. Only main methods of behaviors can be put under par statements, and
then these behaviors are executed in parallel. In Fig. 1, the behavior b1 and b2

are executed in parallel. In other words, the executions of b1 and b2 start and
end at the same time.

3.2 Synchronization
While parallel behaviors are communicating with each other, synchronization

is required to guarantee the execution order of statements which access shared
variables. Synchronization in SpecC is described by wait/notify statements
and event variables as shown in Fig. 2. event variables are used as arguments
of wait/notify statements. A wait statement suspends the execution of the
behavior until the event variable of its argument is triggered by a notify state-
ment. In Fig. 2, the statement x = 0 in the behavior B1 is guaranteed to be

behavior B1(int x,

event e){

void main(void){

x = 0;

notify(e);

}

};

behavior B2(int x,

event e){

void main(void){

wait(e);

x++;

}

}:

Fig. 2 Synchronization.

void main(void){

int a, b;

a = 0;

waitfor(10);

b = a + 5;

waitfor(20);

}

Fig. 3 Description of execution time.

executed before the statement x++ in the behavior B2 by synchronization.
3.3 Execution Time
In order to deal with timing information in system-level, execution time can

be described by waitfor statements. The two waitfor statements in Fig. 3
represent that 10 unit time passes after the execution of a = 0 and 20 unit time
passes after the execution of b = a + 5, respectively. In SpecC, the execution of
statements except for waitfor statements does not take any time, hence, does
not affect the execution time estimation. In this work, the estimation is carried
out by collecting and counting waitfor statements.

As described above, our proposed method is applied to the design descriptions
where waitfor statements are already included. Therefore, an execution time
of each assignment (or each basic block) must be figured out in advance. Those
waitfor statements are usually inserted in the design flow in the following way.
• For hardware parts, the execution time is derived from the results of behavior

synthesis that is carried out to know rough performance/area/power of the
hardware

• For software parts, the execution time is derived for each assignment (or
each basic block) based on the number of operations in the assignment (or
the block)
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• When there are any timed communications with modules outside, the timing
constraints can be described in the design descriptions using waitfor

4. Proposed Method

In this section, we introduce the method to statically estimate the maximum
execution time of a given design in SpecC.

4.1 Problem Definition
Given the following things as inputs, our proposed method generates an esti-

mated maximum execution time of the given design.
• A system-level design description in SpecC with waitfor statements
• The threshold number of paths. This number will be used to apply the

approximation of the estimation to avoid the path explosion problem.
• The constraints to the input signals of the design if any
As explained in the previous section, in this work, we assume that waitfor

statements are inserted to SpecC designs to describe the execution time of state-
ments, in advance to the application of the proposed method. Then, our method
tries to detect the maximum execution time in a given SpecC design. In other
words, the method identifies the true path where the sum of the execution times
in waitfor is largest.

In addition, we assume that the following restrictions are satisfied in a given
design description.
• Pointers, dynamic data structures, dynamic memory allocations, and recur-

sive function calls are removed from the design descriptions by appropriate
transformation

• There is no deadlock. The proposed method does not generate the estimated
execution time in the presence of deadlocks, since the execution may not
finish if any deadlock exists.

• When the design has loops, the number of the iteration must be specified for
each loop by users.

To remove pointers and dynamic memory allocations, pointer analysis meth-
ods need to be applied to identify the variables that are pointed by pointer
variables 15)–17). To remove recursive function calls, we unroll them up to some
sufficient number of times. This number of times for unrolling is assumed to be

given by users. If the number is smaller than the real execution, the estimated
execution time by the proposed method may shorter than the real. False-paths
in design descriptions before the removal of pointers, dynamic memory alloca-
tion, and recursive function calls are still kept in design descriptions after the
removal of them. On the other hand, removal of pointers may introduce addi-
tional false-paths in design descriptions, since the variable pointed by a pointer
is generally path-sensitive and not decided before the execution, which can make
our performance estimation described in Section 4.3 worse.

To satisfy the second restriction, deadlocks must be detected and removed
before the execution time is estimated. This can be done by usual verification
process applying simulation and formal verification methods such as one proposed
by Sakunkonchak 13).

