
IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011)

Regular Paper

Exact Minimum Factoring of Incompletely Specified

Logic Functions via Quantified Boolean Satisfiability

Hiroaki Yoshida†1 and Masahiro Fujita†1

This paper presents an exact method which finds the minimum factored form
of an incompletely specified Boolean function. The problem is formulated as
a Quantified Boolean Formula (QBF) and is solved by general-purpose QBF
solver. We also propose a novel graph structure, called an X-B (eXchanger Bi-
nary) tree, which compactly and implicitly enumerates binary trees. Leveraged
by this graph structure, the factoring problem is transformed into a QBF. Us-
ing three sets of benchmark functions: artificially-created, randomly-generated
and ISCAS 85 benchmark functions, we empirically demonstrate the quality of
the solutions and the runtime complexity of the proposed method.

1. Introduction

Logic factoring is an operation to find a factored form from a Boolean function.
The factored form is known as one of the efficient representation styles of Boolean
functions and forms a basis of multiple-level logic. Since the factored form cor-
responds to a static CMOS compound gate, it has also been used to estimate
the area of a circuit implementing a Boolean network. For example, the static
CMOS compound gate illustrated in Fig. 1 implements the complementation of
a factored form expression: y = ((ab + c) ∗ d) + ef . Although logic factoring is
one of the most fundamental problems in multiple-level logic synthesis, the ex-
act solution to this problem is still challenging. Early works 1),2) provided exact
multiple-level logic minimization algorithms, however, the algorithms are very
inefficient and apply to very small functions. An improved algorithm 2) requires
a couple of hours to synthesize small circuits with ∼12 2-input NAND gates 3).
In addition to their computational costs, these algorithms cannot be applied to
the minimization of the number of literals in the factored form.

†1 VLSI Design and Education Center, the University of Tokyo

Fig. 1 A static CMOS compound gate.

Recently, Boolean satisfiability solvers have made a dramatic improvement 4),5)

and have been successfully applied to industrial-scale EDA problems such as
automatic test pattern generation 6) and symbolic model checking 7). Quantified
Boolean formula, which is a generalization of propositional logic, is known as
a more natural way to model such problems. As a consequence, a number of
efficient QBF decision algorithms have been proposed 8)–11).

In this paper, we present an exact logic factoring method which first transforms
the factoring problem into a QBF and then solving it using general-purpose QBF
solver. To transform the problem into a QBF, we propose a novel graph structure,
called as an X-B tree, which compactly and implicitly enumerates all possible
binary trees with a specific number of leaf nodes. The remainder of this paper is
organized as follows. In Section 2, we introduce a novel graph structure, called as
an X-B (eXchanger Binary) tree, and then present a method for generating X-B
trees. In Section 3, we propose an exact method for minimum logic factoring.
After formulating the problem, we explain how to transform the problem into a
structural representation using an X-B tree and how to represent the structural
representation as a quantified Boolean formula. Section 4 presents experimental
results on three sets of benchmark functions to demonstrate the quality and the
runtime complexity of the proposed method. Conclusions are drawn in Section 5.

70 c© 2011 Information Processing Society of Japan

71 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

2. X-B Tree and Its Generation

2.1 X-B Tree
A binary tree is a graph with internal nodes and leaf nodes in which every

internal node has two children. A child is either an internal node or a leaf
node. An X-B (eXchanger Binary) tree is a rooted unordered binary tree with a
new type of nodes, called an exchanger node. An exchanger node has the same
number of inputs {i1, ..., in} and outputs {o1, ..., on}. Only one of the children
is an internal node, and the others are either a leaf node or an exchanger node.
An exchanger node has an associated value, called an exchange index which
determines how the inputs and the outputs are connected. An exchange index
cx is a positive integer 1 ≤ cx ≤ n where n is the number of the inputs (outputs)
of the exchanger. Then, the relation between the inputs and the outputs is given
as follows:

oj = i((cx+j−2) mod n)+1 (1 ≤ j ≤ n). (1)
where ij is the j-th input and oj is the j-th output. In other words, an exchanger
node can be viewed as a bit shifter. An X-B tree with 7 leaf nodes is shown in
Fig. 2 and a 3-input exchanger node is shown in Fig. 3.

