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Coarse Grain Reconfigurable Architectures (CGRA) support spatial and tem-
poral computation to speedup execution and reduce reconfiguration time. Thus
compilation involves partitioning instructions spatially and scheduling them
temporally. The task of partitioning is governed by the opposing forces of be-
ing able to expose as much parallelism as possible and reducing communication
time. We extend Edge-Betweenness Centrality scheme, originally used for de-
tecting community structures in social and biological networks, for partitioning
instructions of a dataflow graph. We also implement several other partitioning
algorithms from literature and compare the execution time obtained by each of
these partitioning algorithms on a CGRA called REDEFINE. Centrality based
partitioning scheme outperforms several other schemes with 6–20% execution
time speedup for various Cryptographic kernels. REDEFINE using centrality
based partitioning performs 9× better than a General Purpose Processor, as
opposed to 7.76× better without using centrality based partitioning. Similarly,
centrality improves the execution time comparison of AES-128 Decryption from
11× to 13.2×.

1. Introduction

Reconfigurable Processors are composed of an interconnection of computation
units, which help exploit a higher degree of spatial computation�1 than what is
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�1 In temporal execution instructions are sequenced and executed one at time. In spatial

computation the number of instructions to be executed is equal to the number of hardware

available in General Purpose Processors (GPP). This hardware organization helps
exploit parallelism better than in a GPP 6). However, this necessitates changes
in the compilation process, which needs to address both spatial and temporal
aspects of computation. Compilation for temporal computation involves identi-
fying a total order of instruction, such that it satisfies all program dependences.
For spatial computation, the compiler needs to allocate different instructions
to different computation units available on the reconfigurable fabric, such that
the overall computation and communication time is minimized. As mentioned
in Ref. 11), this involves use of several VLSI CAD algorithms, viz. circuit clus-
tering and partitioning, which were previously used for hardware synthesis. In
this paper, we propose a new partitioning algorithm based on Edge Betweenness
Centrality 10) for partitioning instructions of an acyclic dataflow graph. Recently
Edge Betweenness Centrality has been proposed for detecting community struc-
ture in social and biological networks 10), and to the best of our knowledge, this
is the first time it is applied to partitioning of programs for CGRA and achieves
10% speed up over other partitioning schemes. Although the proposed parti-
tioning algorithm can be applied to CGRAs in general, in this paper we present
the algorithm in the context of a specific CGRA, REDEFINE 1). Detailed infor-
mation of certain aspects of the architecture is required for accurate evaluation
of the partitioning scheme. Hence, a brief introduction to the architecture and
partitioning scheme currently used in REDEFINE is provided in the subsequent
sections.

1.1 REDEFINE
The architecture of REDEFINE 1),7) is presented in Fig. 1. The core compu-

tation engine of REDEFINE is the reconfigurable hardware fabric, which is an
interconnection of tiles, where each tile includes a computation element (CE) and
a router. The CEs are connected to the router. The routers are interconnected
in a honeycomb topology, which forms a Network-on-Chip (NoC). The use of the
NoC, as opposed to a programmable interconnect helps reduce the amount of
configuration information needed to transfer data from one CE to another. The

units that are available and the results from one operation to another is conveyed through
dedicated wires or an interconnection 6).
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Fig. 1 Architecture of REDEFINE.

design of the router and the NoC is described in Ref. 8). Like other CGRAs, it
employs a Spatio-Temporal execution paradigm, i.e., multiple CEs can be em-
ployed for spatial execution. Each CE can store several instructions, which are
executed in dataflow order. Applications coded in C language are compiled into
an executable by the REDEFINE compiler 2). This transformation involves using
the Static Single Assignment output of LLVM 5) to generate the Control Flow
Graph. Several basic blocks are combined to form an application substructure,
referred to as a HyperOp. A HyperOp is a vertex-induced subset of an applica-
tion’s dataflow graph such that they are acyclic, pairwise disjoint, and satisfy the
convexity condition 2). A HyperOp is partitioned into p-HyperOps, where each
p-HyperOp is mapped to a CE.

Each CE can hold c instructions (we assume c = 16 in this paper) in the
reservation station (reservation station is a part of the first pipeline stage). An
instruction whose operands are available is selected for execution. A priority
encoder logic performs arbitration when more than one instruction is ready to
be executed simultaneously. The ready instruction along with the opcode and
operands are transferred to the ALU. Apart from elementary operations the
ALU supports custom function units (CFU) which are very specific to a certain
problem domain. The ALU after performing the computation forwards the re-
sults to point of consumption through the NoC. In some cases the consuming
instruction may be present within the same CE where the data was produced.
In this case the data is sent on the bypass channel. The CE is pipelined and
its latency is 3 clock cycles�1. If the path through the router is taken to the
destination then additional latency is incurred based on the traffic at the router
and the hop distance of the destination.

Instructions of a HyperOp are distributed across various CEs. Instructions
spread across various CEs of a HyperOp can execute in parallel (spatial execu-
tion) and instructions placed within the same CE execute sequentially (temporal
execution). Hence this is referred to as “spatio-temporal” execution. For efficient
spatio-temporal execution, the compiler must be able to partition the instructions
into different p-HyperOps so as to minimize the total execution delay. Increas-

�1 Assuming Single cycle Function Units. There are few units which are not single cycle.
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ing the number of p-HyperOps can help reduce execution time through increased
exploitation of parallelism, but also increases the communication time which may
affect execution time adversely.

REDEFINE can be specialized for a specific domain through the use of appro-
priate custom function units (CFUs) within each ALU. In this paper, we use
cryptography kernels as our running example. The details of the CFUs for the
REDEFINE Cryptography Fabric is given in Section 4.