4.2 False Path Detection and Removal
One of the main contributions of this work is to detect and remove false-paths

from the analysis automatically. To calculate the false-path aware maximum
execution time, a pair of execution time (from the beginning to the current point)
and the corresponding path condition is maintained for each path. To realize this,
the proposed method keeps a set of < path ID, delay, path condition > for each
path. Then, it traverses the control flow of the given design with the set updated
in the following way.
• At the beginning, only one element < path0, 0, true > belongs to the set.
• For a waitfor(t) statement, delay of the corresponding paths will be incre-

mented by t.
• For a conditional branch, the element of the corresponding path <

pathn, t, cond > is duplicated into two elements < pathn, t, cond > and
< pathn+1, t, cond >. Then, for the path going to then-side of the branch,
the path condition is updated by adding the condition of the branch. On the
other hand, for the path going to else-side, the path condition is updated by
adding the negation of the condition.

• For an assignment statement, the post-condition of the assignment (i.e., the
assigned variable in the left-hand side of the assignment must be equal to the
right-hand side expression) is added to the path condition of the element.

• If the path condition of an element becomes false, the element is removed
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void main(int input){

int a;

if(input > 0){

a = 1;

waitfor(3);

} else {

a = 0;

waitfor(4);

}

if(a == 0){

...

waitfor(2);

} else {

...

waitfor(5);

}

...

}

Fig. 4 An example of false-path reduction.

from the set.
• For a par statement under which n behaviors are running in parallel, a new

n − 1 elements that have the same delay and path condition are created.
Then, each element of the total n elements is assigned to one of the parallel
behaviors.

• For a wait statement, if the execution delay of the corresponding notify

statement, Tnotify, is larger than the delay of the element, Tcurr, the delay
of the element is updated to Tnotify.

• For a notify statement, there is nothing to be done.
At the points where multiple control flows are merged, the traversal suspends
until all paths along the merged control flows are traversed. The end of par is
also considered to be a merge point of control flow. If there are multiple elements
having the same path condition at the end of par, the delays of them are set to
be the maximum among them.

We introduce the method with an example shown in Fig. 4. At the beginning
of the execution, the initial execution time and path condition are set to 0 and
true, respectively. Next, a conditional branch if(input > 0) comes. The times
and conditions of both then-side path (a → b) and else-side path (a → c) are
calculated as follows. The new path conditions are calculated by taking the
conjunctions of the current condition, the branch condition for the taken path

(then or else), and the assignment relations of variables. Also, the new execution
times are calculated by summing up the arguments of waitfor statements in the
corresponding branch.
• Path(a → b)

Exe.time : 3, Condition : (input > 0)&&(a = 1)
• Path(a → c)

Exe.time : 4, Condition : (input ≤ 0)&&(a = 0)
Next, the execution times and the path conditions of both then-side path (d →

e) and else-side path (d → f) are calculated as follows.
• Path(d → e)

Exe.time : 2, Condition : (a = 0)
• Path(d → f)

Exe.time : 5, Condition : (a �= 0)
Then, these pairs are merged with the current set by taking a direct product

as follows.
• Path(a → b) ∧ Path(d → e)

Exe.time : 5, Condition : (input > 0)&&(a = 1)&&(a = 0) → infeasible

• Path(a → b) ∧ Path(d → f)
Exe.time : 8, Condition : (input > 0)&&(a = 1)&&(a �= 0) → feasible

• Path(a → c) ∧ Path(d → e)
Exe.time : 6, Condition : (input ≤ 0)&&(a = 0)&&(a = 0) → feasible

• Path(a → c) ∧ Path(d → f)
Exe.time : 9, Condition : (input ≤ 0)&&(a = 0)&&(a �= 0) → infeasible

Since the conditions of the two path conditions (a → b) ∧ (d → e) and (a →
c) ∧ (d → f) are false, the elements of these paths are removed from the current
set. Therefore, the pairs of the other two feasible paths are maintained afterward.

To decide the validity of the path conditions, we use some SMT solver in this
work. It can decide the validity/satisfiability of a logic including arithmetics.
However, it cannot decide the validity/satisfiability when a path condition in-
cludes very complicated non-linear arithmetics. In such cases, the element of the
path cannot be removed from the set.