Once the assignment of the exchange indices is determined, a binary tree is ob-
tained. By exploring such assignments, all possible binary trees can be obtained.
Note that there is not necessarily a one-to-one correspondence from an assign-
ment of exchange indices to a binary tree, i.e., different assignments of exchange
indices can result in the same binary tree.

When the logic factoring problem is formulated as a QBF, as explained in the
next section, the exchange index of each exchanger node is represented as a vector
of binary variables. The number of total exchange bits is the number of binary
variables required to represent all exchange indices in an X-B tree:

nb =
∑

i

�log2 ni� (2)

where �x� denotes the smallest integer greater than or equal to x, and ni is the
number of inputs of i-th exchanger node in an X-B tree.

2.2 Signatures of Binary Trees
During the construction of X-B trees, it is necessary to check the isomorphism

Fig. 2 An X-B tree with 7 leaf nodes.

(a) (b) cx = 1 (c) cx = 2 (d) cx = 3

Fig. 3 An example of 3-input exchanger node.

between two binary trees. We use the bitstring representation 12),13) as the sig-
nature of binary trees. Since the original bitstring representation is for ordered
binary trees, we extend it for unordered binary trees. The bitstring representa-
tion is a binary sequence b1b2 . . . b2n obtained recursively, as described in Fig. 4.
In the procedure, the last bit is always 0 and hence is omitted. Figure 5 (a)
and (b) illustrate how the signatures of two example binary trees are computed
where the bitstring shown next to each node is the signature of the node and the
signature of the root node is the signature of the tree.

2.3 Generating X-B Trees
Given the number of leaf nodes, there are many choices of X-B trees depending

on how the exchanger nodes are connected. Since we are particularly interested

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

72 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

ComputeSignature

Input: Tree T
Output: Bitstring representation S

1: V ← the root node of T
2: S ← ComputeSignatureNode(V)
3: Omit the last bit from S
4: return S

(a) Top-level procedure ComputeSignature.

ComputeSignatureNode

Input: Tree node V
Output: Bitstring representation S

1: if V is a leaf node
2: return ”0”
3: end if
4: VL ← the left child of V
5: VR ← the right child of V
6: SL ← ComputeSignatureNode(VL)
7: SR ← ComputeSignatureNode(VR)
8: if SL > SR

9: return ”1”+SL+SR

10: else
11: return ”1”+SR+SL

12: end if

(b) Procedure ComputeSignatureNode.

Fig. 4 Basic procedure for signature computation.

(a) (b)

Fig. 5 An illustration of computing the signatures of binary trees.

in the minimum X-B tree, all possible X-B trees are first enumerated and the
minimum one is chosen.

The proposed generation procedure is constructive in the sense that the X-B
trees with L leaf nodes are constructed from the X-B trees with L−1 leaf nodes.
The procedure starts with a binary tree with one internal node and two child leaf
nodes. Given an X-B tree, a set of leaf nodes and their parents is identified as
an insertion point. Then, an exchanger node and an internal node are inserted
at the point, as illustrated in Fig. 6.

The insertion points are computed as follows. First, a leaf node is replaced

Fig. 6 Inserting an exchanger node.

(a) The insertion point is a. (b) The insertion point is b. (c) The insertion point is d.

Fig. 7 An illustration of computing the signatures of X-B trees.

with an internal node and two child leaf nodes. Then, all the signatures are
computed by exploring all possible assignments of the exchange indices. After
computing the signatures for all leaf nodes, a covering table is constructed where
the rows correspond to the signatures and the columns to the leaf nodes. By
solving the covering problem, the minimum set of leaf nodes is found and an
exchanger node is inserted between the leaf nodes and their parents. We explain
this procedure using the X-B tree with 4 leaf nodes in Fig. 6 (left). Figure 7 (a)-
(c) show three X-B trees after replacing a leaf node with an internal node and
two child leaf nodes. The signatures of each X-B tree is shown at the top of the
tree. For example, the X-B tree in Fig. 7 (a) includes two binary trees shown in

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

73 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

Table 1 A covering table.

