
IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

[DOI: 10.2197/ipsjtsldm.6.112]

Regular Paper

Design and Implementation of IP-based iSCSI Offload
Engine on an FPGA

Amila Akagic1,a) Hideharu Amano1,b)

Received: November 28, 2012, Revised: March 8, 2013,
Accepted: April 26, 2013, Released: August 5, 2013

Abstract: The IP-based storage systems often require bandwidth intensive access to storage devices, thus they exhibit
high CPU utilization and low throughput when executed in a principally software implementation. This is especially
evident for multi-Gbps networks where the impact of computational overhead is so pronounced that the current state
of the art processors cannot take advantage of the capacity of the network. In this paper we propose new iSCSI Offload
Engine architecture for high data rate storage networking. Based on our analysis of open source Open-iSCSI initia-
tor, we offload the most computationally intensive and the most executed functions in a common case scenario, while
other functions are implemented in a modified Open-iSCSI initiator on a general purpose processor. Our architecture
overcomes the performance limitations imposed by a single processor which runs on 15x higher operating frequency
than our accelerator. It exhibits very low CPU utilization of approximately 3% on the host CPU, which is 10–15x
reduction compared with software implementation. The maximum transmission throughput is 7.81 Gbps, while recep-
tion throughput is 7.34 Gbps, which is 2 times speedup over software. The new architecture also shows comparable
performance with Chelsio T110 ASIC-based HBA, and has more flexibility.

Keywords: Hardware Acceleration, Internet Small Computer System Interface (iSCSI), Offload Engine, FPGA, IP-
based storage

1. Introduction

The IP-based storage systems provide a flexible and high-
performance block data access for storage applications. Their
unique contribution is the ability to integrate storage networking
into mainstream data communications. The iSCSI protocol [1]
defines one such approach for accessing and transporting data
over commonly utilized TCP/IP infrastructure. The protocol en-
sures high data integrity through header and data digests in the
specific iSCSI Protocol Data Units (PDUs). However, the pro-
cessing of iSCSI digests is considered to be the most computa-
tionally intensive part of the iSCSI protocol processing [2]. This
is especially evident for multi-Gbps networks where the impact
of computational overhead is so pronounced that the current state
of the art processors cannot take advantage of the capacity of the
network. Thus, it is common practice to disable data digests [3].
In such cases, data integrity is ensured with only TCP and/or Eth-
ernet error detection mechanisms, which have significantly lower
detection capabilities than the more robust 32-bit Cyclic Redun-
dancy Check (CRC) iSCSI digest. TCP checksums cannot detect
errors which occur between upper layer protocol transitions.

Thus far, commercial hardware iSCSI solutions have been im-
plemented by using TCP/IP Offload Engines (TOE) or iSCSI host
bus adapters (HBA). These systems offload either TCP/IP proto-

1 Department of Information and Computer Science, Keio University,
Yokohama, Kanagawa 223–8522, Japan

a) amila@am.ics.keio.am.jp
b) hunga@am.ics.keio.am.jp

col stack or both TCP/IP and iSCSI protocol onto a specialized
hardware. Offloading TCP/IP protocol stack shows significant
decrease of CPU utilization, but digest processing still requires
significant processing time on a CPU. iSCSI HBAs guarantee
performance for computationally intensive applications, but it is
difficult to add new functions due to their inflexibility. There has
been only one attempt to offload iSCSI protocol to an FPGA [4].
However, the maximum reported throughput is only 86 Mbps
without processing digests, and 31.84 Mbps with digests. There
are three primary reasons why we believe offloading the iSCSI
protocol is challenging. First, the scope of iSCSI code is too large
and requires a lot of programming effort and time. Second, some
functions such as authentication, authorization and security are
challenging to implement in hardware. Third, it is thought that
operating frequency of FPGAs is not enough to accomplish re-
quired throughput for high-speed networks. The performance of
software initiators is limited by the processing power of a general
purpose processor, especially for the multi-Gbps networks [5].
The biggest concern is high level of CPU utilization that it causes.
This has led to extensive research of offloading protocol process-
ing to hardware.

In this paper we address the problem of efficiently implement-
ing IP-based iSCSI Offload Engine which operates on the top of
the TCP/IP protocol stack. The target applications are mission-
critical applications which require high data integrity, such as
those of financial and banking transactions where database in-
tegrity failures might lead to lost funds, inaccurate stock ex-
change or credit card transactions. In these systems it is required

c© 2013 Information Processing Society of Japan 112

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

to enable header and data digests, which adversely affects overall
performance.
Precisely, our contributions are:
(1) We analyze iSCSI traffic and identify the most commonly

used functions. We measure and analyze CPU utilization
and throughput of Open-iSCSI [6], which is an open source
software based iSCSI initiator.

(2) Based on (1), we offload data transfer and related non-data
functions to an FPGA based adapter. Data transfer func-
tions are the most computationally intensive and the most
executed functions in a common case scenario. Other func-
tions which do not affect performance are implemented in
software on a general purpose processor. The resulting ar-
chitecture relieves the host CPU from computational burden
imposed by the software implementation.

(3) It is proved that the new architecture can overcome the per-
formance limitations imposed by a single processor which
operates on 15 times higher frequency than our FPGA im-
plementation. The iSCSI Offload Engine allows very low
utilization on the host CPU of approximately 3%.

(4) Our architecture guarantees flexibility, since many functions
are implemented on a general purpose processor. Any new
feature, such as security functions, specification updates,
CRC standards, etc., can be easily implemented.

The organization of this paper is as follows. In Section 2. we
present an overview of iSCSI architecture, an analysis of soft-
ware based Open-iSCSI initiator and related works. In Section 3.
we describe new iSCSI Offload Engine architecture and modifi-
cation of Open-iSCSI initiator. In Section 4. we present results
and analysis of our iSCSI Offload Engine, and we compare our
results with related works. We conclude the paper in Section 5.

