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Abstract: This paper proposes a method using partial reconfiguration to realize a compact regular expression match-
ing engine, which can update a pattern quickly. In the proposed method, a set of partial circuits, each of which handles
a different class of regular expressions, are provided in advance. When a regular expression pattern is given, a compact
matching engine dedicated to the pattern is implemented on FPGA by combining the partial circuits according to the
given pattern using partial reconfiguration. The method can update a pattern quickly, since it does not need re-design
of a circuit. Experimental results show that the proposed method reduces 60% circuit size compared with the previous
method without increasing the pattern updating time significantly.
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1. Introduction

Regular expression matching (REM) is to find all substrings
in a text, which match with a pattern described as a regular ex-
pression (RE) [1]. In database retrieval and network intrusion de-
tection systems (NIDSs), fast REM for a large text is required.
For example, NIDSs have to detect malicious packets (e.g., com-
puter viruses) on a Gigabit speed network with thousands of virus
patterns. Therefore, hardware implementation of REM has been
widely studied. The existing methods of hardware implementa-
tion of REM can be classified into two approaches.

One is a pattern dependent approach [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12]. The pattern dependent REM engines
have a dedicated circuit structure for a given pattern. The pat-
tern dependent REM engines can realize fast REM with a com-
pact circuit size. However, they cannot update a pattern immedi-
ately, since they need re-synthesis and reconfiguration of a circuit
whenever a pattern is updated. This can be a significant disadvan-
tage for NIDSs, in which patterns are frequently updated, since
NIDSs cannot detect new computer virus while pattern updating.

The other is a pattern independent approach [13], [14], [15],
[16], [17], [18]. The method can update a pattern immediately,
since it does not need re-synthesis and reconfiguration of a circuit
for a updated pattern. However, the size of a REM engine im-
plemented to handle any RE patterns becomes large [18]. To re-
duce the circuit size, in Refs. [13], [14], [15], [16], [17], only RE
operators often used in patterns are implemented, so that REM
engines can handle a restricted class of REs. However, in re-
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cent years, since more complicated virus patterns have become
popular, it has become difficult to describe virus patterns using
restricted classes of REs.

In this paper, to achieve both the compact circuit size and quick
pattern updating, we propose a method using partial reconfigura-
tion as the third approach of REM hardware implementation. In
the proposed method, a set of partial circuits, each of which han-
dles a different class of REs, are provided in advance. Given an
RE pattern, a compact matching engine dedicated to the pattern
is automatically produced by combining the partial circuits ac-
cording to the given pattern. Then, the produced engine is imple-
mented on an FPGA using partial reconfiguration. The proposed
method can produce more compact REM engines than pattern in-
dependent engines designed by the existing methods to handle
any RE patterns. In addition, the proposed method can update
a pattern more quickly than existing pattern dependent methods,
since it does not need re-design of a circuit resulting in a long up-
dating time. Experimental results show that the proposed method
decreases 60% circuit size without increasing pattern updating
time compared to an existing method [18].

The rest of this paper is organized as follows. In Section II.,
we explain REs, partial reconfiguration, related works and the
systolic algorithm based REM engines. In Section III., the pro-
posed method is shown. Section IV. shows the evaluation results.
Finally, the conclusions are presented in Section V.

2. Preliminaries

2.1 Regular Expressions (REs)
RE is a method to represent a set of strings as a single string. A

set of strings represented by an RE is called the regular language.
We define REs as follows.

[Definition 1]
Let Σ={a1, a2, · · ·, as} be a finite set of symbols (alphabet). Let
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R1 and R2 be arbitrary REs, and L(R1) and L(R2) be regular lan-
guages corresponding to them, respectively. Then, regular ex-
pression on Σ is defined recursively as follows:
( 1 ) A symbol ai ∈ Σ is an RE representing a regular language
{ai}.

( 2 ) An empty character ε is an RE representing a regular lan-
guage {ε}.

( 3 ) Union (R1|R2) is an RE representing a regular language
L(R1)∪L(R2).