4.3 Approximation of Estimation
Although the false-path aware method proposed in the previous section can
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reduce the number of paths, the set of pairs of the execution time and its path
condition of all feasible paths are maintained during the analysis. Since the
number of feasible paths is usually exponential to the size of the design, the
proposed method may not work. Therefore, we proposed to approximate the
intermediate estimation results in order to reduce the number of paths if the
number of paths exceeds a certain user-defined threshold.

The algorithm of the proposed method including this approximation method is
shown in Fig. 5. When the approximation is applied, the elements maintaining
the execution time and the path condition at that point are destroyed and the
estimation process continues with a new set having only one element where the
execution time is the maximum of the old set and the path condition is true.
The approximation is defined to create a new element < pathnew, tnew, true >

and remove all elements corresponding to the paths at a merge point, where
tnew is the maximum execution time in the elements that will be removed. This
approximation occurs only at a merge point of control flow if the number of
the execution paths that is merged at that point exceeds the specified threshold
number.

The approximation makes the analysis results less accurate since the false-paths
cannot be considered any more even if they can be detected only checking the
conditions both before and after the point where the approximation is applied.
Therefore, the results may be larger than the real maximum execution time.
However, this method enables to work the proposed method for large designs
which have huge number of paths. If the conditions of most false-paths can be
decided to be false locally within the areas where no approximation is carried
out, then the estimation results will close to the real execution time. Also, it
is well known that, in most of false-paths in large programs, infeasibility of the
path conditions is caused by infeasibility of some branch conditions located in
very small portions of the source codes. Because of this locality, the proposed
method can detect and avoid many false-paths even when the approximation is
performed, as long as the threshold number is not set to be too small. If the
threshold number is too small, the approximation is carried out very frequently,
which results in a large number of false-paths are missed. The discussion in this
paragraph will be confirmed through the experimental results.

Given: CFG (control flow graph) of a design description and a threshold number

EstimateMain {

start := (the start node of CFG of a given design description)

INIT_SET := { <0, 0, TRUE> };

SET := EstimateWithApproximation(start, INIT_SET);

return GetMaxExecutionTime(SET); //Find the maximum time in SET

}

EstimateWithApproximation(curr_node: CFG node,

SET: a set of <path_id, time, condition> ) {

node := curr_node;

while(node is not "end" nor "merge point of control flows") {

if (node is "conditional branch") {

//Do estimation along THEN path until the merge point

AddBranchCondition(SET); //Add the branch condition to all elements in SET

then_node := GetNextNodeInThenBranch(node);

SET_then := EstimateWithApproximation(then_node, SET);

//Do estimation along ELSE path until the merge point

AddNegatedBranchCondition(SET); //Add the negated branch condition to all elements in SET

else_node := GetNextNodeInElseBranch(node);

SET_else := EstimateWithApproximation(else_node, SET);

SET := Merge(SET_then, SET_else); //Just merge two sets into one set

node := GetMergeNode(node); //Get the merge point of the branch

//If the next node is not a merge point, and # of elements in SET is greater than the threshold,

//then do approximation.

//Otherwise, SET will be approximated, if needed, at the next merge point

node := GetNextNode(node); //Get the next node of the merge point

if(node is NOT "merge point of control flows" and |SET| > threshold) {

SET := Approximate(SET);

}

}

else {

SET := Estimate(node, SET); //Apply the method in Section 4.2

node := GetNextNode(node); //Get the next node in CFG

}

}

return SET;

}

Approximate(SET: a set of <path_id, time, condition>) {

max_time := GetMaxExecutionTime(SET); //Find the maximum time in SET

new_id := GetNewID(); //Get a new path ID

//Return a set consisting of one element having the max time in the previous set and a condition TRUE

return { <new_id, max_time, TRUE> };

}

Fig. 5 Algorithm of the performance estimation with approximation.
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Fig. 6 An example of dividing estimation.

The threshold number of execution paths under estimation can be seen as
a trade-off between the accuracy and the speed of the proposed performance
estimation method. If we specify a larger number as a threshold, more false-paths
can be detected and avoided from the estimation. It results in that the number
of paths under estimation is reduced, hence, the runtime of the estimation will be
reduced. However, large design descriptions typically have exponentially larger
true-paths than false-path. Therefore, even when more false-paths are avoided
from the estimation by using a larger threshold, the increase of the number of the
kept paths is still exponential in most cases. Considering the discussion in this
section, smaller threshold generates less accurate estimation results, but performs
the estimation faster.