2. Overview of iSCSI

2.1 The iSCSI Protocol
The iSCSI protocol is a transport for SCSI packets over

TCP/IP infrastructure. The information exchange is based on a
client/server model where the client is called initiator, and server
target. The initiator and target divide their communications into
messages, which are called Protocol Data Units (PDUs). Typ-
ically, an initiator issues commands to a SCSI target to request
transfer of data to/from I/O devices. The group of TCP connec-
tions that link an initiator with a target form a session. A ses-
sion has two phases: Login and Full Feature Phase. In the Login
Phase, an initiator and a target negotiate protocol parameters, se-
curity parameters, and authenticate each other for the rest of the
session. The session then transitions to the Full Feature Phase.
In this phase, an initiator may send SCSI commands and data to
various SCSI devices on the target. The majority of protocol pro-
cessing load happens in the second phase.

2.2 Processing of iSCSI Read and Write Commands
The principal layers of the storage networking model based

on iSCSI are shown in Fig. 1. The data segment encapsulates
the SCSI command set for communication with SCSI devices.
iSCSI layer is responsible for transmitting and receiving SCSI
commands over TCP/IP infrastructure. The TCP layer is used as

Fig. 1 Layers of iSCSI packet. The formation of the packet begins with
data segment, creation of header and data digests, and an appropri-
ate iSCSI header. Then, the packet is build out through TCP, IP and
Gigabit Ethernet layers (Optional fields are marked with *).

Fig. 2 Flow diagram for processing of a) Data-In PDU on the initiator,
which performs SCSI read on the target; b) Data-Out PDU on the
initiator, which performs SCSI write on the target.

end-to-end protocol to establish a reliable session, and for deliv-
ering in-order TCP segments to the iSCSI layer. The IP layer is
used to route the data between network devices, and the Ethernet
layer is used as MAC protocol handler to transfer Ethernet frames
across the physical link.

Figure 2 illustrates an exemplary flow diagram for processing
a) incoming Data-In PDU (part of READ operation) and b) out-
going Data-Out PDU (part of WRITE operation). These units are
two main vehicles by which SCSI data payload is transmitted be-
tween an initiator and a target.

In the case of Fig. 2 (a), the initiator first sends the request for
reading data in the form of SCSI READ commands to a target.
When a target sends data, the incoming data first goes through
TCP/IP Offload Engine (TOE) to process Ethernet, TCP and IP
layers. Then, if the frame does not correspond to an iSCSI PDU,
it is forwarded either to a different network processor or to the
main memory. Else, the header is validated by calculating its di-
gest in the second phase. If the newly calculated digest is not the

c© 2013 Information Processing Society of Japan 113

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

same as the received one, the PDU is dropped and re-transmission
request is sent. In the third phase, the information in the iSCSI
frame is identified and corresponding operations are performed.
In the final phase, the digest of data segment is calculated and
compared with the received data digest. If two digest values are
equal, the data segment is copied to the main memory. If not, the
frame is dropped and re-transmission is requested.

In the case of Fig. 2 (b), the initiator first sends the request for
writing data in the form of SCSI WRITE commands to a target.
Then, the target sends R2T PDU informing the initiator that it is
ready to transmit. When the initiator receives R2T, transmission
of data-out PDU may begin. The formation of Data-Out PDU be-
gins with construction of its header. Then, the header and data
segment digest are calculated, respectively. The header, header
digest, data segment and data digest are then encapsulated with
TCP, IP and Ethernet layers to form a Data-Out PDU and sent to
a target.

2.3 Implementation Approaches
In recent studies we found three major implementation choices

for iSCSI (Fig. 3):
Type 1: iSCSI Driver with NIC: coupled with a generic Ether-

net NIC with software implementation of iSCSI initiator.
Type 2: iSCSI Driver with TCP offload engine: entire TCP/IP

stack is offloaded onto a special purpose hardware accelera-
tors coupled with operating system based iSCSI initiator.

Type 3: iSCSI Host Bus Adapter: TCP/IP and iSCSI initiator
functions are offloaded to a special purpose hardware.

For some applications, software initiators (Type 1) will suffice,
but more-demanding applications require offloading of iSCSI
processing to hardware initiators. The main advantage of soft-
ware based iSCSI initiators is their ability to easily adapt to mod-
ifications in the protocol. There are two types of iSCSI hardware
initiators. Type 2 only offloads TCP/IP processing from the sys-
tem’s CPU to a specialized Ethernet card which is called TCP Of-
fload Engine. Type 3 offloads both TCP/IP and iSCSI processing
from the system CPU to a specialized adapters known as iSCSI
Host Bus Adapters. They are usually implemented as ASIC solu-
tions with superior performance when compared to performance
of Type 1, but they lack flexibility. Examples of existing imple-
mentations are reviewed in Related Work.

2.4 Performance Analysis of Open-iSCSI
We analyzed iSCSI traffic with Wireshark [7], the open source

network packet analyzer. We measured traffic between a soft-
ware initiator and a target by using a set of microbenchmarks.
The microbenchmarks transmitted arbitrary number of data in
both directions. The iSCSI commands are issued to read/write
from/to the same disk block address multiple times in order to
minimize the number of cache misses. We setup a software ini-
tiator with Open-iSCSI [6] on Intel Core2 CPU 2.40 GHz with
8 GB of RAM, and a target by using Linux SCSI target frame-
work [8] on the Intel Core2 Quad CPU 2.83 GHz with 8 GB of
RAM. The operating system on both CPUs was based on Linux
kernel 2.6.34.

In the most common case transmission, 60–70% of instructions

Fig. 3 Three major implementation choices for iSCSI.