Signature a b d
11100100 1 0 0
11100010 1 1 1
11110000 0 1 0

Table 2 Characteristics of minimum X-B trees.

#leaf #internal
#exchangers

#total #encoded

nodes nodes
exchange binary

bits trees
2 1 0 0 1
3 2 0 0 1
4 3 1 1 2
5 4 2 2 3
6 5 3 3 6
7 6 4 5 11
8 7 5 7 23
9 8 6 9 46
10 9 7 11 98
11 10 8 13 207
12 11 9 15 451
13 12 10 17 983
14 13 11 20 2,179
15 14 12 22 4,850
16 15 13 25 10,905

Fig. 5 and hence the signatures of this X-B tree are 11100100 and 11100010. As
a result, a covering table is constructed as shown in Table 1 where each column
corresponds to one of the three X-B trees in Fig. 7 and each row to one of the
signatures. Since the minimum covering is {a, b}, the selector insertion point is
at the leaf nodes a and b as shown in Fig. 6 (right).

2.4 Complexity of X-B Trees
Table 2 shows the characteristics of the minimum X-B trees obtained by the

method in the previous section. The numbers of leaf nodes L, internal nodes N

and exchanger nodes X hold the following relation:
L = N + 1 = X + 3. (3)

An upper bound on the number of total exchange bits is derived as follows.
Suppose that an X-B tree with L leaf nodes is being constructed by inserting an
exchanger node into an X-B tree with L − 1 leaf nodes. In the worst case, the

number of inputs of the exchanger node is L− 2. Hence, an upper bound on the
number of total exchange bits nb is calculated from Eq. (2):

nb =
L∑

l=4

�log2(l − 2)� <
L∑

l=4

�log2 L� = O(L log2 L). (4)

Thus, X-B trees can efficiently encode exponential number of binary trees in a
single graph.

3. Exact Minimum Factoring

3.1 Problem Formulation
A literal is a variable or its negation. A factored form is a representation of

a Boolean function and defined recursively as follows: 1) a literal is a factored
form; 2) a sum of factored forms is a factored form; 3) a product of factored
forms is a factored form. In general, the factored form of a Boolean function is
not unique. For example, the following expressions; abc+abd+ cd, ab(c+d)+ cd

and abc + (ab + c)d are all the factored forms of a Boolean function. A factored
form is minimum if and only if the number of literals is the least among all
possible factored forms.

An AND/OR binary tree is a rooted binary tree where the type of each in-
ternal node is either a 2-input AND operator or a 2-input OR operator. By
regarding leaf nodes as literals, an arbitrary factored form can be represented as
an AND/OR binary tree.

The problem addressed in this chapter can be formulated as follows: Given an
incompletely specified Boolean function (f, d, r) of variables V = {v1, . . . , v|V |},
find a factored form with the minimum number of literals. Alternatively, we
can formulate it as follows: Given an incompletely specified Boolean function
(f, d, r), find an AND/OR binary tree with the minimum number of leaf nodes
which implements the Boolean function.

3.2 Constructing a QBF
The problem is modeled as a miter structure 14) illustrated in Fig. 8. It checks

the equivalence between the given Boolean function and an AND/OR X-B tree.
An AND/OR X-B tree is an X-B tree with the following modifications. An
internal node, called as an operator node, has its associated variable co ∈ {0, 1}

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

74 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

Fig. 8 A miter structure.

(a) (b)

Fig. 9 (a) operator node and (b) its
equivalent logic circuit.