An intuitive illustration of this approximation is shown in Fig. 6. Here, we
assume that the threshold number is specified to 2. At the point (a) in the
figure, since there are three true paths from p1 to p3 in the set, the method
approximates the estimation. As a result, the new element p4 is generated and
the estimation is continued only for this element. On the other hand, at the point
(b), we have only two paths p0 and p4, hence, no approximation occurs.

Approximate_N(SET: a set of <path_id, time, condition>

N: the number of paths kept at approximation) {

SET_N := GetTopN-LargestPaths(SET); //Get the top N largest paths in SET

SET := SET \ SET_N; //Remove the top N largest paths from SET

time := GetMaxExecutionTime(SET); //Find the maximum time in SET

new_id := GetNewID(); //Get a new path ID

//return the top N largest paths in the original SET and a new path

return { SET_N, <new_id, time, TRUE> };

}

Fig. 7 Algorithm of the approximation remaining N paths.

In addition, we propose a method that keeps the top N largest execution time
paths at every approximation, where N is a user-defined value, to improve the
accuracy of the estimation. When this is applied, the top N largest execution
time paths and their conditions are kept, while the other paths are removed. The
algorithm of this approximation keeping N paths are shown in Fig. 7. In the
algorithm, when an approximation occurs, the top N largest paths are selected
from all paths at that point. Then, those selected N paths and a new path, which
has the execution time of the (N + 1)-th largest paths and the condition true,
are kept after the approximation. If it is applied, the procedure Approximate

in Fig. 5 is replaced by the procedure Approximate_N in Fig. 7. Since only N

paths can be selected at an approximation, we sometimes need to select paths
that have the same execution time so far. In such cases, the remaining paths are
selected randomly. If this is applied, we can consider the estimation of the paths
that have large execution time and across the point where the approximation is
applied, which may result in more accurate false-path detection and estimation
results. However, if we keep many such paths, the required computation for the
estimation will increase with N .

5. Experimental Results

In this section, we show the experimental results to show the effectiveness of
our method. We applied the proposed method to the following three example
system-level designs.
• Elevator controller. An elevator controller installed in a building having

six floors. The behavior of the controller is similar to a finite state machine.
In the experiments, the target of the performance estimation is set to one
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Table 1 The characteristics of the examples.

Example Lines # of # of
of code branches paths

Elevator controller 5705 245 2.9 × 1047

ADPCM decoder 4765 913 2.2 × 1048

ADPCM encoder 4813 921 7.8 × 1048

state transition.
• ADPCM decoder. The target of the estimation is the procedure to decode

consecutive eight 4-bit input data.
• ADPCM encoder. The target of the estimation is the procedure to encode

consecutive eight 16-bit input data.
The characteristics of those designs are shown in Table 1. Note that the numbers
of paths shown in the table are corresponding to the whole execution paths
including false-paths.

We define normalized remaining range e as:

e =
Tprop − Tsim

Ttopol − Tsim

where Tprop, Ttopol, and Tsim denote the result of the proposed method, the
result of the topological estimation (i.e., not considering false-paths), and the
result of the random simulation, respectively. The normalized remaining range e

shows how the range of the possible maximum execution time is limited by the
proposed method, compared to the conventional topological estimation that does
not consider false-paths. If e is 100%, it means that the result by the proposed
method is equal to that by the topological estimation. Actually, we do not know
the real maximum execution time of the experimented designs, we refer to Tsim

as lower bound of the maximum execution time. Tsim of each example is obtained
by simulation with 2 billion random patterns, which takes several hours for each
designs. Also, we refer to Ttopol as upper bound of the maximum execution
time, since it is obtained without considering false-paths. Therefore, the real
maximum execution time Treal exists between Ttopol and Tsim. Tprop obtained
by the proposed method is always not less than Treal since some false-paths may
not be avoided. If we can get less Tprop, it means that we can identify the smaller
range where Treal potentially exists. In that sense, Tprop − Tsim can be seen as

Table 2 Experimental results for different thresholds on an elevator controller design.
Tsim = 148, Ttopol = 406.