HyperOp is a single schedulable entity. The scheduling of HyperOps and their
launching is handled by the Support Logic (refer Fig. 1). The support Logic
also facilitates transfer of data from one HyperOp (which is executing on the
fabric) to another HyperOp (which is yet to be launched, awaiting arrival of all
input operands). The launch and execution of a HyperOp proceeds as follows.
HyperOps are ready to execute when all its input operands are available. The
HyperOp Orchestrator schedules the ready HyperOp for launch. Figure 2 shows
the various steps from the time the HyperOp is scheduled upto the completion of
its execution on the Fabric. Scheduling a HyperOp for launch involves sending
the HyperOp identifier to the Resource Binder to determine the CEs on the fabric
where the instructions of the HyperOp are to execute. HyperOp Orchestrator
also transfers the input operands of the HyperOp to the HyperOp Launcher.
The HyperOp Launcher transfers instructions and data operands (i.e., constants
and inputs) to the CEs identified by the Resource Binder. Each CE follows a
dataflow execution order i.e. an instruction whose input operands are available
is ready to execute. Due to the dataflow execution of the CEs, the launching of
the HyperOp and HyperOp execution on the Fabric overlap to a certain extent.
This is refered to as Self-Overlap, indicated as SO in Fig. 2. Perceived HyperOp
launch Time or PHT is the time between the start of the HyperOp launch and
upto the time for the first instruction to start. The time taken to transfer all
instruction and data operands of a HyperOp is called Complete HyperOp launch
Time or CHT. Fabric Execution Time or FET is the time taken to execute
all instructions of a HyperOp. The instructions of the HyperOp may produce
data to be consumed within the same CE or data which is the input operand
of another HyperOp. Input data for a HyperOp that is yet to be scheduled, is
stored within the HyperOp Orchestrator. The CE forwards data that is meant for

Fig. 2 Timeline showing the various steps involved in scheduling, launching and execution of
a HyperOp. The time spent in each of these tasks are labeled. FET: Fabric Execution
Time; PHT: Perceived HyperOp launch Time; CHT: Complete HyperOp Launch time;
SO: Self-Overlap.

another HyperOp to the Inter-HyperOp Data Forwarder (IHDF) (refer Fig. 1).
The IHDF determines the location within the HyperOp Orchestrator where the
data needs to be written.

Of the Support Logic modules, the finer details of the HyperOp Launch process
is needed for designing an efficient partitioning algorithm. As mentioned previ-
ously, when a HyperOp is ready for execution, the HyperOp Launcher transfers
instructions belonging to the HyperOp to the CEs on the fabric. It is connected
to the reconfigurable fabric through access routers present along the periphery
(marked as A in Fig. 1). The HyperOp Launcher reads the instructions from
the five�1 instruction memory banks and chooses the closest router to the des-
tination to transfer the instructions and constants. The HyperOp Launcher has
five submodules which allow independent handling of instruction stream from
each instruction memory bank. Each HyperOp Launcher sub-module transfers
instructions, constants and input operands of a single p-HyperOp. In order to
support a peak transfer rate of 5 instructions every clock cycle, the 5 instructions
must belong to different p-HyperOps. This design choice favours the use of more
p-HyperOps. For any given number of instructions in a HyperOp, it is beneficial

�1 It is 5 in the current implementation.
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to use more p-HyperOps in order to reduce the transfer latency. However, in-
creasing the number of p-HyperOps increase the number of control packets such
as those which mark the beginning and end of the p-HyperOp.

1.2 Partitioning the HyperOp
While partitioning the HyperOp into p-HyperOps (each p-HyperOp is assigned

to a CE), several factors need to be considered:
• Parallel instructions are best mapped to different CEs, since this helps exploit

parallelism and hence reduce the overall time taken to execute a HyperOp.
• Dependent instructions are best mapped close together, potentially within

the same CE. Even when the hop count is one (i.e., instruction is placed in
the neighbouring CE) the time to transfer the data may be more than one
clock cycle.

While these obvious factors to partitioning the HyperOp’s dataflow graph appear
to be non-conflicting, they do work as opposing forces. Two parallel instructions
consuming data from the same parent instruction need to be placed in differ-
ent p-HyperOps for exploiting more parallelism, but communication latency is
minimized if they are placed in the same p-HyperOp and executed sequentially.

Yet another factor that needs to be considered is whether balanced partition-
ing or unbalanced partitioning should be preferred. Balanced partitions are those
where the number of nodes (or instructions) included in each partition are approx-
imately equal to each other i.e., the deviation, of the number of nodes included
in a partition, from the average number of nodes across all partitions is mini-
mal. Creation of balanced partitions will reduce the Complete HyperOp Launch
Time (CHT) since all memory banks are busy to the same extent. However, this
reduces the Self-Overlap (SO). On the other hand having unbalanced partitions
increases the amount of Self-Overlap but also increases the Complete HyperOp
launch Time (and Perceived HyperOp launch Time decreases). The choice of
balanced versus unbalanced partitions seems unclear and requires further exper-
imentation. In summary:
• Use of more p-HyperOps: Increased memory parallelism reduces reconfig-

uration time; More Instruction Level Parallelism (ILP) can be exploited.
However, this can increase the communication cost since more p-HyperOps
implies larger area over which they are spread on fabric. More p-HyperOps

increases control packet overhead during HyperOp launch.
• Use of balanced partitions: The CHT decreases (and PHT becomes equal to

or nearly equal to CHT and SO tends towards zero).
• Use of unbalanced partitions: PHT is less than the CHT and the SO increases

and can help improve overall execution time.
We present a summary of related literature in Section 2. We present an adap-

tation of various algorithms including edge centrality based partitioning scheme
for dataflow graphs (Section 3). The evaluation framework and the performance
of each of these partitioning algorithms is presented in Section 4.

2. Related Work

Graph Partitioning is probably one of the most studied algorithms in com-
puter science, due to its extensive applications from social networks to hardware
netlists. In the area of compilation, graph partitioning problem is relevant in the
context of reconfigurable architectures and multiprocessor systems. However, the
solution to the graph partitioning problem in each of these contexts is expected
to be different due to different objective functions. The most important factor
which influences this is the granularity of the computation units. In reconfig-
urable architectures such as REDEFINE, the granularity of each unit is a few
10 s of instructions (16 instructions in all our experiments). In the context of
multiprocessor systems viz. TRIPS 19), Wavescalar 20) and RAW 14),21) the gran-
ularity of instruction is much higher and can be as many as 128 instructions
(in TRIPS; RAW and Wavescalar employ instruction caches and can accomo-
date a large number of instructions). All these multiprocessor systems employ
a Network-on-Chip, which is similar to REDEFINE. However, the computation
element in these systems can accomodate a much larger number of instructions.