Fig. 4 The performance profile of processing Data-In PDUs on Intel Core2
CPU 2.40 GHz, when header and data digests are enabled.

were Data-In and/or Data-Out PDUs, following by R2T, SCSI
Commands and Responses with 10–20%. The remaining instruc-
tions were related to mostly Login Phase, connection cleanup and
connection termination. Then, we analyzed number of instruc-
tions and CPU utilization with Oprofile [9], which is a system-
wide profiler for Linux kernel. Figure 4 shows the performance
profile of processing Data-In PDUs when header and data digests
are enabled. The cost of data digest processing (with kernel’s
CRC32c module) represents about 50% of the total number of
instructions for 8 KB workload size, while the iSCSI protocol
processing is only 4%. As expected, the data digest processing
increases linearly with I/O workload size, while processing cost
is decreasing. During our experiments, CPU utilization was the
highest when data digests were enabled, varying from 33% to
70% of processor’s resources. Thus, little or no processing re-
sources are left for other applications. When data digest is dis-
abled, the cost of header digest processing is indistinguishable
with 1% of the total number of instructions.

2.5 Related Work
The most common Type 1 implementations in the research

community are open source Open-iSCSI [6] and UNH-iSCSI
projects [10]. Examples of Type 2 are ASIC-based 10 GbE

TOEs: Chelsio’s Terminator 3 chip [11] and NetEffect’s NE010
adapter [12]. Both adapters show low CPU utilization and near
10 Gbps performance, especially for larger data sizes. How-
ever, very little information is available concerning their archi-
tectures. There is some research about TOEs on FPGAs. In
Ref. [13], Wu et al. introduced a hybrid TOE which processes
IP, ARP, and ICMP protocols on an FPGA, and TCP on an em-

c© 2013 Information Processing Society of Japan 114

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

bedded processor by using software. In Ref. [14], Jang et al.
presented the design and implementation of a TOE by means
of hardware/software co-processing. Both implementations fo-
cus on decreasing CPU utilization by offloading TCP/IP process-
ing to an FPGA. The maximum reported throughput is bellow
1 Gbps: Wu et al. reported 300 Mbps [13], Jang et al. reported 673
and 551 Mbps [14]. However, two companies recently announced
FPGA based TOEs which operate at full 10 Gbps [15], [16] line
rate. As we argued in the previous section, digest processing
occupies significant amount of CPU utilization. Thus, it is not
enough to offload TCP/IP processing to a special purpose hard-
ware. This is especially evident for multi-Gbps networks where
the impact of computational overhead is so pronounced that the
current state of the art processors cannot take advantage of the
capacity of the network.

References [4], [17], [18] are examples of Type 3. In Ref. [4],
Han-Chiang Chen et al. proposed offloading of TCP/IP and iSCSI
to an embedded OS on a PowerPC 405 CPU, which is part of Xil-
inx FPGA embedded platform. This is the only attempt to offload
iSCSI to an FPGA. The implementation does not have any hard-
ware accelerated modules, and it only consists of running unmod-
ified software initiator on the PowerPC 405 CPU. The maximum
reported throughput is 86 Mbps without digests, and 31.84 Mbps
with digests. The low throughput is attributed to the low fre-
quency of PowerPC 405 CPU (300 MHz). The CPU utilization
was 1.5%. In Ref. [17], Chung-Ho Chen et al. proposed a hard-
ware accelerator for data transfer iSCSI functions. The accelera-
tor is designed with direct C-to-HDL translation of specific sub-
modules of UNH-iSCSI software. The design is evaluated with
UMC 0.18 µ technology with 100 MHz system clock. The accel-
erator is able to meet the requirements of 1 Gbps network when
the average PDU size is greater than 125 bytes. In Ref. [18], the
peak throughput performance of Chelsio T110 (10 Gbps iSCSI
ASIC-based HBA) is 6.69 Gbps without digests, and 5.9 Gbps
with digests. The average CPU utilization is 30% without digests,
and 37% with digests.

3. Design and Implementation of iSCSI Of-
fload Engine

3.1 Overview of iSCSI Offload Engine Architecture
Figure 5 illustrates the structure of iSCSI adapter based on

the architecture of the iSCSI Offload Engine proposed in this
paper. The design overview is based on Xilinx ML605 Eval-
uation Board. The iSCSI adapter consists of an iSCSI Offload
Engine, a TCP/IP Offload Engine, an iSCSI Offload Engine Inter-
face, a memory controller, a 10-Gigabit Ethernet Media Access
Controller (MAC) and an eXtended Attachment Unit Interface
(XAUI) Core. The 10-Gigabit Ethernet MAC is used to interface
to Physical Layer devices in a 10-Gigabit Ethernet (10 GE) sys-
tem. The XAUI Core allows physical separation between the data
link layer and physical layer devices in a 10 GE system. More im-
plementation details are provided in Section 4.1. Our architecture
is relying on the existing TCP/IP Offload Engine, which is well
researched subject [13], [14], [15], [16].

In a typical iSCSI session, an initiator initiates series of read
and/or write SCSI commands, after which appropriate responses

Fig. 5 Design overview of proposed iSCSI Offload Engine and modified
Open-iSCSI implementation. The design is based on Xilinx ML605
Evaluation Board, which has only a 1000-BASE Ethernet interface.
Hence, additional Dual SFP+ FMC [24], [25] and 10 GbE SFP+
transceiver are required to achieve throughput of over 1 Gbps. More
implementation details are provided in Section 4.1.

Fig. 6 An overview of two transfer directions and two common sets of op-
erations executed during reading and writing processes.

follow, as illustrated in Fig. 6. Several read and/or write com-
mands, as well as their data and responses usually intertwine, de-
pending on the readiness to transmit data on initiator and target
side. Data transmitted from a target to an initiator is regarded
as reading part of the session (reception). Similarly, the transfer
from an initiator to a target is regarded as writing part of the ses-
sion (transmission). Thus, the iSCSI Offload Engine consists of
two modules which divide processing work into reception work -
the Reception Module (Rx) and transmission work - the Transmis-

sion Module (Tx). The architecture of two modules is discussed

c© 2013 Information Processing Society of Japan 115

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

Table 1 A minimum set of opcodes defined on an initiator and a target. The iSCSI Offload Engine pro-
cesses the most computationally intensive data-transfer and related non-transfer operations in
both directions, marked in bold.