Threshold # of # of CVC3 Processing Estimated Remaining
for approx. approx. calling time [s] exe. time range [%]

By the topological method
EL1 - - - 0.3 406(Ttopol) 100

By the proposed method without approximation
EL2 ∞ - - > 50000 N/A N/A

By the proposed method with approximation and various thresholds
EL3 10000 2 786772 13240 157 3.5
EL4 5000 2 125964 829 152 1.6
EL5 2000 2 121443 783 152 1.6
EL6 1000 3 115256 765 159 4.3
EL7 500 3 134969 1013 160 4.7
EL8 200 5 39231 250 165 6.6
EL9 100 7 12195 44 201 20.5
EL10 50 10 6215 20 214 25.6
EL11 20 14 3630 12 228 31.0
EL12 10 28 1958 5.2 295 57.0
EL13 5 50 1086 2.5 338 73.6
EL14 2 118 483 0.8 393 95.0
EL15 1 245 245 0.5 406 100

a remaining range to identify Treal. In addition, by divided by Ttopol − Tsim,
e can work as a metric to evaluate how accurate the estimation result by the
proposed method is. For any results, 0 ≤ e ≤ 1 is always satisfied. When e is
smaller, which means Tprop is smaller, we can say that the estimation result by
the proposed method is more accurate.

The experimental results are shown in Tables 2, 3, 4 and 5. The experi-
ments are carried out on a Linux computer with Xeon 3.0 GHz CPU and 5 GB
memory. The proposed method is implemented upon FLEC framework 14). In
FLEC, system-level designs are represented in ExSDG, a kind of dependence
graph representation. By accessing ExSDG data of the designs, we can traverse
control flow and evaluate statements in the designs. As an SMT solver, we use
CVC3 3),12).

In Tables 2, 3 and 4, the results of variousthresholds for three example designs
are shown. The first columns show the identical name of experiments. The first
result of each design, EL1, DEC1, and ENC1, is the result by the topological
method where false-paths are not considered. Therefore, the results of them are
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Table 3 Experimental results for different thresholds on an ADPCM decoder design.
Tsim = 788, Ttopol = 839.

Threshold # of # of CVC3 Processing Estimated Remaining
for approx. approx. calling time [s] exe. time range [%]

By the topological method
DEC1 - - - 7.4 839(Ttopol) 100

By the proposed method without approximation
DEC2 ∞ - - > 50000 N/A N/A

By the proposed method with approximation and various thresholds
DEC3 500 8 163774 45152 807 37.3
DEC4 200 8 163774 44981 807 37.3
DEC5 100 14 46155 7607 814 51.0
DEC6 50 24 20170 1861 815 52.9
DEC7 20 48 8792 532 808 39.2
DEC8 10 80 5264 294 807 37.3
DEC9 5 175 2791 118 815 52.9
DEC10 2 432 1495 45 815 52.9
DEC11 1 913 913 9.4 839 100

Table 4 Experimental results for different thresholds on an ADPCM encoder design.
Tsim = 835, Ttopol = 901.

Threshold # of # of CVC3 Processing Estimated Remaining
for approx. approx. calling time [s] exe. time range [%]

By the topological method
ENC1 - - - 7.4 901(Ttopol) 100

By the proposed method without approximation
ENC2 ∞ - - > 50000 N/A N/A

By the proposed method with approximation and various thresholds
ENC3 500 11 150824 43010 884 74.2
ENC4 200 15 58466 12146 884 74.2
ENC5 100 16 44495 6213 885 75.8
ENC6 50 27 24827 2961 887 78.8
ENC7 20 55 9416 577 891 84.8
ENC8 10 88 5066 231 884 74.2
ENC9 5 183 290 113 892 86.4
ENC10 2 448 1490 44 892 86.4
ENC11 1 921 921 9.5 901 100

equal to Ttopol. The threshold number for approximation is set to be infinitely
large in EL2, DEC2, ENC2, which means that no approximation is applied and
all paths are tried to be estimated in those experiments. In those experiments,
we could not get the estimation result within 50000 seconds. In the tables, except
for EL1, DEC1, and ENC1, the sixth columns show estimated execution times

Table 5 Experimental results for the elevator controller design with changing remaining
paths ratio at approximation.