( 4 ) Concatenation R1R2 is an RE representing a regular language
L(R1R2) ={xy|x∈L(R1), y∈L(R2)}.

( 5 ) Kleene closure (R1)∗ is an RE representing a regular lan-
guage {ε}∪L(R1)∪L(R2

1)∪ . . ..
In addition to these RE operations, NIDSs often use Perl Com-

patible Regular Expression (PCRE) operators [23] to describe a
pattern. We show the definitions of PCRE operators in the fol-
lowing.

[Definition 2]
( 1 ) . = a1|a2| · · · |as.
( 2 ) a? = a|ε.
( 3 ) a+ = aa∗.
( 4 ) [ai-a j]=ai|ai+1| · · · |a j, (1 ≤ i < j ≤ s).
( 5 ) [ˆai-a j]=a1| · · · |ai−1|a j+1| · · · |as, (1 ≤ i < j ≤ s).
( 6 ) R{n,m}=Rn|Rn+1| · · · |Rm, (n < m).
(1) are called the wild character. (2) are called the optional char-
acter. (3) are called the Kleene plus. (4) and (5) are called the
character classes. (6) is called the quantifier.

Other PCRE operators such as back reference and look ahead
assertion are also used to describe a pattern in NIDSs. However,
this paper does not handle these operators, just like other stud-
ies [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18].

2.2 Partial Reconfiguration
Several modern FPGAs have the partial reconfiguration (PR)

function, which can modify a part of a circuit implemented in
the FPGA without reconfiguring the whole circuit. Some FPGAs
also support the dynamic partial reconfiguration (DPR) function,
which can perform PR while the remaining logic continues to op-
erate without interruption. In recent years, Xilinx Inc. provided
PlanAhead, which is a tool to design a circuit using DPR [24].

A region in the FPGA chip area preserved for PR is called
a Partial Reconfiguration Region (PRR). A module to be im-
plemented in PRR is called a Partial Reconfiguration Module
(PRM). And, the remaining region in the chip other than PRRs
is called a Static Region (SR), and a module in SR is called a
Static Region Module (SRM).

To realize a circuit using PR, we firstly decide the sizes of
PRRs and their locations in the FPGA chip. Then, placement and
routing are performed for one PRM and the SRM. Next, place-
ment and routing for other PRMs are performed using the result
of placement and routing of the SRM. Placement and routing for
other PRMs are more difficult than those for a circuit without in-
cluding any PRR. Therefore, some area overhead is unavoidable.
Note that a circuit including more PRRs may incur a larger area
overhead.

2.3 Related Works
REM has been commonly realized by software simulating de-

terministic finite automaton (DFA) or non-deterministic finite au-
tomaton (NFA). Since, in DFA, only one state is always active,
calculation of state transition in software is simple and fast. How-
ever, a large amount of memory may be required, since the state
explosion may occur in DFAs for some REs [19], [20]. There-
fore, to reduce the number of states, Delayed DFA (D2FA) [19]
and Extended FA (XFA) [20] have been proposed. On the other
hand, simulating an NFA in software requires a small amount
of memory, since the number of states of an NFA is fewer than
a corresponding DFA. However, calculation of state transition
in software may be slow, since in NFA, one or more states are
concurrently active. Reference [21] shows performances of soft-
ware simulation for NFA and DFA combining 100 REs are about
0.4 Mbps and 20 Mbps respectively . To improve performance of
software NFA simulation, Ref. [21] proposed NFA-OBDD which
is 10 times faster than ordinary software simulation of an NFA,
while requiring approximately the same amount of memory.