Initiator to Target (Tx) Target to Initiator (Rx)
No. Opcode Name No. Opcode Name
T1 0x00 NOP-Out (H&D) R1 0x20 NOP-In (H&D)
T2 0x01 SCSI Command (H&D) R2 0x21 SCSI Response (H&D)
T3 0x02 SCSI Task Management function request (H) R3 0x22 SCSI Task Management function response (H)
T4 0x03 Login Request R4 0x23 Login Response
T5 0x04 Text Request (H&D) R5 0x24 Text Response (H&D)
T6 0x05 SCSI Data-Out (H&D) R6 0x25 SCSI Data-In (H&D)
T7 0x06 Logout Request (H) R7 0x26 Logout Response (H)
T8 0x10 SNACK Request (H) R8 0x31 Ready To Transfer (R2T) (H)
T9 0x1c-1e Vendor specific codes R9 0x32 Asynchronous Message (H&D)

R10 0x3c-0x3e Vendor specific codes
R11 0x3f Reject (H&D)

(H&D) : Header and data digest (H) : Header digest

Fig. 7 The structure of Reception and Transmission Modules in the iSCSI Offload Engine.

in Sections 3.2 and 3.3, respectively.
The Control Module enables sharing of data between Recep-

tion and Transmission Modules, TCP/IP Offload Engine, and
modified Open-iSCSI initiator. The memory controller handles
buffer memory which holds the packet buffers. The packet buffers
consist of a header, data, header digest and data digest areas.

Table 1 displays the minimum set of opcodes defined on an
initiator and a target. Based on our analysis of Open-iSCSI
(Section 2.4), we offload processing of PDUs marked in bold to
an FPGA. These PDUs are the most computationally intensive
and the most frequently executed. Except R2T and SNACK Re-
quest, they all require data digests. The operations such as Asyn-
chronous Message, Text Request and Text Response, Nop-In and
Nop-out, and Reject also require data digest, but they are exe-
cuted far less frequently. Thus, these functions are implemented
on a general purpose processor.

On the host CPU, we modified Open-iSCSI and Linux kernel
to bypass certain iSCSI functions and TCP/IP layers. The Open-
iSCSI is partitioned into kernel and user parts (Fig. 5), which im-
plement iSCSI data plane and the control plane, respectively. The
interface between these two parts is implemented using Netlink
sockets. The socket library functions are handled in a single sys-
tem call (sys socketcall). Depending on the type of a function,
the sys socketcall calls either the iSCSI Offload Engine Device
Driver or the TOE Device Driver. The iSCSI Offload Engine De-
vice Driver consists of a set of routines which control the iSCSI

Offload Engine. The modifications are discussed in details in Sec-
tion 3.6.

When a user requests iSCSI Offload Engine service, this re-
quest is first delivered to the iSCSI Offload Engine Interface. The
modules then read the request from the Command Buffer and per-
form required operations. The data is copied to/from main mem-
ory of the host CPU into Input/Output buffers by using DMA.
The host CPU then fetches results from the Completion and Out-
put Buffers and delivers them to the user program.

3.2 The Reception Module (Rx)
Figure 7 (a) illustrates the structure of Reception Module (Rx).

It consists of the Packet Controller, the SNACK Controller and
the Rx Buffer Controller. After the incoming packet is processed
by the TCP/IP Offload Engine, the TCP payload is transferred to
the Rx Buffer Controller. The Packet Controller parses the header,
identifies a PDU and validates header and data digest. If a PDU
represents a SCSI Data-In, a SCSI Response or a R2T PDU, it
is processed by the Packet Controller, else it is forwarded to the
main memory to be processed by the software initiator or to a
different processing engine.

Some operations are executed in parallel in order to improve
the performance. Parsing of a header and calculation of header’s
digest are executed in parallel, as well as calculation of data digest
and validation of the header digest. When data digest is validated,
the data is copied from Rx Buffer directly to the host memory via

c© 2013 Information Processing Society of Japan 116

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

DMA without a copy (direct data placement). The header and
data digests are calculated with CRC Generation Unit, and vali-
dated by the Parser. The architecture of CRC Generation Unit is
detailed in Section 3.4.

Even though SNACK Request is originally in the transmission
data-path, we implement the SNACK controller in the Reception
Module in order to shorten the time required to generate a re-
quest for re-transmission or acknowledgment of data. However, a
SNACK PDU is sent through the Tx Buffer. The re-transmission
request (SNACK) is generated when the header or data digests
are not validated (the packet in the Rx Buffer is dropped in this
case). In order to reduce the overhead of acknowledging each
incoming packet, we design the SNACK Controller to generate
a single delayed SNACK request for a group of missed status,
data, or R2T PDUs within a task. This decreases the number of
interrupts and improves the performance, since there are fewer
number of requests.

The other example when the SNACK Controller is used is
when a session supports error recovery. In this case, the tar-
get requests a positive acknowledgment in the form of SNACK
DataACK PDU. This operation begins in parallel with the oper-
ation to store the validated packet from the Rx Buffer to the host
memory. By implementing this operation in the hardware, the
resources at the target are released faster, thus enabling more re-
sources for other transactions. The SNACK Controller has inde-
pendent CRC Generation Unit, thus it can generate header digest
in parallel with the Packet Controller.

3.3 The Transmission Module (Tx)
Figure 7 (b) illustrates the structure of Transmission Module

(Tx). It consists of the Packet Generator and the Tx Buffer Con-
troller. When the iSCSI Offload Engine device driver requests
creation of an iSCSI PDU, the header descriptors are fetched from
the main memory via DMA and forwarded to the Packet Gen-
erator. The iSCSI Header Generator creates a new header and
forwards it to CRC Generation Unit to create a header digest.

The following two sets of operations are executed in paral-
lel. First, the generation of header digest is executed in paral-
lel with transfer of a header from the iSCSI Header Generator
to the Tx Buffer. Second, the generation of data digest is exe-
cuted in parallel with transfer of data from the main memory to
the Tx Buffer. The Tx Buffer Controller forwards a PDU to the
TCP/IP offload engine for creation of TCP/IP/Eth header infor-
mation. The TCP/IP Offload Engine then sends a request to the
Gigabit Ethernet controller to transmit the packet.