TRIPS 19) uses a simple computation element with register file, ALU and router
at each node of the interconnect. There are a set of globally accessible registers
(one per column). The nodes are interconnected through a multi-layer mesh in-
terconnect. Each computation element can accomodate 128 instructions. The
instruction storage in each computation element can be used in various modes.
In a specific mode the instruction store’s registers with the same index can be
used as a configuration frame and all instructions within a frame can pertain to
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one application sub-structure. Several application sub-structures can be loaded
into the various configuration frames to reduce the configuration load overhead.
This mode helps in exploiting ILP. In another an application substructure is
loaded into a single computation element and several computation elements can
interact with each other. This mode helps in exploiting Data Level Parallelism
(DLP) or Thread Level Parallelism (TLP). The TRIPS processor allows instruc-
tions belonging to one application substructure to exchange data through the
network-on-chip and data interactions between application sub-structures are
facilitated through register files. An application specified in a high level lan-
guage is compiled into hyperblocks 15). The hyperblock in TRIPS, referred to
as the TRIPS block, has restrictions on the number of instructions and number
of load-store instructions. It also does not include basic blocks based on profile
information. The orchestration of hyperblocks is based on control flow.

Partitioning the graph for exploiting ILP involves different objective function
as opposed to partitioning the graph for exploiting DLP or TLP. When trying
to exploit ILP (to reduce the execution time), one needs to weigh the cost of
exploiting ILP, which involves NoC communication, to the actual performance
improvement that can be obtained. Closely interacting nodes cannot be placed
such that their communication happens over the NoC. This negatively impacts
performance. The aim of this study is to determine which communication is clas-
sified as closely interacting and those communications which can be accomodated
on the NoC without affecting the execution time.

Partitioning problem has been studied extensively for reconfigurable architec-
tures like time multiplexed FPGA 22), dynamically reconfigurable FPGAs (DRF-
PGAs) 4), etc. One of the early and most influential work in this field was done
by Kernighan and Lin in 1970 12). In their seminal paper 12) they proposed a bal-
anced partitioning heuristic. The details of the algorithm are excluded since the
algorithm is well understood and several variants of this algorithm exist in lit-
erature. This algorithm is of specific interest in our case, since it minimizes the
communication between two partitions, while keeping the partitions balanced.
This condition directly helps reduce the communication cost and helps contain
all dependent instructions within the same partition. We explain its adaptation
to REDEFINE and results in the subsequent sections.

Reference 9) is one of the first partitioning works in the domain of reconfig-
urable computing. A program or an application is represented by a data flow
graph (DFG) which is partitioned into a set of segments such that size of each seg-
ment is less than the size of the reconfigurable unit, where each unit is an FPGA
board. Two partitioning algortihms have been proposed in this paper, namely
Level based partitioning and Clustering based partitioning have been proposed.
In level based partitioning the nodes of the DFG are assigned ASAP levels. This
algorthim exposes parallelism by considering all nodes at same level for parallel
execution. The DFG is horizontally cut keeping the size of the reconfigurable
unit in mind. In clustering based partitioning, the nodes are clustered with the
common parent while traversing the DFG in a breadth first traversal fashion By
doing this it tries to reduce the number of terminal edges between the partitions
and hence reducing communication overhead. We implement two variants of the
clustering based partition scheme, where nodes are assigned according to its par-
ent affinity. Clustering based partitioning algorithms tend to create unbalanced
partitions due to its affinity.

List scheduling method is another popular algorithm used for performing parti-
tioning. The method has the advantage of having a linear run-time in the number
of nodes of the graph being partitioned. Several heuristics based on List schedul-
ing have been proposed. In the temporal partitioning scheme Pandey, et al. 16)

proposed the use of an enhanced version of the force directed list scheduling
(FDLS) 17),18). In FDLS, the probability of each node being placed at a specific
time step is computed based on distribution graph that depicts the number of
concurrent operations. Forces are proportional to the concurrency in the system.
The most desired solution is the one which achieves the least increase in the ex-
ecution time for the given set of resources. Pandey et al. apply FDLS iteratively
on the DFG by varing the resource set available in the form of CEs on the fabric
and the communication logic. Since we do not restrict the number of CEs over
which a HyperOp can span, we employ a variant of the Force Directed Scheduling
technique, in one of the schemes, instead of FDLS (refer Fig. 5). A variant of the
FDS algorithm was proposed in Ref. 4). In this paper, the authors extend the
FDS scheme by including the cost of the communication modules that needs to
be placed between two partitions, over and above the gate cost accounted for by
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the original FDS algorithm. The cost of communication is given half the weight
of the gate costs. As indicated in Bobda’s thesis 3), list scheduling tends to suffer
due to the level based assignment. This has the potential to affect the total exe-
cution time since it does not take into consideration the communication between
the partitions. The same applies to FDS, as it follows level based assignment.
However, the algorithm can be a good candidate for graphs with less density.

The use of network Flow based partitioning schemes in the context of netlist
partitioning was made possible due to the paper by Yang, et al. 23) who pro-
posed the Flow based bipartitioning scheme which generates balanced partitions.
In this scheme a min-net cut is accepted only if the resulting partitions gener-
ated after the edge removal is r-balanced. However, the construction of the flow
network requires the addition of several nodes and edges and the resulting par-
titions need to be reconverted back to the original form prior to generating the
executable. A scheme similar to network flow is the centrality based partition-
ing, which is used extensively in the context of social networks. There are several
measures of centrality which are defined. We are specifically interested in the
edge-betweenness centrality based partitioning technique. This was proposed by
Girvan, et al. 10) in the context Social and Biological networks. Edge betweenness
centrality is a measure that determines how “between” an edge. The adaptation
of these algorithms in our context is elucidated in the subsequent section.

3. Description of the Algorithms

In this section, we describe three types of algorithms namely parent affinity
based scheme, Kernighan-Lin heuristic and edge centrality based partitioning
scheme. We explore three variants of parent affinity scheme. Apart from these
algorithms, we also describe the partitioning scheme currently employed in RE-
DEFINE. The evaluation of each of these algorithms is presented in Section 4.

