IPSJ Transactions on System LSI Design Methodology Vol.7 119-124 (Aug. 2014)

[DOI: 10.2197/ipsjtsldm.7.119]

Regular Paper

Forwarding Unit Generation for Loop Pipelining in
High-level Synthesis

SHINGO KUSAKABE

Kensuu Sero!?

Received: December 6, 2013, Accepted: February 14, 2014, Released: August 4, 2014

Abstract: In the loop pipelining of high-level synthesis, the reduction of initiation intervals (IIs) is very important.
Existing loop pipelining techniques, however, pessimistically assumes that dependences whose occurrences can be de-
termined only at runtime always occur, resulting in increased IIs. To address this issue, recent work achieves reduced
II by a source code transformation which introduces runtime dependence analysis and performs pipeline stalls when
the dependences actually occur. Unfortunately, the recent work suffers from the increased execution cycles by frequent
pipeline stalls under the frequent occurrences of the dependences. In this paper, we propose a technique to reduce Ils
in which data written to memories are also written to registers for such dependences of read-after-write (RAW) type.
In our technique, registers which are faster than memories are accessed when the RAW dependences occur. Since the
proposed technique achieved the reduction of the execution cycles by 34% with 15% gate count increase on average
for three examples compared to the state-of-the-art technique, the proposed technique is effective for synthesizing

high-speed circuits with loop pipelining.

Keywords: high level synthesis, loop pipelining, memory access, dependence, RAW, forwarding

1. Introduction

Loop pipelining in high-level synthesis (HLS)[1] is an effec-
tive technique for quickly generating high-performance hardware
accelerators from time-consuming loops. In loop pipelining [2],
a loop iteration is executed after a fixed number of execution cy-
cles before the completion of the previous loop iteration. The
fixed number of execution cycles are called initiation interval (II)
and the reduction of IIs is the key to generating high-performance
accelerators.

Existing loop pipeline techniques [2], [3], [4], [5], [6], how-
ever, fail to reduce IIs when loops contain dependences whose
occurrences can be determined only at runtime. Hereafter, we call
such dependences possible dependence. Figure 1 shows a loop
that contains a possible dependence from the array write A[i] in a
loop iteration to the array read A[B[i]] in the next iteration. Since
the values of the array read accesses B[i] can typically be known
only at runtime, the array dependence from the write access Ali]
at an iteration to the read access A[B[i]] at the next iteration is a
possible dependence. When loops contain such dependences, ex-
isting loop pipelining techniques [2], [3], [4], [5], [6] pessimisti-
cally assume that the dependences always occur, so that the re-
ductions of IIs are limited.

To resolve the problem of increased execution cycles by pos-
sible dependences, Ref.[7] proposed a scheduling method that
checks the occurrences of possible dependences at runtime by
comparing the values of array subscripts. The possible depen-

' Tokyo City University, Setagaya, Tokyo 158-8557, Japan

¥ g1015026@tcu.ac.jp
Y kseto@tcu.ac.jp

© 2014 Information Processing Society of Japan

1: for (i=0; i<N; i++){
2: A[i] = A[B[i]] + ¢;
3:}

Fig. 1 Loop with a dependence whose occurrence can be determined only
at runtime.

dences are nullified when the values of the array subscripts are
different so that the number of execution cycles after scheduling
are reduced. Since Ref. [7] generates multiple schedules depend-
ing on the occurrences of the possible dependences, the generated
controllers are likely to be complex which may affect the oper-
ating frequencies of generated circuits. As a similar approach to
Ref. [7], Alle et al. [8] proposed a source-level transformation that
is applied before loop pipelining in order to resolve the problem
of the suboptimal IIs by existing loop pipelining techniques. Ref-
erence [8] reduces IIs by checking whether possible dependences
actually occur and stalling pipelined loops until the dependences
are resolved. Although IIs are reduced by Ref. [8], the reductions
of execution cycles are likely to be limited when possible depen-
dences often occur and pipelined loops stall frequently.