To realize fast REM, hardware implementation has been
widely studied. Reference [2] has proposed a method to imple-
ment an NFA corresponding to a given pattern as a circuit on
a reconfigurable device, such as an FPGA. References [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12] have proposed a method to
improve this method. Reference [3] has improved the area effi-
ciency and performance by optimizing the conversion from RE
to NFA and from the NFA to circuit. References [7], [8] have
proposed some techniques to share common prefix, infix and suf-
fix between REs to reduce the circuit size. Reference [4] has
proposed a method to optimize a circuit for FPGA with 6 in-
put LUTs. References [5], [6] have proposed a string transition
NFA to improve performance and reduce the circuit size. Refer-
ences [9], [10], [11] have proposed a circuit structure for quanti-
fier and character class. Reference [12] has proposed a method
which can switch a pattern dynamically according to the type of
protocols in NIDSs by using dynamic partial reconfiguration. As
a result, the area efficiency of the circuit is improved. These en-
gines have to be re-designed whenever a pattern is updated. In
this paper, these engines are called pattern dependent engines.

REM hardware engines which do not need re-design when
a pattern is updated, have been also proposed [13], [14], [15],
[16], [17], [18]. References [13], [14], [15], [16], [17] have pro-
posed compact and fast REM engines by restricting the class
of REs. References [13], [14] have proposed NFA and bit par-
allel NFA based REM engines, respectively. These engines
handles restricted union for string as an input pattern. Refer-
ences [15], [16], [17] have proposed systolic algorithm based
REM engines. Reference [15] has proposed a systolic algo-
rithm based REM engine which can handle concatenation, union
and Kleene closure for a character (e.q., “a∗bc(c|de) fg”). Ref-
erence [16] has extended the engine [15] to handle the class of
REs excluding nested Kleene closure. The nested Kleene clo-
sure means a pattern R∗ that contains Kleene closure in R, such
as “(a(bc)∗d)∗.” Reference [17] has extended the engine to han-
dle quantifier directly. Reference [18] has proposed a systolic
algorithm based REM engine which can handle any REs. In this
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Fig. 1 The basic architecture of REM engines [15], [16], [17].

Fig. 2 The basic architecture of REM engines [18].

paper, these engines are called pattern independent engines.
In the following subsection, we explain systolic algorithm

based REM engines, which is used in the proposed method.

2.4 Systolic Algorithm Based REM Engines
In this subsection, we briefly explain systolic algorithm based

REM engines [15], [16], [17]. They are constructed as a one-
dimensional array of simple processing units, called comparison
cells (CCs), as shown in Fig. 1. A CC is a synchronous circuit
module that performs one-character matching. A pattern is in-
put from the rightmost CC before starting REM. A text to be re-
trieved is input from the leftmost CC, character by character, and
one-character matching is performed in each CC in parallel and
pipeline fashion. The matching result of each CC is transmitted to
its right neighbor CC. A matching success signal output from the
rightmost CC indicates that a substring in the text matches with
the pattern. In the engines [15], [16], [17], if the engine handles a
larger class of REs, each CC requires more functions and the size
of a CC becomes larger.

To handle any REs, Ref. [18] has proposed a REM engine com-
bining systolic algorithm based circuit and NFA based circuit, as
shown in Fig. 2. This engine realizes REM by simulating a string
transition NFA. In the engine, the systolic algorithm based circuit
performs matching for transition characters or strings, and the
NFA based circuit performs the state transition using matching
result produced by the systolic based engine. While the engine
can handle any REs, each CC has many functions and requires a
larger circuit area than a CC in Refs. [15], [16], [17]. However, in
the actual applications such as Snort [22], some functions of CCs
are not always used for a pattern. This is because most of RE
operators used to describe a pattern are concatenation and union,
which require only simple function of CCs.

3. The Proposed Method

The best way to minimize the circuit area is to adopt the pattern
dependent approach, since a dedicated circuit can be designed for

Fig. 3 An RE pattern.

Fig. 4 The overview of the proposed method.

a given pattern. However, whenever a pattern is updated, it needs
re-design of a circuit resulting in a long updating time. To avoid
time-consuming re-design while reducing the circuit area, we fo-
cus on the following two points.
( 1 ) Sub patterns in an RE pattern may consist of a specific class

of REs such as concatenation only (e.g., Fig. 3),
( 2 ) A pattern independent REM engine restricting the class of

REs becomes a compact circuit.
We propose a new method using partial reconfiguration (PR) by
taking the above two points into account. The overview of the
proposed method is shown in Fig. 4. In the proposed method,
several partial circuits, called templates, each of which handles a
different class of REs and performs matching for a sub pattern,
are provided in advance. When an RE pattern is given, a suitable
REM engine is automatically produced by combining the tem-
plates according to the pattern. Then, the engine is implemented
on an FPGA using PR.