(a) (b)

Fig. 10 (a) literal node and (b) its equivalent
logic circuit.

to specify whether the node type is AND or OR. Figure 9 shows an operator
node and its equivalent logic circuit. A leaf node, called as a literal node, has its
associated variable cl ∈ {1, . . . , 2|V |} to specify a literal l ∈ {v1, v1, . . . , v|V |, v|V |}.
Figure 10 shows a literal node and its equivalent logic circuit. Recall that cx

is an exchange index explained in Section 2.1. The three types of variables, cx,
co and cl, are called as configuration variables C = {c1, . . . , c|C|}. An arbitrary
AND/OR binary tree with a specific number of leaf nodes can be represented by
an AND/OR X-B tree with an assignment of the configuration variables.

A quantified Boolean formula is constructed based on this model. The clauses
of the quantified Boolean formula consist of four categories: function constraints,
operator node constraints, exchanger node constraints and literal node constraints
where each constraint corresponds to a node in the miter structure. Also, tree
constraints are added to the clauses for reducing the solution space.

3.2.1 Function Constraints
Let oroot be the variable corresponding to the output of the root operator node

in the AND/OR X-B tree. The function constraints check the equivalence of the
Boolean function and the AND/OR X-B tree:

ξf = (f ≡ oroot) + d (5)
where f and d are the on set and the don’t care set of the given Boolean function,
respectively. If the assignment of the input variables is don’t care, ξf is true
regardless of the values of f and oroot. Thus, the don’t care condition is taken
into account.

3.2.2 Operator Node Constraints
The operator node constraints represent the operator nodes in the AND/OR

X-B tree. For each operator node, the following formula is constructed:

ξo = co

(
o ≡ (i1 + i2)

)
+ co

(
o ≡ (i1 · i2)

)
(6)

where i1 and i2 are the variables corresponding to the outputs of the child nodes
of the operator node.

3.2.3 Exchanger Node Constraints
Let n be a positive integer 1 ≤ n ≤ m. Then, a cube representation of n is

defined as follows:

CUBE(x,m, n) =
�log2 m�∏

i=1

(xi ≡ bi) (7)

where b1b2 . . . b�log2 m� is a binary bit-vector representation of a decimal inte-
ger n − 1. For example, CUBE(x, 4, 1) = x1 · x2, CUBE(x, 4, 2) = x1 · x2,
CUBE(x, 4, 3) = x1 · x2 and CUBE(x, 4, 4) = x1 · x2.

The exchanger node constraints represent the exchanger nodes in the AND/OR
X-B tree. For each exchanger node, the following formula is constructed:

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

75 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

ξx =
n∑

i=1

(
CUBE(cx, n, i) ·

n∏
j=1

(
oj ≡ i((i+j−2) mod n)+1

))

·
2�log2 n�∑
i=n+1

CUBE(cx, n, i) (8)

where n is the number of the inputs (outputs) of the exchanger node, oj is the
variable corresponding to the j-th output of the operator node, and ij is the
variable corresponding to the output of the j-th child node of the operator node.

3.2.4 Literal Node Constraints
The literal node constraints represent the literal nodes in the AND/OR X-B

tree. For each literal node, the following formula is constructed:

ξl =
|V |∑
i=1

(
CUBE(cl, 2|V |, 2i − 1)

(
o ≡ vi

)
+ CUBE(cl, 2|V |, 2i)

(
o ≡ vi

))

·
2�log2 2|V |�∑
i=2|V |+1

CUBE(cl, 2|V |, i). (9)

3.2.5 Tree Constraints
As mentioned in Section 2, the encoding of X-B trees is redundant, i.e., dif-

ferent assignments of the exchange indices can correspond to the same binary
tree structure. The tree constraints restrict the possible values for the exchange
indices so that every valid assignment of the exchange indices corresponds to a
different binary tree structure. Let A = {a1, ..., aX} be an X-tuple of assign-
ments of the exchanger indices where X is the number of the exchanger nodes
in the AND/OR X-B tree. In this way, A specifies a binary tree structure. Let
A = {A1, ...A|A|} be a family of A such that no two elements in A correspond
to the same binary tree structure. Then, the tree constraints are formulated as
follows:

ξt =
∑
A∈A

∏
ai∈A

CUBE(cxi
, ni, ai) (10)

where cxi
is the exchanger index of the i-th exchanger node and ni is the number

of the inputs (outputs) of the i-th exchanger node.