3.4 The CRC Generation Unit
Figure 8 illustrates the architecture of CRC Generator Unit

based on our previous research with high-speed CRC acceler-
ators [19], [20], [21]. The CRC algorithm deploys eight tables
(T8, ...,T2, T1) with pre-computed remainders. The architecture
is pipelined in three stages, and the throughput is 64 bit/cycle.
The digest (CRC) of input data is formed with the following steps.
In the first iteration, the Intermediate Address is formed by XOR-
ing input data with initial value (Init). In the every other iteration,
the Intermediate CRC is used instead of Init. The Intermediate

Fig. 8 The architecture of CRC Generation Unit.

Address is then sliced into eight 8-bit slices, which are used as
addresses to access eight tables in parallel. Eight remainders are
XORed to form the Intermediate CRC. The Intermediate CRC

is XORed with the final value (XorOut) when the controller indi-
cates the end of data. The digest is stored in the digest area of a
buffer.

In order to achieve high degree of flexibility, we made some
modifications to the original design. We enabled support for any
given 32-bit CRC Standard defined in the iSCSI Specification [1].
The values of parameters Init and XorOut, and the contents of
tables depend on a CRC standard. The values of parameters are
changed on the request of the iSCSI Offload Engine device driver.
However, the contents of tables is challenging to be replaced in
the similar manner. Thus, we use difference-based partial recon-
figuration. We minimize the dynamic part of the circuit to only
tables, which allows us to generate a small bitstream containing
only differences between two versions of the design. Then, we
wrote a set of scripts to automatically assign new values cor-
responding to a CRC Standard, and stored them into the tables
(BRAM components). The new values are stored into tables with
the Xilinx FPGA Editor. We automatize the process of generat-
ing new bitstream which allows complete flexibility. The idea is
to provide a number of pre-generated bitstreams (for a set of CRC
standards) with the unit.

3.5 The Control Module
The Control Module shares information among four compo-

nents: Reception and Transmission Modules, TCP/IP Offload En-
gine, and iSCSI software initiator. It supports fast and efficient
data sharing by using quad-port memory [22]. In Fig. 9 we illus-
trate an exemplary exchange of information between an initiator
and a target, where italic font displays direction of the new infor-
mation coming from an initiator to a target, and inversely. The
iSCSI initiator must verify consistency of the values used in all

c© 2013 Information Processing Society of Japan 117

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

Fig. 9 An exemplary exchange of information between the initiator and target. Italic font displays direc-
tion of the new information coming from an initiator to a target and inversely. The information is
used for validation of a PDU.

Fig. 10 The flow of information between modules in the iSCSI Offload En-
gine.

task-related PDUs. Thus, it stores important information in five

look-up tables in a memory of a Control Module and forwards
them to an appropriate unit for verification.

Figure 10 illustrates the flow of information between modules
in the iSCSI Offload Engine. Before sending a request to cre-
ate a command PDU, the device driver first checks the status of
iSCSI Offload Engine via the session table in the Control Mod-
ule. Along with the request, it sends an address of the buffer
with a set of information required to form a command PDU.
This set is defined by the RFC 3720 [1]. In the case of “SCSI

Cmd PDU” (Fig. 9), following kinds of information are being ex-
changed: Logical Unit Number (LUN), Initiator Task Tag (ITT),
expected transfer length, command sequence (CmdSn), expected
status number (ExpStatSn), etc. The LUN is used to identify a
Logical Unit within a target, and ITT to identify a new task in the
initiator. The command table is used to store these information.
In the response to a command, the target sends a set of informa-
tion such as a Target Transfer Tag (TTT), expected command se-
quence number, sequence number of data PDU, etc. The Control
Module also holds information regarding the status of transmit
and receive buffers in the host memory, as well as in the TCP/IP
Offload Engine. The R2T table holds information received from
a target through R2T PDU, which are later used by the Trans-
mission Module to create a SCSI Data-Out PDU. The SNACK

table holds information required to generate SNACK requests,
which can be requested from iSCSI Offload Engine device driver

or generated directly by the Reception Module. When a PDU is
acknowledged, it sends necessary information to modified Open-
iSCSI. Lastly, the data address tables holds the address where
the data is directly copied from Rx Buffer to the host memory via
DMA.

3.6 Modification of the Open-iSCSI Initiator
We modified Open-iSCSI’s data-path to bypass some of the

SCSI functions and TCP/IP layers in the Linux kernel. The Open-
iSCSI spawns two threads for every connection in a session: a
transmit thread (tx thread) and a receive thread (rx thread). Fig-
ure 11 shows an exemplary unmodified and modified data-paths
for creating a SCSI Command by the tx thread. First, the SCSI
Mid-Level passes commands to the low level drivers through
queuecommand() call. Then, the initiator generates unique Ini-
tiator Task Tag (ITT) and allocates memory for a new command
initialized with it (a). The PDU fields are then prepared and stored
in the memory (b). A new command is added to the linked list of
all pending commands (c), and tx thread is woken up to send the
PDU to a target (d). Then, a TCP routine is called to send a SCSI
Command PDU to a target (e).

The tx thread and rx thread data-paths are modified to bypass
the processing of T2, T6 and T8 PDUs, and R2, R6 and R8
PDUs, respectively. In the transmission path, a command is first
identified by its opcode and forwarded either to unmodified data-
path (tx thread) or to the new iSCSI agent - offload engine agent
(f), which is responsible for performing communication with
iSCSI Offload Engine. Then, a new request is forwarded to
the sys socketcall to be transmitted to a target through either (g)
iSCSI OE socketcall (T2, T6, T8) or (h) TOE socketcall (T1, 3-
5, 7). In both cases, the Linux TCP/IP stack in the sys socketcall
is bypassed, by which we eliminated copying of user data to
the socket buffer (a kernel copy). Instead, we translate the vir-
tual address of the user’s data into a physical address by using
get user pages and kmap functions. The address is sent to iSCSI
Offload Engine, which is followed by the DMA request. The re-
quests are created and pushed into the Command Buffer.