To design a REM engine using templates, we have to parti-
tion a circuit into partial circuits. In general, partition of a circuit
would be a difficult problem. However, in the systolic algorithm,
partition of a circuit is easy, since CCs are regularly connected as
shown in Fig. 1. We can easily obtain a partial circuit by grouping
successive CCs into one. Thus, we adopt the systolic algorithm
for the proposed engine. The existing systolic algorithm based
engine [18] has a homogeneous structure, in which all CCs have
the same functions so that any RE can be handled. Thus, as men-
tioned before, many functions in a CC tend to be unused. To
reduce the unused functions, we focus on a heterogeneous struc-
ture, in which each CC has different functions to handle a subclass
of REs.

The proposed method can reduce the circuit area significantly,
and produce a more compact REM engine than the existing en-
gine [18] because of its heterogeneous structure. In addition, the
proposed method can still update a pattern very quickly, since it
just selects templates according to a given pattern, downloads bit-
files of the selected templates, and sets the pattern to the engine.
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Fig. 5 The proposed circuit structure.

The following shows details of the proposed method.

3.1 The Proposed Circuit Structure
The proposed structure of the REM engine is a one-

dimensional array of L PRRs in an FPGA (L > 1), as shown in
Fig. 5. Each PRR realizes a partial circuit (template) obtained by
grouping successive CCs explained in the next subsection. For
each PRR, M kinds of templates are prepared in advance. The
output signals from each PRR are text T , pattern P and match-
ing signal E. The output signals T, P and E from each PRR are
connected to its right neighbor PRR through registers. This struc-
ture can update an RE pattern without re-designing a circuit by
partially reconfiguring only PRRs whose templates have to be ex-
changed. By designing only M kinds of templates *1, ML kinds of
REM engines can be realized. By preparing templates for a whole
circuit, we could also update a pattern quickly without using PR.
But, in this case, ML templates must be designed in advance. This
is practically impossible.

3.2 Templates
In the proposed method, M kinds of templates are prepared in

advance. One template is the REM engine combining systolic
algorithm based circuit and NFA based circuit (Fig. 2), which
handles any REs. Other templates are constructed as a one-
dimensional array of CCs (Fig. 1), each of which handles a differ-
ent subclass of REs. A CC which handles a larger class of REs,
requires many functions and many circuit area. And, the size of
PRR in which each template is implemented, is fixed. Therefore,
templates have the characteristics shown in the following.
( 1 ) A template handling a smaller class of REs can accommo-

date a longer sub pattern.
( 2 ) A template handling a larger class of REs accommodates a

shorter sub pattern.
In the proposed method, for a given application, preparing an

appropriate set of templates is very important to reduce the cir-
cuit area. However, selecting an optimal set of templates is prac-
tically impossible since patterns to be matched with templates are
not given in advance. Thus, we should adopt some heuristic ap-
proach to constructing a set of templates. Our heuristic approach
is as follows. First, we define one template, T1, which can be real-
ized in one PRR, and can treat any regular expression which may
be used in the given application of REM. Then, we arbitrarily
choose a small positive integer, denoted M (>0), and arbitrarily
define (M-1) subclasses of regular expressions so that those are
different from each other as much as possible. Then, for each sub-

*1 The number of FPGA bit-files is ML, since a bit-file for a PRR cannot be
used for other PRRs due to the restriction of FPGA design tool.

Fig. 6 The flow chart of the selection of templates.

class of regular expressions, we define template Ti, 1 < i ≤ M,
which can be realized in one PRR, and can treat its corresponding
subclass of regular expressions, obtaining {T1, T2, . . ., TM} as a
set of templates to be used in REM. An example of constructing
a set of templates is shown in Section 4.