In this paper, we propose a source-code transformation that is
applied before loop pipelining as in Ref. [8] and that reduces the
numbers of execution cycles for loops with possible dependences,
or more specifically, loop-carried RAW (Read-After-Write) pos-
sible dependences. Similar to Ref. [8], the transformed code by
the proposed transformation checks the possible dependences at
runtime. Unlike [8], however, the written data to arrays in the
RAW possible dependences are also written to scalar variables
in the proposed technique and the scalar variables are accessed
instead of the arrays when the possible dependences actually oc-
cur. The proposed technique replaces the array accesses in the

119

IPSJ Transactions on System LSI Design Methodology Vol.7 119-124 (Aug. 2014)

maybe RAW dependences with the scalar variable accesses, so
that pipeline stalls that arise in Ref. [8] due to array accesses in
the maybe RAW depdences are avoided and the numbers of exe-
cution cycles are significantly reduced compared to Ref. [8].

2. Problem of Existing Loop Pipelining Tech-
niques When Loops Have Possible Depen-
dences

In this section, we first show the problem of existing loop
pipelining techniques [2], [3], [4], [5], [6] when loops contain
possible dependences, namely, dependences whose occurrences
can be determined only at runtime. Next, we overview the previ-
ous work [8] that addresses the problem of the existing techniques
and illustrate the problem of Ref. [8] which is the state-of-the-art.

In this and the following sections, we use the example code
in Fig. 1 for illustration. Figure 2 shows the data dependence
graph (DDG) for the loop body in Fig. 1 where each box repre-
sents an operation and each edge represents a data dependence.
The broken line in Fig. 2 drawn from the array write access WR
A[i] to the array read access RD A[BJi]] shows a possible de-
pendence which is a RAW (Read After Write) dependence and
a loop-carried dependence. A loop-carried dependence is a de-
pendence from a variable access in a loop iteration to a variable
access in the subsequent iterations.

Figure 3 shows the loop pipelining result for the DDG in Fig. 2
by the existing loop pipelining techniques [2], [3], [4], [5], [6].
We assume that addition (ADD) and memory accesses (RD and
WR) take one clock cycle, respectively. Figure 3 presents the
case where the initiation interval (II) is 3 which means each loop
iteration starts 3 cycles after the previous iteration.

The occurrence of the possible dependence from WR A[0] to
RD A[B[1]] in Fig. 3 can be checked by comparing the values of
the array subscripts of the array accesses, namely, 0 and B[1]. If
B[1] equals to 0, the values of the array subscripts are the same
so that the possible dependence from WR A[0] to RD A[B[1]]
actually occurs. In this case, the II should be at least 3 in order
to follow the possible dependence that actually occurred. If B[1]
does not equal to 0, the values of the array subscripts are different
so that the possible dependence from WR A[0] to RD A[B[1]]
does not actually occur. In this case, the II can be the minimum
value, 1, since the possible dependence does not occur. By the

Fig. 2 Data dependence graph (DDG) of the loop body in Fig. 1.

clock cycle
-

i=0 | rRpB[0] RD A[B[O]] ADD | WRA[0]
N(Esible dependence
RD WR

i=1 | RD A[B[1]] ADD

11=3 B[1] All]

Fig.3 Loop pipelining result by existing loop pipelining techniques.

© 2014 Information Processing Society of Japan

existing loop pipelining techniques, the II becomes 3 since these
techniques pessimistically assume the possible dependences such
as the one from WR A[0] to RD A[B[1]] always occur.

To address the increased IIs by the existing loop pipelin-
ing techniques, the previous work [8] proposed a technique that
checks occurrences of possible dependences at runtime and stalls
pipeline execution when the possible dependences actually occur.
By introducing pipeline stalls, Ref. [8] successfully reduces IIs
without violating the possible dependences. The main technique
proposed in Ref. [8] is a source-level transformation and the re-
sulting code after applying the technique to the code in Fig. 1 is
shown in Fig. 4.