3.2.6 Constructing a Final QBF
Recall that C = {c1, . . . , c|C|} is a set of configuration variables and V =

{v1, . . . , v|V |} is a set of function variables. Let O = {o1, . . . , o|O|} be the vari-
ables corresponding to the outputs of the exchanger, operator and literal nodes.
Then, a quantified Boolean formula ξ is constructed by combining all the con-
straints Eqs. (5), (6), (8), (9) and (10) and introducing existential and universal
quantifiers:

ξ = ∃C∀V ∃O ξf

(
L−1∏
i=1

ξoi

)(
L−3∏
i=1

ξxi

)(
L∏

i=1

ξli

)
ξt (11)

where ξoi
, ξsi

and ξli are the constraints corresponding to the i-th node of each
type, and L is the numbers of the leaf nodes in the AND/OR X-B tree. Note
that the number of the exchanger nodes X is given as L − 3 from Eq. (3).

3.3 Finding the Minimum Factored Form
Given the number L of the leaf nodes in the AND/OR X-B tree, a QBF ξ

is constructed as described in the previous section. If ξ is satisfiable, it implies
that there is a factored form with L or less literals. To find the minimum fac-
tored form, we start with L = |V | literals. Note that there does not exist any
factored form with less than |V | literals because every variable must appear in
the factored form. If the QBF is satisfiable, the assignment of the configuration
variables is computed and the minimum factored form is obtained. Otherwise,
L is incremented by one and the procedure is repeated until the minimum fac-
tored form is obtained. Figure 11 describes a basic procedure for finding the
minimum factored form.

3.4 Complexity of QBFs
First, we derive an upper bound on the number of variables used in the QBFs

constructed by the proposed method. Upper bounds on the numbers of config-
uration variables C, function variables V and output variables O are given as
follows:

|C| = (L − 1) + L�log22V � + O(Llog2L) = O(Llog2L) (12)
|V | = O(|V |) (13)

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

76 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

ExactFactor

Input: Incompletely specified Boolean function (f, d, r)
Output: Minimum factored form expression F

1: L← |V |
2: loop
3: X ← an AND/OR X-B tree with L leaf nodes
4: Construct a QBF ξ from X and (f, d, r)
5: Solve the QBF ξ
6: if ξ is satisfiable
7: A← a satisfiable assignment of ξ
8: T ← an AND/OR tree by assigning A to X
9: Transform T to a factored form F

10: return F
11: end if
12: L← L + 1
13: end loop

Fig. 11 Basic procedure for finding minimum factored form.

Table 3 Upper bounds on QBF sizes.

Type #clauses #literals

Function Constraints O(Prod(f) + Prod(r)) O(Lit(f) + Lit(r))
Operator Constraints O(L) O(L)
Exchanger Constraints O(L3) O(L3log2L)
Literal Constraints O(L|V |log2|V |) O(L|V |2log2|V |)
Tree Constraints O(2LL) O(2LL2log2L)

|O| = L + (L − 1) +
L∑

i=1

(i − 1) = O(L2). (14)

where L is the number of literals, i.e., the number of leaf nodes in the corre-
sponding AND/OR X-B tree. Hence, an upper bound on the QBF variables is
O(L2) since L ≥ |V |.

Table 3 presents upper bounds on the numbers of clauses and literals of each
constraint type in conjunctive normal form. In the table, Prod(g) and Lit(g)
are the numbers of products and literals in disjunctive normal form (sum-of-
product form) of Boolean function g. Also, f and r are the on set and off set
of the incompletely specified Boolean function given as an input to the factoring
problem.