4. Implementation Results and Analysis

4.1 iSCSI Offload Engine Board
Design of our iSCSI Offload Engine is best suited for new Xil-

c© 2013 Information Processing Society of Japan 118

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

Fig. 11 Unmodified and modified data-paths for creating a SCSI Command by tx thread.

inx platforms, such as Virtex-6 HXT or Virtex-7 FPGAs, which
contain all the necessary hardware for high-bandwidth and high-
performance applications. However, the functionality of the pro-
posed iSCSI Offload Engine is verified on the ML605 board,
which is equipped with the Virtex-6 XC6VLX240T-1FFG1156
FPGA [23]. Our test platform includes the Multi-port memory
controller for accessing the external DDR3 memory. It is con-
nected with host PC with 64-bit PCI Express x4, with transfer
rate of 16 Gbps in a single direction. The synchronization be-
tween the CPU and the FPGA is performed by the PCIe Message
Signaled Interrupts (MSI). This allows an FPGA task to wait for
a data being produced by a software task and inversely.

The board has only a 1000-BASE Ethernet interface, hence ad-
ditional Dual SFP+ FMC [24], [25] and 10 GbE SFP+ transceiver
are required to achieve throughput of over 1 Gbps. The Dual
SFP+ FMC is an FPGA Mezzanine Connector [26] daughter
card with two SFP+ connectors, two 10 Gbps physical layer
transceivers which provide full PCS, PMA, and XGXS sub-layer
functionality. We utilize only one transceiver. The daughter card
is connected to the High Pin Count (HPC) J64 connector of the
ML605 board.

As illustrated in Fig. 5, the iSCSI PDUs are formed and en-
capsulated by iSCSI and TCP/IP Offload Engines and sent out
through the LogiCORE IP 10-Gigabit Ethernet MAC [27]. The
10-Gigabit link is supported by the LogiCORE IP XAUI core [28]
using a SFP+ cable. The iSCSI Offload Engine is clocked at the
standard Ethernet interface frequency of 156.25 MHz, which al-
lows fully synchronous and lowest latency data exchange with
DINIGroup TCP/IP Offload Engine [15] and the MAC.

4.2 Elapsed Time of Main Operations
In order for a network adapter to achieve the throughput of ap-

proximately 10 Gbps, it has to be able to process a 1,500-byte
packet in 1.2 µs. Table 2 shows elapsed time of main operations
processed in iSCSI Offload Engine for a 1,500-byte packet with
data digests enabled. We design our iSCSI Offload Engine to in-
terface DINIGroup’s TCP/IP Offload Engine [15], which works
at the full 10 GbE line rate. Input to output packet latency of the
TOE is less than 1 µs, however elapsed time of some operations
are already included in elapsed time of iSCSI Offload Engine,

Table 2 Elapsed time of main operations processed in the iSCSI Offload
Engine for a 1,500-byte data packet.

Hardware Operation Elapsed
time (µs)

Transmission (1) DMA Initialization .045
Module (2) Fetching descriptors from host .038

memory and Header Generation
(3) Header Digest Generation .038
(4) Fetching data from host memory 1.162
and Data Digest Generation

DINIGrp (5) TCP/IP Processing and storing .21
TOE [15] a packet into network interface

Total: 1.449
DINIGrp (1) Fetching a packet from network
TOE [15] interface and TCP/IP Processing .23
Reception (2) Parsing header and .099
Module Header Digest Generation

and validation
(3) DMA Initialization .045
(4) Data Digest Generation and 1.162
validation, storing data into
host memory

Total: 1.538

such as fetching and storing data from/to host memory and DMA
Initialization. These operations require 58% of total time for
transmission, and 53% for reception processing. Thus, elapsed
time for TCP/IP processing is only 0.21 µs for transmission, and
0.23 µs for reception. The total elapsed time for transmitting a
1,500-byte packet is 1.449 µs, and receiving 1.538 µs.

4.3 CPU Utilization and Throughput
Figure 12 shows CPU utilization and throughput of write

micro-benchmarks of three implementations: Open-iSCSI run-
ning on Intel Core2 CPU 2.40 GHz with 8 GB of RAM, Chelsio
T110 iSCSI ASIC-based HBA with CRC enabled (the results are
published in Ref. [18]), and our iSCSI Offload Engine. We ran
the same set of micro-benchmarks (as discussed in Section 2.4)
for several thousand times with I/O sizes ranging from 128 bytes
to 128 KB. We used Ethernet standard Maximum Transmis-
sion Unit (MTU) of 1,500 bytes. The processing cost of read
micro-benchmarks is very similar to write micro-benchmarks,
with slightly lower throughput for reading process.

The average CPU utilization of software-based Open-iSCSI
varied from 33% to 55% according to a write size. The iSCSI

c© 2013 Information Processing Society of Japan 119

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

Fig. 12 Comparison of throughput and CPU utilization of write micro-benchmarks for 1,500 bytes MTU.

Offload Engine exhibits very low utilization of approximately 3%
on the host CPU, which is 10–15 times reduction compared with
Open-iSCSI implementation on Intel Core2 CPU 2.40 GHz, and
10 times reduction compared with Chelsio T110. Unfortunately,
we were unable to acquire the host CPU Utilization for the Chel-
sio T110 for I/O workload sizes higher than 128 KB. Also, from
Ref. [18] it is not clear why Chelsio T110 exhibits such high CPU
Utilization on the host. However, we think it is because Chelsio
T110 only offloads expensive byte touching operations, such as
header and data digests generation/checking, while all other re-
lated tasks are performed on the host CPU. Our iSCSI Offload
Engine additionally processes related non-data transfer functions
on an FPGA, which results in decreased number of instructions
and interrupts on the host CPU. Additionally, delayed SNACKs
and direct data placement in the host memory also decreased the
number of interrupts.