The code in Fig. 4 incorporates a pipeline stall logic to achieve
reduced IIs. More specifically, the stall logic is described from
line 3 to line 8 in Fig.4 where stall represents a flag or a con-
trol signal that stalls pipeline execution and inserts pipeline bub-
bles. To detect violations of the possible dependence from the
write access A[i] in a loop iteration to the read accesses A[B[i]]
in the following iterations, the subscripts i and B[i] are stored in
the scalar variables A_waddr_0 and A _raddr, respectively. The
subscripts of the write access A[i] of the previous iterations are
also kept in the scalar variables A_waddr_1 and A_waddr_2 where
A_waddr_k represents the value of the array subscript k iterations
before the current loop iteration. The scalar variables A_waddr_0,
A_waddr_1 and A_waddr_2 that holds array subscripts of current
and previous iterations are shift registers and are shifted in each
loop iteration from line 12 to 13 in Fig. 4. To detect occurrences
of the possible dependence, the subscript values of the array write
and read accesses are compared as shown from line 4 to line 5 in
Fig. 4 and stall flag is set to one when the possible dependence
actually occurs. When stall flag is one, the loop body and the in-
crement of the loop index i are not executed as shown from line 8
to line 11 in Fig. 4 resulting in a pipeline stall.

Figures S and 6 show the loop pipelining results of applying

1: while(i<N){

2: A _raddr = B[i];

3 stall = 0;

4: stall = stall | (A_raddr == A_waddr_2);
5: stall = stall | (A_raddr == A_waddr_1);
6: if(stall) A_waddr_0 = -1;

7 else A_waddr_0 = 1i;

8: if(!stall)f

9: Ali] = A[A_raddr] + c;

10: i++;

11: }

12: A_waddr 2 = A_waddr_1;

13: A_waddr_1 = A_waddr_0;

14: }

Fig. 4 Code transformation result by the previous technique [8]
applied to the example in Fig. 1.

clock cycle

.| RD B[O]
i=0 | logic RD A[B[O]] ADD | WRA[0]
_--" Dependence does
4~ notoccur when B[1] I=0
. RD B[1] RD
=1 17021 Mstaltlogic| Amsray | PP [WRALI

Fig. 5 Loop pipelining result after applying the previous technique [8]
(the case when the stall does not occur).

120

IPSJ Transactions on System LSI Design Methodology Vol.7 119-124 (Aug. 2014)

clock cycle
i=0 S':D”?l"! RDA[B[O]] ADD | WR A[0]
ar losic When B[1]=0,
’ -1
il A\ _---""} stalls occur!
i=1 RD B[1] nop ho nop |a--" !
=1 |Stall logicRD A[B[1]] ADD\ | WRA[1] !
Stall! ! ."
i=1 RD B[1] 'nop nop nop f
1= stall logicRD A[B[1]] \ADD | WRA[1]
Stall! \ dependence resolved
. RD B[1]
i=1 Stall logic RD A[B[1]] ADD WRA[1]
- RD B[2]
i=2 Stall logic RD A[B[2]]] ADD WR A[2]

Fig. 6 Loop pipelining result after applying the previous technique [8]
(the case when stalls occur).

the previous technique [8]. As shown in the figures, the technique
checks the actual occurrences of the possible dependence by the
stall logic at the first stage of pipelined execution of each loop
iteration. In the case when the possible dependence is found not
to occur in an iteration, the iteration executes without pipeline
stall as shown in Fig.5. On the other hand, in the case when
the possible dependence is found to occur in an iteration, the
pipeline execution is stalled in the iteration until the dependence
is resolved as shown in Fig. 6. In both cases, the previous tech-
nique [8] achieves II=1, however, the number of execution cycles
is likely to increase because of pipeline stalls.

3. Proposed Technique: Source-level Trans-
formation for Generating Forwarding Units

In this section, we first overview how the proposed source-level
transformation overcomes the problem of the previous work [8]
illustrated in Section 2. Next, we describe an algorithm for the
proposed transformation in detail.