4. Experimental Results

We have implemented the proposed method called Exact Factor in C++ on
top of the logic manipulation class library Logica which we have developed. As a
QBF solver, we have examined a number of state-of-the-art QBF solvers: ssolve 8),
SEMPROP 9), sKizzo 10), and Quantor 11). Among these solvers, we chose sKizzo
which solved our QBF problem instances in the shortest runtime.

4.1 Artificially-created Examples
First, we conducted an experiment on a set of artificially-created benchmark

functions. The artificial benchmark functions are categorized into two groups:
algebraic group and Boolean group. The functions in the algebraic group are
the functions of which the minimum factored form can be obtained without the
specific features of Boolean algebra. In contrast, the functions in the Boolean
group are the functions of which the minimum factored form can be obtained
only if the specific features of Boolean algebra are used.

The results are shown in Table 4. As a reference, we present the results of
ESPRESSO two-level minimizer 15) and Good Factor factoring algorithm 16). In
the table, the first two columns give the name of the function and the number of
the input variables, respectively. Columns 3, 5 and 7 show the numbers of literals
of the sum-of-products form generated by ESPRESSO, the factored form gener-
ated by Good Factor, and the factored form generated by the proposed method.
Columns 4, 6 and 11 present the CPU times in seconds of the corresponding
methods. “< 0.1” denotes that the CPU time is less than 0.1 seconds. Columns
8, 9 and 10 give the numbers of variables, clauses and literals of the satisfiable
QBF when the minimum solution is found.

4.2 Randomly-generated Examples
Next, we conducted another experiment on benchmark functions which are

randomly generated as follows. We first build an AND/OR X-B tree with a ran-
dom number of literals. Then, a factored form expression and its corresponding
Boolean function are obtained by randomly assigning the values of all configu-
ration variables. Note that the generated factored form may be redundant and
hence is not necessarily minimum. In this experiment, we generated 10,000 prob-
lem instances such that the number of literals ranges from 4 to 13. Just as the

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

77 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

Table 4 Experimental results on artificially-created examples.

Function #inputs
ESPRESSO 15) Good Factor 16) Exact Factor

#literals
CPU time

#literals
CPU time

#literals
QBF CPU time

[sec] [sec] #variables #clauses #literals [sec]
algebraic1 8 14 < 0.1 8 < 0.1 8 81 262 1034 14.3
algebraic2 6 36 < 0.1 11 < 0.1 11 115 584 2492 70.4
algebraic3 6 15 < 0.1 11 < 0.1 10 103 370 1301 8.9
algebraic4 9 19 < 0.1 9 < 0.1 9 103 369 1394 90.7
boolean1 5 11 < 0.1 8 < 0.1 6 54 142 465 0.2
boolean2 6 26 < 0.1 16 < 0.1 10 103 374 1322 10.1
boolean3 5 13 < 0.1 10 < 0.1 8 78 232 747 1.15
boolean4 6 22 < 0.1 18 < 0.1 11 115 584 2492 68.8
boolean5 6 30 < 0.1 20 < 0.1 12 128 718 3131 69.2

(a) Literal count comparison between Good Factor and Exact Factor. (b) Literal count vs. Exact Factor runtime. (c) Literal count comparison between Exact Factor on FCSF and FISF .

Fig. 12 Experimental results on randomly-generated examples.

previous experiment, we performed both Good Factor and Exact Factor on the
randomly-generated benchmark functions. Figure 12 (a) compares the numbers
of literals of the factored forms obtained by Good Factor and Exact Factor. In
this figure, Exact Factor could improve the number of literals by up to about 39%
compared to Good Factor. Figure 12 (b) plots the runtime of Exact Factor. As
expected, due to the exponential nature of the satisfiability problems, the figure
shows an exponential runtime complexity. From this plot, we can see that our

method can solve problem instances with up to 14 literals within a few hours.
To demonstrate the impact of don’t cares on logic factoring, we generated

incompletely specified benchmark functions by adding don’t cares to the same
set of the randomly-generated benchmark functions. Each don’t care consists
of four cubes where each cube consists of randomly-selected four literals. Thus,
up to 12.5% of all minterms become don’t care. Let FISF = (f, d, r) be an
incompletely specified function. We first obtain a completely specified function

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

78 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

Table 5 Experimental results on ISCAS 85 benchmark suite.