There has been significant increase in throughput when iSCSI
is offloaded to hardware. Figure 12 shows the overall through-
put for different values of write I/O workload size. The software-
based Open-iSCSI is executed on 15 times higher clock frequency
(2.40 GHz) than iSCSI Offload Engine. However, the maximum
transmission throughput of iSCSI Offload Engine is 7.81 Gbps,
while the reception throughput is 7.34 Gbps. The results show 2
times speedup over software-based Open-iSCSI. One of the prin-
cipal reasons why iSCSI Offload Engine achieves higher through-
put is because large number of operations are executed in parallel.
Specifically, the Open-iSCSI requires 2.15 cycles per byte to gen-
erate a CRC value for 8 KB of data, while our CRC Generation
Unit requires 1 cycle for eight bytes. Thus, our CRC Generation
Unit requires 17 times less cycles to generate a CRC value than
Open-iSCSI.

4.4 Reconfiguration Time
We measured the time required to upload full bitstream and

bitstreams of Partial Reconfiguration (PR) modules for the CRC
Generation Unit. We used JTAG to upload both bitstreams on the
specified FPGA board. The configuration time depends on the
size of a bitstream and Test Clock frequency (TCK) for boundary-
scan operations. Fixed number of clock cycles required for pre-
and post-processing while programming an FPGA is also in-
cluded in configuration time as specified in Ref. [29], while mini-
mum TCK frequency was 15 MHz. The size of the full configura-

Table 3 Resource Utilization of two modules on Virtex-6 XC6VLX240T
FPGA. The iSCSI Engine does not contain resource utilization of
DINIGrp TOE.

Module Buffer Slices LUTs FFs BRAMs
(KB) (%) (%) (%) (%)

iSCSI 4 5,983 (16) 15.7 k (10) 8.9 k (3) 24 (3)
Engine 64 5,983 15.7 k 8.9 k 52(6)
DINIGrp 4 2,742 (3) 7 k (4.6) 4 k (1.3) 6 (.7)
TOE [15] 64 2,742 7 k 4 k 34 (4)

tion bitstream is 9 MB, and the size of PR bitstream is 43 KB. The
time to upload these two bistreams is 6.15 s and 0.03 s, respec-
tively. Thus, uploading the PR bitstream is 205 times faster than
the time required to upload full bitstream. This feature ensures
fast adaptability to new CRC Standards in the future of iSCSI
protocol.

4.5 Resource Utilization
Table 3 shows resource utilization on Virtex-6 XC6VLX240T

FPGA. The receive and transmit buffers are configurable 4 KB
and 64 KB buffers mapped onto dedicated on-chip Block RAMs.
The CRC Generation Unit requires only 540 LUTs, and 4 dual-
port BRAM for holding contents of its pre-computed remainders.
The small resource footprint indicates that multiple instances can
be used, thus increasing performance of the system.

4.6 Comparison to Related Work
We compare our work with two other attempts to offload iSCSI

to hardware [4], [17], which are discussed in Related Work. Han-
Chiang Chen et al. [4] has significantly lower throughput than
our Offload Engine. Their method is to execute iSCSI on a Xil-
inx FPGA embedded platform, without any hardware accelerated
parts. This method has very low CPU utilization, but throughput
is limited by the low frequency of PowerPC 405 processor and
does not pose technological challenge. The method of Chung-Ho
Chen et al. [17] consists of offloading data-transfer iSCSI func-
tions by using C-to-HDL translation process. The difference in
design is that our iSCSI Offload Engine offloads not only data
transfer functions, but also related non-data functions such as
SCSI Command, SCSI Response, R2T and SNACK request. This
has contributed to faster processing of requests and release of re-
sources. Even though our iSCSI Offload Engine uses higher ca-
pacity host bus and higher clock frequency, it has higher level of
parallelism since we used more CRC Generation Units. The ar-

c© 2013 Information Processing Society of Japan 120

IPSJ Transactions on System LSI Design Methodology Vol.6 112–121 (Aug. 2013)

chitecture of CRC circuit in Chung-Ho Chen et al. [17] uses sim-
ple linear feedback shift register, which is less efficient than the
architecture of our CRC circuit [19]. Thus, our initiator is able to
achieve 7 times higher throughput. The CPU utilization is similar
as in Han-Chiang Chen et al. [4] and Chung-Ho Chen et al. [17],
since both offload iSCSI to hardware in some terms.

5. Conclusion

In this paper we propose new iSCSI Offload Engine architec-
ture for processing iSCSI data transfer and related non-data func-
tions on an FPGA based adapter. The functions which do not
affect performance are implemented with modified Open-iSCSI
initiator on the host CPU. Our architecture overcomes the per-
formance limitations imposed by a single processor which runs
on 15 times higher operating frequency than our accelerator. It
exhibits very low CPU utilization of approximately 3% on the
host CPU, which is 10–15 times reduction compared with Open-
iSCSI implementation. The maximum transmission throughput
is 7.81 Gbps, while reception throughput is 7.34 Gbps, which is 2
times speedup over Open-iSCSI. It outperformed Chelsio’s T110
ASIC-based HBA, with slightly higher throughput and significant
decrease of 10 times of CPU utilization. Since some functions are
implemented in modified Open-iSCSI, the architecture provides
more system flexibility than a dedicated custom designed inter-
face. Any new features, such as security functions, specification
updates, CRC standards, etc., can be easily implemented.

References

[1] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M. and Zeidner,
E.: Internet Small Computer Systems Interface (iSCSI), RFC 3720
(April 2004).

[2] Khosravi, H.M., Joglekar, A. and Iyer, R.: Performance character-
ization of iSCSI processing in a server platform, 24th IEEE Inter-
national Performance Computing and Communications Conference,
IPCCC 2005, pp.99–107 (April 2005).