3.1 Parent Affinity based Schemes
Purna, et al. 9) proposed two different algorithms, namely: Level based par-

titioning and Clustering based partitioning algorithms. This algorithm exposes
parallelism by assigning all nodes at same ASAP level to different p-HyperOps.
The terms level and ASAP level are used interchangeably in the rest of the pa-
per. Assignment of nodes at the same level to different partitions eliminates the

artificial sequentialization of instructions due to assignment of nodes in the same
level to the same Computation Element (CE). In order to reduce the impact
on communication, the nodes at the subsequent ASAP level are assigned in the
same p-HyperOp as the parent node. A scheme similar to parent affinity is also
used in Ref. 14). In the following subsection, we explain the implementation of
parent affinity scheme which is common to three partitioning schemes, which are
presented thereafter. It is to be noted that the algorithms reported in Ref. 9)
are for splitting a netlist across multiple FPGA boards and hence it cannot be
directly applied in our context. We have developed three variants which uses the
same underlying mechanism used by Purna, et al. 9). However, the algorithms
themselves are very different from those reported in Ref. 9).

3.1.1 Parent Affinity
In our implementation each parent of a node is assigned a weight�1 in the fol-

lowing manner: weight(p) = 1
level(n)−level(p) , where p is the parent node and n is

the child node whose p-HyperOp is to be determined. This measure for weight
assigns greater importance to parents which are closer in level. The difference
in levels has an impact on when the instruction is executed. A node at a lower
level has a higher probability of being scheduled for execution after a node a
higher level. This implies that the result gets a shorter time to travel to the des-
tination. Thus, the consuming instruction is best placed closer to the last input
producing source. This is approximated using the level numbers. However, if the
p-HyperOp containing the parent with the highest weight cannot accomodate
more instructions, then the p-HyperOp containing the parent with the second
highest parent weight is used. The parent affinity computation is detailed in
Fig. 3.

3.1.2 Interleaved Parent Affinity
The parent affinity mechanism assigns the nodes to partitions where its parent

nodes are present. Any two data dependent instructions assigned to the same
CE, can execute at best 3 cycles apart. This is because the CE has a 3 stage
pipeline. If only sequentially dependent instructions are assigned to the CE,
then utilization of the Function Units within the CE drops to 33%. This can be

�1 This weight assignment is not mentioned in Ref. 9) but is our adaptation of this algorithm.
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1: for all parents p of node do
2: h← pHyperOp number of p
3: weight(h)← 1

level(node)−level(p)
4: end for
5: maxpHyperOp← max(weight)
6: while no. of instructions in maxpHyperOp exceeds limits do
7: maxpHyperOp← next highest weight pHyperOp

8: end while
9: if all parent pHyperOps are full then
10: return newpHyperOp

11: end if
12: return maxpHyperOp

Fig. 3 pHyperOp Selection based on parent affinity.

maximally utilized by assigning more independent, i.e., parallel instructions to
the same CE. In the Interleaved Parent Affinity (ILPA) partitioning method, the
nodes with the lowest ASAP level number are interleaved into

⌈
n
m

⌉
partitions,

where n is the number of nodes with the lowest ASAP level and m is the number
of pipeline stages in the CE. The nodes at the remaining level are assigned based
on the parent affinity mechanism, explained in Section 3.1.1. A variant of this
scheme without Parent Affinity was experimented previously in Ref. 13). Since it
did not show promising results, it is not described in this paper. The algorithm
for ILPA partitioning is shown in Fig. 4.

3.1.3 Non-Interleaved Parent Affinity-Compute
Unlike the ILPA scheme, in the Non-Interleaved Parent Affinity-Compute

(NIPA-C) partitioning technique the nodes with least ASAP level are assigned to
p partitions. The value of p is determined by running the Force Directed Schedul-
ing algorithm 17) on the graph and computing the average across all time steps.
The NIPA-C partitioning method tries to exploit as much parallelism as possible
(without consideration to resource utilization). The nodes at subsequent ASAP
levels are assigned to partitions based on parent affinity mechanism (Fig. 3). The
NIPA-C algorithm is shown in Fig. 5.

3.1.4 Non-Interleaved Parent Affinity-Memory
Both the ILPA and the NIPA-C algorithms are based on the available ILP and

do not take into acount the available instruction memory bandwidth. As men-
tioned previously, the HyperOp Launcher is connected to five instruction memory

1: maxTopLevelPHyperOps←
⌈

numbertoplevelnodes

pipelineDepth

⌉

2: currentpHopNum← 0
3: counter ← 0
4: for node n in topologically sorted list do
5: predecessor ← predecessors(n)
6: if predecessor = [] then
7: while currentpHopNum is full do
8: currentpHopNum← currentpHopNum + 1
9: if currentpHopNum > maxTopLevelpHyperOps then
10: currentpHopNum← 0
11: end if
12: end while
13: assign n to currentpHopNum
14: counter ← counter + 1
15: if counter = pipelineDepth then
16: currentpHopNum← currentpHopNum + 1
17: if currentpHopNum > maxTopLevelpHyperOps then
18: currentpHopNum← 0
19: end if
20: end if
21: end if

22: end for
23: for node n in topologically sorted list do

24: predecessor ← predecessors(n)
25: if predecessor �= [] then
26: parentAffinity(G, n)
27: end if

28: end for

Fig. 4 Algorithm describing the ILPA scheme.

banks. The time needed to launch 1 p-HyperOp or 5 p-HyperOps remains the
same since a “Launch-Level Parallism” of 5 p-HyperOps can be obtained. In or-
der to minimize the Complete HyperOp launch Time we explore a scheme where
the number of p-HyperOps to be used is snapped to the closest higher multiple
of i, where i is the number of instruction memory banks. This is used to de-
termine the number of p-HyperOps to which nodes with the least ASAP level
are assigned. All other nodes are assigned partitions (p-HyperOps) based on
the parent affinity mechanism, shown in Fig. 3. The function that computes the
maximum number of p-HyperOps for the NIPA-M scheme is shown in Fig. 6.