Circuit

All nodes Improved nodes

#nodes
Total #literals

#nodes
Total #literals

Good Factor 16) Exact Factor
Improvement

Good Factor 16) Exact Factor
Improvement

[%] [%]
C432 64 406 406 0.0 0 — — —
C499 96 1,312 1,312 0.0 0 — — —
C880 100 826 818 1.0 7 75 67 10.7
C1355 96 1,312 1,312 0.0 0 — — —
C1908 97 1,521 1,519 0.1 2 16 14 12.5
C2670 149 1,730 1,718 0.7 8 79 67 15.2
C3540 337 2,897 2,832 2.2 44 460 395 14.1
C5315 433 5,212 4,999 4.1 102 1,084 871 19.6
C6288 449 10,713 10,689 0.2 11 163 139 14.7
C7522 507 6,026 5,716 5.1 173 1,605 1,295 19.3

FCSF by performing ESPRESSO on FISF . Then, we compare two factored forms
obtained by: (a) Exact Factor on FCSF and (b) Exact Factor on FISF . The
results in Fig. 12 (c) demonstrate the effectiveness of Exact Factor with taking
account of don’t care.

4.3 ISCAS 85 Benchmark Suite
Finally, we perform a literal count minimization on 10 multiple-level logic cir-

cuits from ISCAS 85 benchmark suite using Good Factor and Exact Factor. Using
SIS 17) with RASP FPGA/CPLD Technology Mapping and Synthesis Package 18),
each circuit is synthesized by 8-input LUT mapping (dmig -k 8; flowmap -k

8) to obtain a Boolean network with reasonably large nodes. We count the total
number of literals where each node in the Boolean network is represented as a
factored form. For each node n, EF (n) and GF (n) are defined as the numbers
of literals of the factored form obtained by Exact Factor and Good Factor, re-
spectively. In Table 5, All nodes compares the literal counts of N and Improved
nodes compares the literal counts of Nimp where N is a set of all nodes and
Nimp = {n|EF (n) < GF (n),∀n ∈ N}. Although the overall improvement is not
significant, we observe that there is still some room for improvement.

5. Conclusions

Logic factoring is a fundamental but still challenging problem in multiple-level
logic synthesis. In this paper, we presented an exact method which finds the min-

imum factored form of an incompletely specified Boolean function. The problem
is formulated as a quantified Boolean formula and is solved by general-purpose
QBF solver. We also proposed a novel graph structure, called an X-B tree,
which implicitly enumerates binary trees. Using this graph structure, the factor-
ing problem is compactly transformed into a QBF. Using three sets of benchmark
functions, we empirically demonstrated the quality of the solutions and the run-
time complexity of the proposed method.

References

1) Lawler, E.L.: An Approach to Multilevel Boolean Minimization, J. ACM, pp.283–
295 (1964).

2) Davidson, E.: An Algorithm for NAND Decomposition under Network Constraints,
IEEE Trans. Comput., Vol.18, pp.1098–1109 (1969).

3) Drechsler, R. and Gunther, W.: Exact Circuit Synthesis, IEEE Int. Workshop on
Logic Synthesis (1998).

4) Silva, J.P.M. and Sakallah, K.A.: GRASP—A New Search Algorithm for Satisfia-
bility, Proc. IEEE Int. Conf. Comput. Aided Des., pp.220–227 (1997).

5) Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L. and Malik, S.: Chaff: En-
gineering an Efficient SAT Solver, Proc. ACM/IEEE Design Automation Conf.,
pp.530–535 (2001).

6) Larrabee, T.: Test Pattern Generation Using Boolean Satisfiability, IEEE Trans.
Comput. Aided Des., Vol.11, No.1, pp.4–15 (1992).