3.3 The Selection of Templates
In the proposed method, the best combination of templates for

a given pattern must be selected. The problem of selecting the
best combination of templates for the given pattern is formalized
as follows.
Input: An RE pattern, a set of M templates {T1, T2, . . . ,TM}.
Objective function: The number of templates, R, required to
handle a given pattern.
Output: A combination of templates, for which R is minimized.

To solve the optimization problem mentioned above, we use
dynamic programming (DP). Let P=p1 p2 . . . pn be a given RE
pattern without RE operators such as ‘∗’ and ‘|’. f (i) indicates
the minimum R required by p1 p2 . . . pi (1 ≤ i ≤ n), which is
computed by using DP as follows.
f (0) = 0,
f (i) = min( f (0) + D(1, i), f (1) + D(2, i), f (2) + D(3, i), . . . ,
f (i − 1) + D(i, i)), 1 ≤ i ≤ n.

D(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

1 (some template can realize px . . . py)
∞ (no template can realize px . . . py)

The D(x, y) indicates whether px . . . py can be realized by a
template or not by using a greedy algorithm. Each pi (x ≤ i ≤ y)
is realized by a CC in a template. If pi is not included in the class
of REs which a CC can handle, then ε is set to the CC, and realiz-
ing pi at its right neighbor CC is tried. When we run short of CCs
in the template, we find that the template cannot realize px . . . py.

We show the flow chart of the proposed DP in Fig. 6.
In the flow chart, three variables i, j, k and three arrays
R[0 . . . n],T num[0 . . . n], S pos[0 . . . n] are used. R[ j] stores the
minimum number of templates needed to realize p1 . . . p j. If
pi . . . p j is realized by a template Tk, T num[ j] and S pos[ j] store
the template number k and the index of the head character i, re-
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Table 1 The comparison cell (CC) used in templates.

Type The class of REs Pattern examples Size

1 Concatenation for a character, epsilon, the wild character and the optional character abc, ε, x.z? 1.0

2 Kleene closure for a character or a class character [a-z]b+c, [ â-z]∗bc.? 1.4

3 Union ([a-k]b|c)(d|e∗ f ), a(b|(c|d)e).∗ 1.8

4 Quantifier for a character or a class character (The number of repetitions is up to 10). a{10}bc, (ab|c[k-z]{5, 8}) 2.3

5 Quantifier for a character or a class character (The number of repetitions is up to 30). a{30}bc, (ab|c[k-z]{4, 15}) 3.0

spectively. As initial values, i= j=k=1, R[0]=0, R[1 . . . n]=∞ are
given.

To obtain the value of f (i), each D( j, i) for 1 ≤ j ≤ i has
to be computed sequentially. In the flow chart, to avoid time-
consuming computation of D( j, i) as much as possible, we esti-
mate the value of D( j, i) as its lower bound (i.e., 1) before com-
puting D( j, i). If the sum of f ( j− 1) and the estimated value (i.e.,
f ( j − 1) + 1) is larger than the already computed value for f (i),
then computation of D( j, i) is skipped.

The minimum number of templates required by P is stored in
R[n]. The best combination of templates can be obtained by trace-
back using T num and S pos.

[The time complexity of selecting templates]
To select templates, two processes are required. In the follow-

ing, normal characters (i.e., characters in alphabet Σ) in a pattern
are called pattern characters. First, we convert a given pattern
into pattern characters with their information about the RE class.
Next, we calculate the best combination of templates.

Let Pop=q1q2 . . . qv be a given pattern. Let P=p1 p2 . . . pn be
pattern characters (n ≤ v and pi ∈ Σ). For each pattern character
pi, the RE class information is associated to describe which RE
class is required to handle it. Let T1, . . ., TM be the given tem-
plates. Let Ls be the number of CCs in Ts ∈ {T1, T2, . . .TM}, and
k be the maximum value among L1, L2, . . . and LM .