[3] Daugherty, J.: Understanding iSCSI Digests: Accurately Evaluating
the Cost and Risk of Disabling Digests, JDSU Medusa Labs (2009).

[4] Chen, H.-C., Wu, Z.-J. and Wu, Z.-Z.: Implementation of Offloading
the iSCSI and TCP/IP Protocol onto Host Bus Adapter, Conference on
Mass Storage Systems and Technologies (2006).

[5] Sarkar, P., Uttamchandani, S. and Voruganti, K.: Storage Over IP:
When Does Hardware Support Help?, FAST ’03 Proc. 2nd USENIX
Conference on File and Storage Technologies, pp.231–244 (2003).

[6] Open iSCSI, Open source iSCSI Initiator implementation, available
from 〈http://www.open-iscsi.org/〉.

[7] Wireshark network packet analyzer, available from 〈http://www.
wireshark.org/〉.

[8] Linux SCSI target framework, available from 〈http://stgt.sourceforge.
net/〉.

[9] OProfile: system-wide profiler for Linux systems, available from
〈http://oprofile.sourceforge.net/〉.

[10] The UNH-iSCSI project, available from 〈http://unh-iscsi.sourceforge.
net/〉.

[11] The Unified Wire Engine Introducing Terminator 3, A Chelsio
Communications White Paper, available from 〈http://www.chelsio.
com/assetlibrary/products/T3 Unified Wire Eng WP.pdf〉.

[12] Dalessandro, D., Wyckoff, P. and Montry, G.: Initial Performance
Evaluation of the NetEffect 10 Gigabit iWARP Adapter, IEEE Inter-
national Conference on Cluster Computing (2006).

[13] Wu, Z.-Z. and Chen, H.-C.: Design and Implementation of TCP/IP
Offload Engine System over Gigabit Ethernet, Proc. 15th Interna-
tional Conference on Computer Communications and Networks, IC-
CCN 2006, pp.245–250 (Oct. 2006).

[14] Jang, H., Chung, S.-H. and Yoo, D.-H.: Design and implementation of
a protocol offload engine for TCP/IP and remote direct memory access
based on hardware/software coprocessing, Microprocessors and Mi-
crosystems Journal: Embedded Hardware Design (MICPRO), Vol.33,
No.5-6, pp.333–342, Elsevier Science Publishers (Aug. 2009).

[15] DINIGroup TCP Offload Engine IP: For Latency Critical, FPGA-
based Embedded Networking Applications, available from 〈http://
www.applistar.com/wp-content/uploads/2012/06/
TOE Brief v092.pdf〉 (accessed April 2012).

[16] Intilop’s 76-nanosecond TOE Based System Etablishes a Record 93%
TCP/IP Bandwidth at a Major Customer’s 10 G Network Deploy-
ment, available from 〈http://www.sbwire.com/press-releases/10g-toe/
tcp-performance/sbwire-156548.htm〉 (accessed Aug. 2012).

[17] Chen, C.-H., Chung, Y.-C., Wang, C.-H. and Chen, H.-C.: Design of
a Giga-bit Hardware Accelerator for the iSCSI Initiator, Proc. 31st
IEEE Conference on Local Computer Networks (2006).

[18] Chelsio Communications T110 10-gigabit HBA: iSCSI HBA Perfor-
mance Testing by VeriTest (June 2004).

[19] Akagic, A. and Amano, H.: Performance Analysis of Fully-Adaptable
CRC Accelerators on an FPGA, 22nd International Conference on
Field Programmable Logic and Applications — FPL 2012, Oslo
(2012).

[20] Akagic, A. and Amano, H.: A Study of Adaptable Co-processors for
Cyclic Redundancy Check on an FPGA, International Conference on
Field-Programmable Technology — ICFPT 2012, Seoul (2012).

[21] Akagic, A. and Amano, H.: High Speed CRC with 64-bit generator
polynomial on an FPGA, The International Workshop on Highly Effi-
cient Accelerators and Reconfigurable Technologies (HEART), Impe-
rial College, London, UK (June 2011).

[22] Sawyer, N. and Defossez, M.: Quad-Port Memories in Vir-
tex Devices, Application Note XAPP228 (v1.0), available from
〈http://www.xilinx.com/support/documentation/application notes/
xapp228.pdf〉 (accessed 2002-9-24).

[23] ML605 Hardware User Guide, v1.8, available from 〈http://www.
xilinx.com/support/documentation/boards and kits/ug534.pdf〉
(accessed 2012-10-2).

[24] Dual SFP+ FMC Module, available from 〈http://hitechglobal.com/
FMCModules/FMC SFP+.htm〉

[25] Xilinx ML605 Board Accessories, List of FMC Modules, available
from 〈http://www.xilinx.com/products/boards kits/board accessories.
htm〉

[26] Seelam, R.: I/O Design Flexibility with the FPGA Mezzanine Card
(FMC), Xilinx WP315 (v1.0) (Aug. 2009).

[27] Xilinx LogiCORE IP 10-Gigabit Ethernet MAC v11.2, Xilinx UG773
(Oct. 2011).

[28] Xilinx LogiCORE IP XAUI v10.2, DS266 (Jan. 2012).
[29] Virtex-6 FPGA Configuration, UG360 (v3.2) (Nov. 2010).

Amila Akagic received her Dipl. el. Ing.
and M.Sc. in Computer Science from Fac-
ulty for Electrical Engineering, University
of Sarajevo, Bosnia and Herzegovina in
2006 and 2009, respectively. She is cur-
rently a Ph.D. student with Amano Labo-
ratory at Keio University. Her research in-
terests include computer architectures and

reconfigurable systems.

Hideharu Amano received his Ph.D. de-
gree from the Deparment of Electronic
Engineering, Keio University, Japan in
1986. He is currently a professor in the
Department of Information and Computer
Science, Keio University. His research in-
terests include parallel architectures and
reconfigurable systems.

(Recommended by Associate Editor: Shinsuke Kobayashi)

c© 2013 Information Processing Society of Japan 121