3.1 Overview of the Proposed Source-level Transformation

The reason of pipeline stalls by the previous work [8] as shown
in Fig. 6 is delays associated with the sequence of the memory
write Ali] followed by the memory read A[B[i]] in the loop-
carried RAW (Read After Write) possible dependence. In high-
level synthesis, arrays are typically mapped to synchronous mem-
ories with 1 clock cycle delay for read and write accesses. As a
result, 2 clock cycle delays, which is the sum of the 1 clock cycle
delay by the write access to A[i] and 1 clock cycle delay by the
dependent read access to A[B[i]], arise when the possible depen-
dence actually occurs.

Based on the observation that [8] results in the 2 clock cycle
delays due to the dependent sequences of the array accesses in
the loop-carried RAW possible dependences, the proposed tech-
nique stores data not only in arrays but also in scalar variables for
such dependences. In high-level synthesis, scalar variables are
mapped to registers and registers can be written or read without
clock cycle delay, so we can expect the 2 clock cycle delays are
successfully eliminated and the numbers of execution cycles are
significantly reduced by the proposed approach.

Figure 7 shows the resulting code after applying the proposed
transformation to the code in Fig. 1. In the similar way as the
code in Fig.4 by the previous technique [8], the code in Fig.7

© 2014 Information Processing Society of Japan

1: for(i=0; i<N; i++){

2: A_raddr = B[i];

3 if(A_raddr == A_waddr_2) A_rdata = A_wdata_2;
4: else if(A_raddr == A_waddr_1) A_rdata = A_wdata_1;
5: else A_rdata = A[A_raddr];
6: A_waddr_0 =1i;

7 A_wdata_0 = A_rdata + c;

8: Ali] = A_wdata_0;

9: A_waddr2 = A_waddr_1;

10: A_waddr_1 = A_waddr_0;

11: A_wdata_2 = A_wdata_1;

12: A_wdata_1 = A_wdata_0;

Fig. 7 Code transformation result by the proposed technique
applied to the example in Fig. 1.

clock cycle

i=0 | RDB[0] [RD A[B[0]] ADD | WRA[0]

Dependence occurs when B[2]=0

i=1 RD B[1] RD A[B[1]] | ADD [WRA[1]
11=1 L
Dependence occurs when B[2]=1
rd
i=2 RD B[2] RD A[B[2]] ADD |WRA[2]

Fig. 8 Loop pipelining result after applying the proposed technique.

also stores the subscripts i and BJ[i] of the array accesses Ali]
and A[BJi]] in the loop-carried RAW possible dependence to the
scalar variables A_waddr_0 and A _raddr in line 6 and line 2, re-
spectively, and detects occurrences of the dependence by com-
paring the values of the subscripts from line 3 to 4 in Fig.7. In
contrast to Ref. [8], the proposed transformation stores the data
written in the maybe RAW dependence not only to the array Ali]
but also to the scalar variable A_wdata_0 from line 7 to 8 in Fig. 7.
In the same way as the scalar variables A_waddr_k that store the
values of the array subscript i of BJ[i] k iterations before the cur-
rent loop iteration, the scalar variable A_wdata_k holds the data
written to the array element Ali] k iterations before the current
loop iteration. A_wdata_0, A_wdata_1 and A_wdata_2 are shift
registers and are shifted in each loop iteration from line 11 to 12
in Fig. 4 similarly to A_waddr_0, A_waddr_1 and A_waddr_2.
Figure 8 shows the loop pipelining result for the code in Fig. 7
which is obtained by applying the proposed transformation to the
code in Fig. 1. As shown in Fig. 8, pipeline stalls do not arise even
when the possible dependence actually occurs and II of Fig. 8 is
always 1. Figure 9 illustrates why the loop pipelining result for
the code generated by the proposed transformation achieves II=1
even when the possible dependence actually occurs. As shown
in the pipelined loop in Fig. 9, the array read access to A[B[2]]
arise for the iteration i=2 and in the 4th clock cycle. Depend-
ing on the value of the array subscript B[2], the array read ac-
cess A[B[2]] may depend on the array write accesses to A[0O] or
A[1] of the previous iterations at i=0 and i=1. Both of the array
write accesses A[0O] at i=0 and A[1] at i=1 do not finish before
the 4th clock cycle so that the array read access A[B[2]] at i=2
does not provide the correct value when B[2] is either O or 1. To
avoid this problem, we use the values stored in the shift registers
A_wdata_2 or A_wdata_1 instead of the value stored in A[B[2]] in
order to perform the addition for the iteration i=2 in the 5th clock
cycle. More specifically, A_wdata_2 is used when B[2]=0 and