First, we discuss the time complexity of the conversion of a
pattern. This process determines the RE class of each pattern
character based on the class of REs which CCs in templates have,
as shown in Table 1. For example, given “(a|b)c,” the RE class
for ‘a’, ‘b’ and ‘c’ are 3, 3 and 1, respectively. In the calculation,
first, a pattern is converted to the reverse Polish notation by the
syntactic analysis, then the RE class for each pattern character is
determined by reading from the end of the reversed pattern to the
beginning of the reversed pattern. For example, in “(a|b)c” and
“(ab|c),” the RE class of each pattern character is decided based
on an effective range of application of each RE operator and its
precedence as shown in Fig. 7, respectively. The time complexity
of syntactic analysis and setting RE classes are O(v), respectively,
since an RE pattern is read from the beginning of the pattern to
the end of the pattern, and from the end of the reversed pattern to
the beginning of the reversed pattern. Details of these processes
are omitted.

Next we discuss the time complexity of calculating templates.
First, we discuss the time complexity of calculating the value of
D( j, i). To calculate the value of D( j, i), for each template Ts ∈
{T1,T2, . . . TM}, we have to check whether CC1 . . . CCLs can re-
alize p j p j+1 . . . pi or not. The time complexity of a process to
check whether CCr (1 ≤ r ≤ Ls) can realize ph ( j ≤ h ≤ i) or not,
can be considered as O(1), since the process is a simple compar-

Fig. 7 A process to set an RE class to each pattern character.

ison between the class of REs of CCr and the class of REs of ph.
Therefore, the time complexity of the process to check whether
p j p j+1 . . . pi can be realized by CC1 . . . CCLs or not, is O(Ls) in
the worst case, since it is determined that the template cannot re-
alize p j . . . pi when we run short of CCs of the template. Thus,
the time complexity of calculating the value of D( j, i) is O(u×M),
where u = (L1+L2+. . .+LM)/M. Please note that u ≤ k.

Next, we discuss the time complexity of calculating the value
of f (i). To calculate the value of f (i), the calculations of the value
of D( j, i) (1 ≤ j ≤ i) are conducted. Therefore, the time complex-
ity of calculating the value of f (i) is O(u × M × i).

Finally, we discuss the time complexity of selecting templates
for a given pattern P=p1 p2 . . . pn. To select templates for the pat-
tern, the calculations of f (1) (O(u×M × 1)), f (2) (O(u×M × 2)),
. . . and f (n) (O(u × M × n)) are required. Therefore, the time
complexity of selecting templates for the pattern is O(u×M×n2)
(= Σn

i=1O(u × M × i)).
The problem of selecting templates can be solved more effi-

ciently by calculating the value of D( j, i) using the value of D( j, i-
1), which was previously calculated. It can improve the practical
computation time, and the C program used in the experiments
discussed in the next section adopted this method.

4. Experimental Evaluation

4.1 Experimental Environment
For the design of the proposed circuit structure and templates,

we use Xilinx ISE13.1 and Xilinx PlanAhead13.1. The tar-
get FPGA is Virtex-6 (xc6vlx240tff1156-11) which has 37,680
Slices. The C program for the selection of templates was run on a
PC, in which, OS is Ubuntu12.04 (on VMware), CPU is Intel(R)
Core i7-3770K 3.50 GHz, Memory is 4 GB. And, we use 2,052
patterns excluding extended RE patterns with back reference and
look ahead assertion, in Snort rule v2.9 [22].

4.2 Prepared Template
Types of CCs used in templates are shown in Table 1. Table 1
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shows a class of REs which each CC can handle, and the relative
circuit size of each CC against type 1. Details of CCs are given
as follows.
( 1 ) Type i can also handle a class of REs which type j ( j < i)

can handle.
( 2 ) Type 4 or 5 handles quantifiers with up to 10 or 30 repetitions

of a character or a class character, respectively.
Templates are designed by combining the above five types of

CC. In this paper, 18 kinds of templates are prepared (M=18).
One template is the REM engine which handles any REs. 5 kinds
of templates consist of only one of the 5 types. 12 (=4P2) kinds
of those consist of two different types of CCs, which are chosen
among types 1 to 4 (Fig. 8).

Fig. 8 Kinds of prepared templates.