3.2 Kernighan-Lin Algorithm
The Kernighan-Lin (KL) 12) algorithm was proposed as a heuristic for parti-
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1: maxTopLevelpHyperOps← FDS avgResources(G)
2: currentpHopNum← 0
3: for node n in topologically sorted list do
4: predecessor ← predecessors(n)
5: if predecessor == [] then
6: while currentpHopNum is full do
7: currentpHopNum← currentpHopNum + 1
8: if currentpHopNum > maxTopLevelpHyperOps then
9: currentpHopNum← 0
10: end if
11: end while
12: assign n to currentpHopNum
13: currentpHopNum← currentpHopNum + 1
14: if currentpHopNum > maxTopLevelpHyperOps then
15: currentpHopNum← 0
16: end if
17: end if

18: end for
19: for node n in topologically sorted list do

20: predecessor ← predecessors(n)
21: if predecessor �= [] then
22: parentAffinity(G, n)
23: end if

24: end for

Fig. 5 Algorithm for Non-Interleaved Program Affinity-Compute.

1: n← number vertices(G)
2: maxpHops←

⌈
n

InstructionsPerpHyperOp

⌉
3: maxtransfers←

⌈
maxpHops

memoryBanks

⌉
4: maxtoplevel← maxtransfers ∗memoryBanks
5: return maxtoplevel

Fig. 6 Calculate no. of top levels snapping to closest multiple of number of memory banks
for NIPA-M scheme.

tioning the netlist into equal sized blocks with minimal communication so that
they may be mapped to PCBs. The hueristic is a bi-partitioning algorithm which
starts with an initial equal sized partition and then proceeds by exchanging “most
externally communicating” vertices. The algorithm stops when no more inter-
partition communication reduction can be obtained with any vertex exchanges.
For partitioning the HyperOp, we first assign all nodes to one p-HyperOp. If the
number of instructions within a p-HyperOp exceeds the maximum allowed limit,

1: pHyperOps[0]← nodesofG
2: while needToDivide(pHyperOps) do
3: for each pHyperOp p in pHyperOps do
4: n← equiDivide(pHyperOps[p])
5: kernighan lin(G, pHyperOps[p], pHyperOps[n])
6: end for

7: end while

Fig. 7 Kernighan-Lin based partitioning algorithm. The function kernighan lin exchanges
nodes between pHyperOps n and p so as to minimize the communication between them.

then the function needToDivide returns true. Since Kernighan-Lin algorithm
produces balanced partitions, if one partition exceeds the size, then all parti-
tions will exceed the size. For each p-HyperOp in the list we invoke the function
equiDivide, which partitions the p-HyperOp into two equal halves. This is fol-
lowed by a call to the kernighan lin algorithm which makes repeated exchanges
of nodes with high inter-partition interaction until no positive gain achieving
nodes exist for exchange. As mentioned previously, parent affinity based tech-
niques tends to create unbalanced partitions. KL algorithm on the other hand
creates equal sized partitions and also tries to reduce the inter-pHyperOp com-
munication. The reduction in inter-pHyperOp communication helps in reducing
the on-Fabric communication cost. Creation of balanced partitions helps reduce
Complete HyperOp launch Time and also decreases the Self-Overlap. The KL
partitioning scheme is shown in Fig. 7.

3.3 Edge Betweenness Centrality
The edge betweenness centrality based technique is similar in nature to net-

work flow based scheme, but more amenable to graphs without edge weights
viz. dataflow graphs and social networks. This technique was first proposed by
Girvan, et al. 10). Edge betweenness centrality is a measure that determines how
“between” an edge is; it measures the number of shortest paths, between every
pair of vertices, which passes through that edge. If more than one shortest path
exists between the considered pair of vertices then equal weight is assigned to all
paths such that they all add up to 1. The edge betweenness is higher if the edge
connects two clusters since several vertices’s shortest paths pass through that
edge. The algorithm proposed in Ref. 10) involves computing the edge between-
ness centrality followed by removal of the edge with the highest betweenness.
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This is followed by recomputation of the edge betweenness for the graph and
removal of the edge and so on. This scheme helps identify edges which are “most
between” two clusters. Elimination of this edge from the graph, partitions the
graph into two components which are tightly coupled.

Partitioning nodes into p-HyperOps involves assigning communication between
certain vertices (represented by edges in the HyperOp’s data flow graph) to the
Network-on-Chip, while other communication happens over the bypass channel,
i.e., communication between nodes within the same partition does not leave the
CE and communication between nodes in different partitions are facilitated over
the NoC. The choice of the edges assigned to the NoC are as critical as the
reduction in communication achieved through efficient partitioning. In a general
graph containing a clique as a subgraph (or subgraphs with higher graph density�1

than the average graph density of the whole graph), edge betweenness centrality
based partitioning algorithm would break those edges which connect the clique
(or higher density regions) with the rest of the graph. In a dataflow graph
too, centrality breaks those edges around subgraphs with higher graph density
from the rest of the graph. Since subgraph of higher graph density have more
interactions, it is therefore logical to assign these communications to a bypass
channel (which has a lower cost of communication) instead of making them NoC
communications (which have a higher cost).

This technique is explained with a simple example shown in Fig. 8. The figure
shows a portion of the dataflow graph of a HyperOp for a simple expression
a ∗ b + c, where a and b are loaded from memory and c is obtained from a
previous computation. The edge between two loads (viz. ld1 and ld2) indicate
a sequencing predicate (needed to ensure sequential consistency). The result of
this expression is sent out of the HyperOp using the o/p2 operation and the
sequencing predicate from the HyperOp is forwarded to the next load within
the HyperOp ld3. The graph below ld3 is not shown. While computing the
centrality, we treat the graph as an undirected graph. The shortest path from
every source to ld3 is shown in Fig. 8. As is evident, one of the edges with highest

�1 Graph Density measures the ratio of edges to the total number of possible edges for a given
set of vertices and is given by the relation e

n∗(n−1)
for a directed graph.

Fig. 8 The figure shows a portion of the dataflow graph of a HyperOp. The solid lines are
the edges of the dataflow graph and the dotted line traces the path from every node
to the node ld3.

centrality is the one between ld2 and ld3. This edge (between ld2 and ld3) is
assigned to the NoC. Such an assignment is advantageous because the cost of
communication on the NoC is much higher than the cost of communication over
the bypass channel. Assigning edges which interconnect two clusters to the NoC
makes computation of nodes within a cluster faster.