121

IPSJ Transactions on System LSI Design Methodology Vol.7 119-124 (Aug. 2014)

clock 1

cycle . 2 . 3 . 4 . 5 . 6 '
i TR]t R0 ¢ A wdata2 [WR] | i E
i=0¢ | sio) [A[BIO]J_‘_"; AP LAl | § §

i R L[R0 | A wdatal [WR] | i
=l o e as— 0 T A g
o i I [Li[Fo] L [wR)|
"2; ; P e BRI e A2 | |

! ! ! ! A[B[2] T !

Fig.9 Forwarding unit generated by the proposed technique.

Algorithm GenerateF orwardingUnit

GenerateF orwardingUnit(L, n)
Input L: code for a loop body
Input n: depth of shift registers
: LCDs « all loop-carried RAW possible dependences in L

1

2: DST's « all (unique) array read accesses in LCDs

3: SRCs « all (unique) array write accesses in LCDs

4: for each src in SRC's

5: Replace "src” in stmt(src) with scalar variable ”srcID_wdata_0”
6: Add statement “src = srcID_wdata_0;” just below stmt(src)

7: end for

8: for each dst in DST's

9:

Replace ”dst” in stmt(dst) with scalar variable "dstID_rdata”
10: end for

11: for each dstin DST's

12: Add statement “dstID_raddr=subsc(dst);” just before stmt(dst)
13: Add the following conditional statement just before stmt(dst)
14: for each srcin SRCs

15: for k = depth of shift registers n to 1

16: Condition: “if/else if (dstID_raddr == srcID_waddr k)"
17: Statement: “dstID_rdata = srcID_wdata_k;”

18: end for

19: Condition: “else”

20: Statement: “dstID_rdata = src;”

21: end for

22: end for

23: for each src in SRC's
24: for k = depth of shift registers n to 1

25: Add the following statement at the end of loop body
26: “srclD_waddr_k = srcID_waddr_k-1;
27: end for

28: for k = depth of shift registers n to 1
29: Add the following statement at the end of loop body

30: “srcID_wdata_k = srcID_wdata _k-1;"
31: end for
32: end for

Fig. 10 Procedure for generating forwarding units.

A_wdata_1 is used when B[2]=1 to avoid pipeline stalls. When
B[2] does not equal to neither O nor 1, the array read access to
A[B[2]] provides the correct value because of the absense of the
possible dependence, so that the value of A[B[2]] can be used
for the addition for the iteration i=2 in the 5th clock cycle. This
switching of the operands for the addition for the iteration i=2
in the 5th clock cycle is described from line 3 to line 5 in Fig.7
and depicted by the 3-to-1 multiplexer for the iteration i=2 in the
5th clock cycle in Fig. 9. As seen from Fig. 9, the proposed tech-
nique automatically generates forwarding units which is a well
known mechanism to accelerate processor pipelines [9]. As far as
the authors know, this paper proposes automatic forwarding unit
generation to reduce IIs in loop pipelining for the first time.

© 2014 Information Processing Society of Japan

3.2 Algorithm for the Proposed Source-level Transforma-
tion

In this section, we present an algorithm for the proposed
source-level transformation illustrated in Section 3.1 that auto-
matically transforms the code in Fig.1 into the code in Fig.7
and generates forwarding units to reduce the numbers of ex-
ecution cycles for pipelined loops. The proposed algorithm
GenerateF orwardingUnit is shown in Fig. 10.