Threshold # of remaining Processing Estimated Refinement
of approx. paths at approx. time [s] exe. time (TF ) rate [%]

500 400 1897 153 95.6
500 300 1491 153 95.6
500 200 1149 156 97.5
500 100 841 160 100
500 0 1013 160 100
200 160 702 160 97.0
200 120 567 161 97.5
200 80 489 163 98.7
200 40 416 161 97.5
200 0 250 165 100
100 80 265 183 91.0
100 60 191 187 93.0
100 40 136 196 97.5
100 20 92 197 98.0
100 0 44 201 100
50 40 109 188 87.9
50 30 83 191 89.3
50 20 71 203 94.9
50 10 36 208 97.2
50 0 20 214 100

estimated by our proposed method (i.e., Tprop). The estimation results are more
accurate when Tprop is closer to Tsim.

Table 5 shows the results of the experiments for various ratios of keeping paths
having largest execution times. This experiment is done for the elevator controller
design. The last column shows how much the estimated execution time is reduced
from the case all paths are abandoned at approximation (i.e., # of remaining
paths is zero). The number is normalized, for each threshold, by the result of
the method without keeping paths in approximation. The ratios of the keeping
paths in approximation are set to 0%, 20%, 40%, 60%, 80% of the threshold for
approximation.

From the experimental results, the following things are found out.
• In the case where false-paths are taken into account and approximation is not

applied, the estimation method did not finish within 50000 seconds because
of the large number of paths.

• In the case where our proposed approximation is applied, performance esti-
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Fig. 8 Process time versus CVC3 calls for the elevator controller design.

mation results vary depend on the threshold number of paths for the approx-
imation. We can see the tendency that the estimated result is smaller when
a larger threshold is specified. This is because more false-paths are removed
if a larger threshold is specified, in general.

• Processing time is strongly dependent on the number of CVC3 calling. The
relation between processing time and the number of CVC3 calling for the
elevator controller example is shown in Fig. 8. From this fact, we can say
that the run time will reduce if the method is refined to have fewer calls of
SMT solvers to check the validity of the path conditions.

• When more paths that have largest execution times are kept at every ap-
proximation, the estimation results become better. This implies that some
infeasible paths are removed by keeping such execution paths across multi-
ple approximation points. However, the processing time is increased as the
number of paths remained increase.

As a conclusion of the experiments, the results of the proposed method can
effectively reduce the range of possible maximum execution time of the designs.
However, how much the range can be reduced is deeply dependent on the designs.
Also, the approximation of estimation is essential to finish the estimation. In
our experiments, the estimation cannot finish for any example designs if the
approximation is not allowed.

The sufficient threshold number for approximation to obtain reasonably accu-

rate estimation results is dependent on designs under estimation. However, from
the experimental results, the following two points are found to appropriately se-
lect the threshold number for approximation. The first point is that the runtime
of the estimation method rapidly increases with the increase of the threshold
number. Therefore, it may take too long time if the specified threshold is large.
On the other hand, the runtime is very short for small thresholds. The other
point is that the estimation results saturate when the threshold becomes larger.
Based on those observations, to obtain reasonably accurate estimation results,
users should start with a small threshold, where the estimation can be done very
quickly, then increase the threshold until the runtime of the estimation becomes
too long or the estimation results saturate.

6. Conclusion

In this paper, we proposed the method to estimate the maximum execution
time of system-level designs with detecting and removing false-paths automati-
cally. The proposed method can solve the problem in the conventional method
that users have to specify false-paths manually. Furthermore, we adopted an
approximation method to avoid a path explosion problem. This approximation
is applied when the number of paths under estimation exceeds the user-specified
threshold. Although the approximation may lead over-estimation because false-
paths which lie across multiple approximation points cannot be detected, we can
obtain much better estimation results, compared to the method without consid-
ering false-paths, in practical run time. Through the experimental results, we
confirmed that the proposed method can estimate large designs in several hours
and the results is much better than those by the method not considering false-
paths. We also show that we can limit the possible maximum execution time into
a very small range by applying both simulation-based and our static methods.
We believe that the estimated maximum execution time is useful when exploring
architecture and hardware/software partitioning in system-level design.
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