The edge-betweenness centrality based partitioning algorithm works by assign-
ing edges with high edge-betweenness to the NoC and the rest of the communi-
cation is local to the CE. The algorithm subsumes the parent affinity scheme,
but groups only those successors connected by low centrality edges into the same
partition. This adaptation of the original algorithm 10) (shown in Fig. 9) has the
following changes over the original algorithm 10):
• Edge Centrality on Subgraph: Several times removal of an edge causes the

graph to be disconnected�2. Instead of recomputing the Edge betweenness
centrality on the whole graph, it is computed on a connected component. A
connected component is chosen if it has more than the maximum number
of nodes (i.e., c = 16, the maximum number of instructions that a CE can

�2 If more than one path connects two the clusters, then removal of the edge does not cause the
graph to be disconnected Further, this edge may be the one which appears on the shortest
path but may not be the only path.
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1: if number of nodes(G) > maxInstruction then
2: compute the edge betweenness centrality for G
3: e←edge with the highest centrality
4: flag ← true
5: while there exists atleast one connected component with more nodes than allowed do
6: Remove edge e from G
7: H ← convert G to an undirected graph
8: graphList ← list of connected components of H
9: for g in graphList do
10: if number of nodes(g) > maxInstruction then
11: compute the edge betweenness centrality for g
12: e←edge with the highest centrality
13: break from the loop
14: end if
15: end for
16: end while

17: end if

Fig. 9 Partitioning based on Edge betweenness Centrality.

hold).
• The algorithm terminates when no connected components has more than the

maximum number of nodes.
Parallelism is exploited in this scheme only at the level of clusters. Centrality

may create unbalanced partitions since it does not take into account the ensuing
size of partitions after edge removal.

3.4 Time Complexity
The partitioning algorithm invokes edge-betweenness centrality repeatedly.

The time complexity of the edge-centrality algorithm is known to be
O(n2 log(n)) 10). This algorithm is invoked repeatedly after the removal of each
edge. The time complexity of the partitioning algorithm can therefore be written
as O(r ·n2 log(n)), where r corresponds to the number of edges that are removed.
We speculate that r � e, where e is the number of edges. This assumption on r

is validated and results of which is presented is presented in Section 4.
3.5 Existing p-HyperOp Generation Scheme
REDEFINE compiler implements the following greedy algorithm to generate

p-HyperOps 1). The HyperOp’s dataflow graph (which is a subset of the applica-
tion’s dataflow graph) is broken into individual threads of sequential instructions.
The inter-thread interaction is measured and two threads with the highest in-

teraction are interleaved together. Each of these interleaved components forms
a p-HyperOp. If the interleaved component has more instructions than what is
allowed in a p-HyperOp, it is horizontally split into two components and so on.

4. Experiments and Observations

4.1 Applications and Kernels
As mentioned previously, to evaluate the performance of the various parti-

tioning schemes, we have chosen a set of applications and kernels spanning the
cryptography domain.
• Applications: These include applications such as a deterministic finite au-

tomaton, SHA-1, AES-128 bit encryption and decryption, a pseudo random
number generator and CRC-16.

• Elliptic Curve Cryptography kernels: Elliptic Curve Cryptography (ECC)
kernels form the set of primitive operations needed for implementing next
generation Cryptography Algorithms. The key sizes in these cases are very
large and computations are based on algebraic properties of Galois Fields.
The kernels include Field Addition, Field Multiplication, Field Squaring and
Reduction operations based on binary fields using polynomial basis. The
first set of these kernels are software implementations. Another variant of the
same kernels accelerated with Custom Function Units (CFU) are also used to
test the partitioning algorithms. The use of CFUs render the dataflow graph
completely different. The kernels employing CFUs have a different structure,
since in many cases loops or large instruction blocks are replaced by a CFU.
The macro interactions in the original kernels manifest themselves are micro
interactions when CFUs are used. It must be noted that only those ECC
kernels marked with CFU make use of the CFU. The other variant of the
kernel does not employ the CFU.

4.2 Simulation Environment
To evaluate the performance of the partitioning scheme, we have performed a

full simulation of the generated p-HyperOps on the REDEFINE SystemC based
simulator. The simulator is cycle-accurate and models an 8 × 8 fabric. Each
tile of the fabric consists of a CE and a router. The CE includes a reservation
station that can store 16 instructions, its operands and predicates. The CEs
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issue one instruction every clock cycle to the function unit. Each CE supports all
integer arithmetic operations (other than division), logical operations, shift and
rotate operations, memory access instructions, data transfer instruction (from
one CE to another), REDEFINE-specific instructions (viz. instructions to send
data to the Support Logic). Apart from these each CE is enhanced with Custom
Function Units (CFU) which are specific for the domain under consideration. For
cryptography, we include the following CFUs in the CE:
• Field Multiplier: This performs a Galois Field multiplication on 2 32 bit

operands with the 3rd input being an irreducible polynomial over GF (2n).
It also supports vectored-execution mode for 8 bit and 16 bit operaands. This
CFU is used in several applications and kernels. These include CRC 16, AES-
128 Encryption, AES-128 Decryption, Field Multiplication, Point Addition
and Point Doubling. This operation takes 3 cycles to complete execution.

• Field Squarer: This CFU performs a squaring on a 32 bit number. While this
can be achieved using a multiplier as well. However, the multiplier returns
a reduced result. Since an unreduced result is desired a separate CFU was
implemented. Squaring in binary fields using polynomial basis has interesting
properties which make this CFU very cheap and the result can be obtained
within 1 clock cycle. This CFU is used by the Field Squarer, Point Addition
and Point Doubling codes.

• Barrett Reduction: This CFU performs a field reduction operation with re-
spect to an irreducible polynomial. This CFU is used by the Barrett Reduc-
tion, Point Addition and Point Doubling kernels.

As mentioned previously, the routers are connected in a honeycomb topology.
Each router implements four virtual channels and ensures in-order delivery, i.e.,
2 packets sent from the same source to the same destination arrive at the desti-
nation in the same order as sent from the source. This is achieved primarily due
to the use of deterministic routing and the use of aging policy in routers, which
gives a higher priority to older packets.

The process of evaluation involves compiling applications listed in Table 1
written in C language into HyperOps. The compiler outputs the dataflow graphs
of all the HyperOps. Different partitioning schemes are used to generate the
p-HyperOps. These are then converted into binaries which are executed on the

Table 1 Table showing the overall execution time achieved by various partitioning
algorithms for various applications.