Fig. 9 The circuit areas and performances of the existing engine [18] and the proposed engine.

4.3 Area Evaluation
First, to evaluate the circuit area of the proposed engines based

on various numbers of PRRs, we compare them with the existing
REM engine [18]. 18 kinds of templates are prepared as shown in
Section 4.2. A histogram in Fig. 9 shows the maximum number
of Slices required to realize each of 2,052 patterns in the proposed
engines and the existing engine. In Fig. 9, L denotes the number
of PRRs. The proposed engines (L= 3 and 6) are implemented us-
ing half Slices compared to Ref. [18], and the numbers of Slices
of the engines (L=9 and 12) are less than that of the engines (L=3
and 6). However, in the engines (L=15 and 18), the number of
Slices was larger compared to the engines (L=9 and 12). In the
proposed method, the engine with more PRRs can reduce more
circuit areas by reducing more unused functions, since for a given
pattern, the templates can be selected more flexibly. However, the
engine with more PRRs has a larger area overhead of PR as de-
scribed in Section 2.2. In the engines (L=15 and 18), because the
area overhead is greater than the reduction effect of circuit area by
flexibly selecting templates, the total circuit area becomes larger.
Therefore, the proposed method using PR can improve the area
efficiency unless the number of PRRs is increased extremely. The
proposed REM engine (L=12) performs matching with 40% cir-
cuit area of the existing engine [18].

4.4 Performance Evaluation
We evaluate the performance of the proposed REM engine.

A line chart in Fig. 9 shows the maximum clock frequency of
the proposed engines and the existing engine [18]. The maxi-
mum clock frequency of the existing engine is 186 MHz. On
the other hand, those of the proposed engines are from 114 MHz
to 163 MHz. This degradation of the performance may be ex-
plained by an overhead of PR. Although the clock frequency was
degraded, the proposed REM engine (L=12), which is the most
compact one, can be still used in NIDSs for the Gigabit Ether-
net, since the throughput of the proposed REM engine (L=12)
achieves 1.1 (= 8×141 MHz) Gbps.
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Table 2 The computation time of selecting templates for various numbers of PRRs.

The number of PRRs (L) 3 6 9

Normal Improvement Normal Improvement Normal Improvement

The minimum (s) 2.98×10−4 2.85×10−4 2.97×10−4 2.88×10−4 2.97×10−4 2.86×10−4

The maximum (s) 8.39 2.37 6.82 3.83 6.42 4.61
The average (s) 4.10×10−2 0.34×10−2 3.28×10−2 0.65×10−2 2.97×10−2 0.95×10−2

The maximum improvement rate - 1% - 2% - 2%
The average improvement rate - 58% - 54% - 53%

The number of PRRs (L) 12 15 18

Normal Improvement Normal Improvement Normal Improvement

The minimum (s) 2.94×10−4 2.76×10−4 2.89×10−4 2.76×10−4 2.88×10−4 2.87×10−4

The maximum (s) 6.16 4.89 5.97 4.94 5.81 5.24
The average (s) 2.73×10−2 1.10×10−2 2.56×10−2 1.15×10−2 2.41×10−2 1.32×10−2

The maximum improvement rate - 2% - 2% - 3%
The average improvement rate - 48% - 48% - 45%

Fig. 10 The flow of preparation to perform matching in each approach.

4.5 Evaluation of Pattern Updating Time
In this subsection, we evaluate the pattern updating time. Fig-

ure 10 shows the flow of preparation to perform matching in pat-
tern dependent approach, pattern independent approach and the
proposed method. For updating a pattern, the proposed method
requires to select templates and download FPGA bit-files, in ad-
dition to the pattern updating process of the existing method [18],
which takes about 2 seconds. First, we evaluate the time of
selecting templates. Table 2 shows the minimum, the maxi-
mum and the average computation time of selecting templates for
each pattern in 2,052 patterns. In Table 2, Improvement means
the case that the C program estimates the value of D( j, i) as its
lower bound (i.e. 1) before computing D( j, i) described in Sec-
tion 3.3, and Normal means the case that the C program does
not estimate the value of D( j, i). The computation time of the
Improvement C program is at most 1% and on average half com-
pared to that of the Normal C program. Table 2 shows that our
proposed method requires at most 5.24 seconds for selecting tem-
plates. On the other hand, the existing pattern dependent ap-
proach [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] requires
more than 5 minutes due to re-design of a dedicated circuit for a
pattern.