7) Biere, A., Cimatti, A., Clarke, E. and Zhu, Y.: Symbolic Model Checking without
BDDs, Proc. ACM/IEEE Design Automation Conf., pp.193–207 (1999).

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

79 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability

8) Feldmann, R., Monien, B. and Schamberger, S.: A Distributed Algorithm to Eval-
uate Quantified Boolean Formulas, Proc. National Conf. Artificial Intelligence,
pp.285–290 (2000).

9) Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas, Proc. TABLEAUX2002, Vol.2381 of LNAI, pp.160–175 (2002).

10) Benedetti, M.: sKizzo: a QBF decision procedure based on Propositional Skolem-
ization and Symbolic Reasoning, ITC-Irst Tech. Rep. TR04-11-03 (2004).

11) Biere, A.: Resolve and Expand, Proc. Intl. Conf. Theory and Applications of Sat-
isfiability Testing, LNCS, Springer (2005).

12) Proskurowski, A.: On the Generation of Binary Trees, J. ACM, Vol.27, No.1,
pp.1–2 (1980).

13) Zaks, S.: Lexicographic Generation of Ordered Trees, Theoretical Computer Sci-
ence, Vol.10, pp.63–82 (1980).

14) Brand, D.: Verification of Large Synthesized Designs, Proc. IEEE Int. Conf. Com-
put. Aided Des., pp.534–537 (1993).

15) Brayton, R., Sangiovanni-Vincentelli, A., Hachtel, G. and McMullin, C.: Logic
Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, Boston
(1984).

16) Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli, A. and Wang, A.R.: MIS: A
Multiple-level Logic Optimization System, IEEE Trans. Comput. Aided Des., Vol.6,
No.6, pp.1062–1081 (1987).

17) Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A.,
Savoj, H., Stephan, P.R., Brayton, R.K. and Sangiovanni-vincentelli, A.: SIS: A
System for Sequential Circuit Synthesis, Technical Report UCB/ERL M92/41, Uni-
versity of California, Berkeley (1992).

18) Cong, J., Peck, J. and Ding, Y.: RASP: A General Logic Synthesis System for
SRAM-based FPGAs, Proc. ACM/SIGDA Int. Symp. FPGAs, pp.137–143 (1996).

(Received May 29, 2010)
(Revised September 3, 2010)
(Accepted October 22, 2010)
(Released February 8, 2011)

(Recommended by Associate Editor: Yusuke Matsunaga)

Hiroaki Yoshida received his B.S., M.S. and Ph.D. degrees
in electronic engineering from the University of Tokyo, Tokyo,
Japan, in 2000, 2002, and 2007, respectively. From 2002 to 2006,
he was a Senior Software Engineer at Zenasis Technologies, Inc.,
in San Jose, CA., where he was working on the development of
a leading-edge logic/physical/transistor-level timing optimization
tool. He is currently a Project Assistant Professor with VLSI

Design and Education Center (VDEC), the University of Tokyo. His research
interests include high-level, logic-level and transistor-level optimization of high-
performance digital circuits.

Masahiro Fujita received his B.S. degree in electrical engi-
neering in 1980, and M.S. and Ph.D. degrees in information engi-
neering from the University of Tokyo, Tokyo, Japan in 1982 and
1985, respectively. From 1985 to 1993, he was a Research Scientist
with Fujitsu Laboratories, Kawasaki, Japan. From 1994 to 1999,
he was the Director of the Advanced Computer-Aided Design Re-
search Group, Fujitsu Laboratories of America, Sunnyvale, CA.

He is currently a Professor in the Department of Electrical Engineering, the Uni-
versity of Tokyo, Tokyo, Japan. He has been on program committees for many
conferences dealing with digital design and is an Associate Editor of Formal
Methods on Systems Design. His primary research interest is in the computer-
aided design of digital systems. Dr. Fujita received the Sakai Award from the
Information Processing Society of Japan in 1984.

IPSJ Transactions on System LSI Design Methodology Vol. 4 70–79 (Feb. 2011) c© 2011 Information Processing Society of Japan