Application Application Type Current NIPA-C NIPA-M ILPA Centrality KL

DFA

Cryptography

Applications

30193 26784 27351 27072 24050 27483

Random Number Gen-

eration

8714 8985 8953 9129 8181 8472

SHA-1 33714 37387 33343 35020 29599 34614

CRC 16 26517 28563 29327 28568 27007 27015

AES Encrypt 5632 5540 5533 5718 4807 5435

AES Decrypt 5831 6020 6001 5930 4848 5693

Field Adder

ECC kernels

125 119 124 123 114 120

Field Multiplication 145931 154854 154810 148322 145663 146213

Field Squarer 18619 18763 18700 18787 16810 15692

Barrett Reduction 2794 2592 2548 2553 2533 2656

Field Multiplication

ECC kernels

with CFU

1675 1808 1736 1769 1447 1556

Field Squarer 248 247 249 247 233 233

Barrett Reduction 166 166 174 168 154 162

Point Addition 7513 7821 7665 7950 6415 6994

Point Doubling 4419 4566 4535 4661 3829 4192

simulator. The partitioning schemes are evaluated with respect to the overall
execution time of each application.

4.3 Results
Comparison of the execution time obtained for the applications are listed in

Table 1. The plot of the average execution time recorded for various partitioning
schemes normalized with respect to the existing partitioning scheme (described
in Section 3.5) is shown in Fig. 10. Centrality based scheme shows 6–20% re-
duction in execution time in comparison to the current scheme. In two cases, the
centrality scheme performs worse than the other schemes. In the case of CRC-16,
the existing scheme performs 1.8% better than centrality and the Kernighan-Lin
scheme performs 9.7% better than centrality for Field Squarer (without CFU).

The centrality based scheme gains primarily on account of use of higher number
of p-HyperOps and appropriate choice of edges to be broken. As mentioned
previously, increasing the number p-HyperOps has a favourable effect on the
PHT and the appropriate choice of edges has a favourable impact on the FET.
This is illustrated by the drop in normalized PHT and a drop in normalized
FET in Fig. 10. As noted previously, this is because centrality tends to create
a unbalanced partitions, i.e., few small partitions and a few large partitions.
While the instructions of the larger partitions are still being loaded, the smaller
partitions start execution. This stretches observed fabric execution time but
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Fig. 10 The plot showing the average normalized execution time (w.r.t existing scheme) for
various partitioning schemes. The plot also shows the average normalized PHT and
average normalized FET.

reduces overall execution time due to the overlap. It should be noted that parallel
execution of smaller partitions are also faciliated by the nature of Centrality based
partitioning in creating dense subgraphs, which tends to execute within the same
CE and external communication is minimized. Centrality records the lowest
fabric execution time (refer Fig. 10).

On the other hand, KL based partitioning scheme creates nearly equal sized
partitions, so the extent of self overlap is reduced. Equal sized partitions help in
reducing the CHT. As seen from Fig. 10, ILPA scheme achieves the lowest PHT,
however also records the highest average FET. Parent Affinity based scheme,
as mentioned in Section 3.1.1, tends to create highly unbalanced partitions that
explains the lowest HyperOp launch latency recorded. In the parent affinity based
scheme the parent that is closer in level to the said node is preferred. This can
lead to long chain of nodes or threads. Creation of long threads invariably leads
to other partitions which have shorter threads. Further in ILPA, unlike NIPA,
since more top level nodes are assigned to the same p-HyperOp three threads are

Fig. 11 The plot shows the ratio of FET to PHT for various application when the Centrality
based partitioning scheme is applied.

interleaved into the same p-HyperOp. This is the reason for NIPA-C and ILPA
recording the least average normalized PHT.

It is observed that applications whose ratio of PHT to FET is close to one,
i.e., the PHT is nearly equal to the FET (Fig. 11), show poor performance when
centrality based partitioning scheme is used (viz. Field Squarer – without CFU
and CRC-16). This implies that the CHT is either nearly equal to or greater
than the FET. In such a case, it is not advantageous to decrease the PHT at the
cost of the CHT. Even though decreasing PHT (hence increasing SO and hence
increasing CHT) has a favourable impact on the FET in cases where the ratio
is close to 1, the favourable impact on the FET may not be able to offset the
increase in CHT. Also, Amdahl’s law would favour the reduction of the CHT
in the said case, instead of the FET. In order to effect such a change, balanced
partitions need to be created. Such a balanced centrality based partitioning
approach would be pursued in future.

In conclusion, centrality partitioning algorithm performs well for most appli-
cations. If it is observed that the ratio of the Fabric execution time to the
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Table 2 The table gives the running time of the partitioning and REDEFINE compilation
for various applications.

Application Running Time of
Partitioning (in sec-
onds)

Running Time of
Compilation (in sec-
onds)

DFA 0.216 0.109
Random Number
Generation

1.425 0.199

SHA-1 1.096 0.519
CRC 16 0.165 0.079
AES Encrypt 1.148 4.667
AES Decrypt 1.143 5.46
Field Adder 0.19 0.054
Field Multiplication 5.56 8.784
Field Squarer 0.328 0.432
Barrett Reduction 3.877 1.476
Field Multiplication
(CFU)

0.743 5.837

Field Squarer (CFU) 0.271 0.114
Barrett Reduction
(CFU)

0.425 0.079

Point Addition 1.798 8.726
Point Doubling 3.352 10.845

HyperOp Launch latency is close to 1, then it may be worthwhile to experiment
with the partitions producing balanced partitions viz. Kernighan -Lin Partition-
ing scheme.

4.4 Algorithm Running Time and Time Complexity
Table 2 gives the details of the time it takes to partition the the graph. Also,

shown alongside is the time it takes to compile the application (other than the
time spent in partitioning). The time spent in the code was determined using
the time command in Unix.

As can be observed, from the table it can be seen that the running time of the
algorithm is quite low and takes at most a few seconds. Each of these applica-
tions comprise several HyperOps. Each of these HyperOps which are partitioned
contain several nodes with a maximum of 124 nodes and an average of 43 nodes
per HyperOp. The maximum number of nodes that are permitted within a Hy-

Table 3 Table showing the Average Graph Density for various application, the Average num-
bers of edges cut by centrality to the number of edges in the graph and the average
number of edges cut to the number of vertices in the graph.