The inputs to the algorithm are C code L for a loop body and
the depth n of the shift registers. The depth n is set to the num-
ber of execution cycles for one loop iteration, which is obtained
by running high-level synthesis tools. In the algorithm in Fig. 10,
stmt(a) means the statement where an array access a belongs to
and subsc(a) means the subscript of an array access a. LCDs
represents the set of all loop-carried RAW possible dependences
in the loop body L. DSTs and SRC's contain the set of all but
unique array read accesses in LCDs and the set of all but unique
array write accesses in LCDs, respectively. From line 4 to 7 in
Fig. 10, data written in maybe RAW dependences are also stored
to scalar variables, which corresponds to the code fragment from
line 7 to 8 in Fig. 7. From line 8 to 10 in Fig. 10, array read ac-
cesses in maybe RAW dependences are replaced with scalar vari-
ables, which corresponds to line 7 (right hand side) of the code
in Fig.7. From line 11 to 22 in Fig. 10, conditional statements
are generated in order to select appropriate scalar variables when
loop-carried RAW possible dependences actually occur, which
corresponds to the code fragment from line 3 to 5 in Fig. 7. This
conditional statements are implemented as multiplexers in syn-
thesized circuits. From line 23 to 32 in Fig. 10, statements that
shift scalar variables that store written data and corresponding
subscripts of array write accesses in maybe RAW dependences
are generated, which corresponds to the code fragment from line
9to 12 in Fig.7.

4. Experiments

In this section, we show the impacts of the proposed transfor-
mation on design metrics including initiation intervals (IIs), the
numbers of execution cycles, critical path delays and gate counts
of the synthesized circuits. In particular, we compare these de-
sign metrics by the proposed approach with those by the previous
state-of-the-art approach [8].

4.1 Experimental Setups
We implemented the proposed algorithm in Fig. 10 in our pro-

122

IPSJ Transactions on System LSI Design Methodology Vol.7 119-124 (Aug. 2014)

Table 1 Comparison between the previous technique (stall) [8] and the proposed technique.

Benchmarks code type I # of execution | # of pipeline | critical path | total gate counts | gate counts for

[cycles] cycles [cycles] | stalls [cycles] delays [ps] [gates] FFs [gates]
original 3 (1.00) 772 (1.00) - 3494 (1.00) 270 (1.00) 127 (1.00)
Example stall 1(0.33) 471 (0.61) 211 3829 (1.10) 567 (2.10) 268 (2.11)
proposed 1(0.33) 261 (0.34) 0 3829 (1.10) 596 (2.21) 297 (2.34)
original 3 (1.00) 922k (1.00) - 3822 (1.00) 347 (1.00) 96 (1.00)
Histgram (sunflower) stall 1(0.33) 396k (0.43) 88k 3837 (1.00) 713 (2.05) 263 (2.74)
proposed 1 (0.33) 309k (0.34) 0 3831 (1.00) 983 (2.83) 414 (4.31)

original - 922k (1.00) - - - -

Histgram (night scene) stall - 718k (0.78) 409k - - -

proposed - 309k (0.34) 0 - - -
original 7 (1.00) 64 (1.00) - 3813 (1.00) 2157 (1.00) 652 (1.00)
SMVM stall 2 (0.29) 51 (0.80) 24 3897 (1.02) 2480 (1.15) 839 (1.29)
proposed 3(0.43) 34 (0.53) 0 3816 (1.00) 2333 (1.08) 755 (1.16)
original 4.33 (1.00) - (1.00) - 3710 (1.00) - (1.00) 292 (1.00)
Average stall 1.33(0.31) -(0.70) - 3854 (1.04) -(1.77) 457 (1.57)
proposed | 1.67 (0.39) - (0.40) - 3825 (1.03) -(2.04) 489 (1.68)

totype tool, and applied the algorithm to 3 benchmark loops: the the IIs to 1.

example in Fig. 1, Histgram which computes a histogram for gray
scale images and is also used in Ref. [8] and sparse matrix vector
multiply (SMVM) which computes the product of a sparse ma-
trix in the coordinate format and a vector, and all the benchmarks
have loop-carried RAW dependences.