Fig. 11 The computation time of selecting templates for patterns with vari-
ous lengths.

Next, we describe the relation between the length (the number
of characters) of a pattern and the computation time of select-
ing templates. Figure 11 shows the computation time for pat-
terns, each of which has N times characters of 10,428 characters
(N=1,2,...,10), which is the maximum length of a pattern in Snort
rule v2.9. In this experiment, a pattern which has N times charac-
ters is produced by concatenation of a pattern which has 10,428
characters N times. Figure 11 shows that the computation time of
the proposed method increases quadratically with the length of a
pattern. The proposed method can produce a REM engine for a
pattern of length 104,280 in 8 minutes. Therefore, the proposed
method can select the best combination of templates for a very
long pattern quickly.

Next, we describe the circuit area and the computation time of
selecting templates when the number of templates was changed.
Figure 12 shows the average circuit area and the average compu-
tation time for 2,052 patterns in the proposed engines. In Fig. 12,
6, 12 and 18 indicate the number of templates used in the exper-
iments. The case of 6 templates consists of template 1, 4, 7, 10,
13 and 16. The case of 12 templates consists of template 1, 2,
4, 5, 7, 8, 10, 11, 13, 14, 16 and 17. The case of 18 templates
consists of all templates. Figure 12 indicates that the circuit area
decreases linearly and the computation time increases linearly as
the number of templates increases.

Finally, we evaluate the download time of FPGA bit-files. The
proposed method uses JTAG to download bit-files to an FPGA.
The download speed with JTAG is 66 Mbps. The maximum size
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Fig. 12 The circuit area and the computation time of selecting templates for the number of templates.

of an FPGA bit-file for each PRR is 1.5 M bits. Therefore, the
download time of FPGA bit-files is 1 second or less. Thus, the
pattern updating time of the proposed method is at most 9 (=5.24
(template selection)+1(download)+2(pattern set)) seconds, that is
comparable to Ref. [18].

5. Conclusions

This paper proposes a method using partial reconfiguration
to realize a compact REM engine, which can update a pattern
quickly. In the proposed method, a set of partial circuits, each of
which handles a different class of REs, are provided in advance.
Given an RE pattern, a compact matching engine is automatically
produced by combining the partial circuits according to the given
pattern. Experimental results show that the proposed method re-
duces 60% circuit area compared to the existing approach [18]
without increasing the pattern updating time significantly.

As described in the Introduction, for building REM engines
using FPGAs, two approaches have been widely known; one is
the pattern independent approach and the other the pattern de-
pendent (also known as “instance-specific”) approach. The pro-
posed REM engine can be considered as the third approach. As
far as we know, this is the first proposal of effectively utilizing the
partial reconfiguration function of FPGAs for constructing REM
engines. Similar approaches based on partial reconfiguration may
be possible for solving combinatorial problems using FPGAs.

As future works, the proposed method do not guarantee area re-
duction capability for future patterns, since the proposed method
uses a heuristic approach to prepare a set of templates. Prepar-
ing an appropriate set of templates is very important to reduce
the circuit area depending on applications and to guarantee area
reduction capability for future patterns. Thus, we will study how
to make the optimal set of templates.

Another future works include the improvement of the perfor-
mance of the proposed REM engine. In the tool which we use to
make templates and static circuit (SRM), we have to decide the
sizes of PRRs and their locations in the FPGA chip in advance

described in Section 2.2. In our implementation of the proposed
REM engine, we decided the sizes of PRRs and their locations
without considering the characteristics of design for partial re-
configuration such as clock region [24]. Therefore, we think that
the performance of the proposed REM engine can be improved
by considering the characteristics of design for partial reconfigu-
ration.
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