Application Average Graph Den-
sity

Average Edge Cut
to Edge Count

Average Edge Cut
to Vertex Count

DFA 0.1034 0.0328 0.0366
Random Number
Generator

0.0708 0.0786 0.1014

SHA1 0.0407 0.0897 0.1058
CRC 16 0.0689 0.0490 0.0595
AES Encrypt 0.0196 0.0912 0.1120
AES Decrypt 0.0282 0.0892 0.1043
Field Adder 0.0236 0.1176 0.1277
Field Multiplication 0.0309 0.1059 0.1336
Field Squarer 0.0569 0.0586 0.0638
Barrett Reduction 0.0633 0.0704 0.0841
Field Multiplication
(CFU)

0.0379 0.0382 0.0365

Field Squarer (CFU) 0.0202 0.1266 0.1587
Barrett Reduction
(CFU)

0.0219 0.1875 0.2459

Point Addition 0.0375 0.0451 0.0446
Point Doubling 0.0471 0.0452 0.0479
Maximum 0.1034 0.1875 0.2459
Minimum 0.0196 0.0328 0.0364
Average 0.0447 0.0817 0.0975
Standard Deviation 0.0231 0.0399 0.0540

perOp�1 is 128. Table 3 shows the average density of these HyperOps for each
of the applications listed in Table 2. The average ratio of the number of edges
cut by centrality to the number of edges in the HyperOp and the average ratio of
the number of edges cut by centrality to the number of vertices in the HyperOp
are also presented alongside.

There are several things which can be concluded from Table 3.
• The number of edges which centrality removes is limited by the number of

edges in the graph. Given n vertices in a directed graph, n(n − 1) edges
can be drawn. Since all HyperOps are acyclic, the number of possible edges
reduces to n(n−1)

2 . Column 2 in Table 3 shows the average graph density.

�1 A HyperOp can have a fixed number of nodes, since instructions of a HyperOp has to be
accomodated on the fabric at the same time.
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It is evident that the density is very low (average of 4% and a maximum of
10%), i.e., the number of edges present in the dataflow graph is far lesser
than the maximum possible number of edges.

• We had speculated that r (the number of edges considered for removal) is
far lesser than the number of edges, e, in the graph. Column 3 of Table 3
indicates that the average ratio r

e is about 8% (with a maximum of 18%).
This shows that our speculation was accurate.

• Column 4 of Table 3 shows the ratio r
n . This measure averages 9.8%. Thus

r = kn, where k ≈ 0.1. The complexity of the partitioning algorithm O(r ·
n2 log n) can be rewritten as O(kn ·n2 log n) or O(k ·n3 log n) where k ≈ 0.1.

It must be noted that some of the observations made above, may not apply in
the context of all applications. However, we believe that the observations will
hold in general, for most applications.

4.5 Putting Results into Perspective
In order to understand these cycle counts in relation to other processors, we

compare the performance of AES encryption and decryption performance with
the performance on a General Purpose Processor. The AES-128 kernels have
been recently subjected to several successful cache timing attacks. In order to
prevent such an attack from occurring there is a need to eliminate any memory
based lookup operation. In order to achieve that we obtain the result of the
Sub-bytes stage of AES through computation of the field inverse for the given 8
bit number instead of performing a look up. This mode of execution does not
lend itself to a cache timing attack. Such implementations, which are immune to
this attack were taken and executed on both REDEFINE and GPP platforms.
The results are shown in Table 4. The simulation was performed on a desktop
with Core 2 Duo processor (45 nm) running at 3 GHz. The clock cycles were
determined with appropriate assembly level instrumentation. Care was taken
not to include the input output delays in the measured time. On the GPP, AES-
128 Encryption executed in 327,901 cycles amounting to 109.3µ seconds and
AES-128 decryption completed in 481,351 amounting to 160.45µ seconds. For
REDEFINE the cycle count was obtained on the SystemC simulator, as indicated
previously. The frequency for REDEFINE is set to 400 MHz. This is limited by
the frequency of the ultra-high speed Faraday memory used on REDEFINE.

Table 4 Comparison of the performance of AES encryption and decryption on REDEFINE
with a GPP.

Application Cycle Count on RE-
DEFINE

Time (in μ secs) on
REDEFINE

Improvement Over
GPP

AES-128 Encryption
(without CFU)

11070 27.675 3.95×

AES-128 Encryption
(with CFU)

5632 14.08 7.76×

AES-128 Encryption
(with CFU + Cen-
trality)

4807 12.02 9.09×

AES-128 Decryption
(without CFU)

12677 31.69 5.06×

AES-128 Encryption
(with CFU)

5831 14.58 11×

AES-128 Decryption
(with CFU + Cen-
trality)

4848 12.12 13.23×

As can be observed from Table 4, AES-128 Encryption runs 7.76× with a CFU
and 9.09× faster with centrality based partitioning technique. In the case of AES-
128 Decryption when centrality based partitioning was used the perfomance was
13.23× faster than GPP, as opposed to 11× faster with CFU.

5. Conclusion

Higher degree of spatial computation exploited in CGRAs necessitate spatial
partitioning of instructions. Partitioning involves maintaining: (1) a balance
between decreasing instruction execution time through ILP exploitation and re-
ducing the communication time, by placing dependent instructions closer. (2) a
balance between reducing reconfiguration overhead through better use of avail-
able bandwidth while not incurring higher control overheads and (3) choice be-
tween balanced partitions and unbalanced partitions. We presented an extension
of edge betweenness centrality scheme for partitioning the dataflow graph, which
achieved the lowest execution time through reduction in both instruction execu-
tion time and reconfiguration overhead. The execution time is improved in the
range of 6–20%, which is significant in the context of the highly optimized RE-
DEFINE compiler. Our results indicate that this scheme performs almost always
better than several other schemes viz. Kernighan-Lin and parent-affinity based
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schemes. However, we observed for certain applications whose execution time and
reconfiguration time are almost equal do not perform well with centrality based
scheme. This is due to the use of unbalanced partitions. Unbalanced partitions
reduce the perceived reconfiguration time by overlapping it with instruction ex-
ecution. However, it also tends to stretch the total reconfiguration time. We
compared the execution time for AES encryption and decryption kernels on RE-
DEFINE with a general purpose processor and observe that use of centrality
based partitioning algorithm helps improve the execution time substantially.
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