We applied loop pipeling with a commercial high-level synthe-
sis (HLS) tool to the original benchmark code, the code optimized
by the previous technique [8] and the code optimized by the pro-
posed technique followed by logic synthesis. The clock con-
straints for both HLS and logic synthesis were set to 250 MHz and
the target cell library was a 45 nm library. Arrays were mapped
to synchronous memories with 1 clock cycle delay for both read
and write accesses. Since we aim to minimize IIs, we allocated
enough functional units and memory ports in synthesized hard-
ware to achieve the minimum IIs. For example, we allocated a
dual-port memory for array A for the example in Fig. 1 to achieve
II=1. For all benchmarks, array sizes, and hence memory sizes,
were the same, so the memory area was not included in the gate
count results in Table 1.

4.2 Results and Discussions

Table 1 shows the experimental results for the 3 benchmarks.
There are two results for Histgram, namely, Histgram (sunflower)
and Histgram (night scene) with different input images (sunflower
and night scene, respectively). The sizes of both images were the
same size of 640x480. The differences in input images do not
affect Ils, critical path delays and gate counts. In the table, origi-
nal, stall, proposed show the synthesis results after loop pipelin-
ing and logic synthesis for the original benchmark code, the code
optimized by the previous technique [8] and the code optimized
by the proposed technique, respectively. In the table, the last 3
rows show the average results for the 3 benchmarks. In origi-
nal the IIs were larger than those of stall and proposed for all
the benchmarks because of pessimistic handling of loop-carried
RAW possible dependences. Both the previous techniques [8] and
the proposed technique could successfully reduce IIs by 69% and
61% on average compared to the case without the optimizations
(original). For SMVM, both stall and proposed could not reduce

© 2014 Information Processing Society of Japan

Although the IIs for the proposed technique were the same as
the IIs for the previous technique [8] except SMVM, the num-
bers of execution cycles for Ref. [8] were 75% larger on average
than those for the proposed technique, since pipeline stalls arose
by Ref. [8] and the numbers of execution cycles were increased.
As for Histgram, pipeline stalled more frequently for image night
scene than for image sunflower. Since the image night scene has
much more successive (black) pixels with the same intensity com-
pared to the image sunflower, the possible dependences between
successive iterations, and hence pipeline stalls, occured more fre-
quently for the image night scene than for the image sunflower.
For all benchmarks, the clock period constraints of 250 MHz were
satisfied.

The total gate counts of stall and proposed increased by 77%
and 104% on average compared to original. These increases in
the total gate counts is mainly caused by the increase of func-
tional units and registers due to the parallel processing by loop
piplining. In addition, comparators to check the occurrences of
possible dependences also contribute to the increases in the gate
counts. Compared to stall, proposed has 15% more total gate
counts on average. This increase in gate counts is mainly due to
the fact that the proposed technique needs to keep both subscripts
and data in shift registers to perform forwarding, while the previ-
ous technique [8] only need to keep subscripts in shift registers to
perform pipeline stall.

Since the proposed technique could reduce the numbers of
execution cycles by 34% on average compared to the previous
work [8] that is the state-of-the-art with the moderate increases
in gate counts by 15% on average without violating the clock
constraints, we claim that the proposed technique is effective for
quickly generating high-performance hardware accelerators.

5. Conclusion

In this paper, we proposed a source-level transformation that
reduces IIs in the loop pipelining when loops contain loop-carried
RAW possible dependences whose occurrences can be deter-
mined only at runtime. In the transformed code by the proposed
transformation, the possible dependences are checked at runtime

123

IPSJ Transactions on System LSI Design Methodology Vol.7 119-124 (Aug. 2014)

and the written data to the arrays in the possible dependences are
also written to scalar variables and the scalar variables are ac-
cessed instead of the arrays when the possible dependences actu-
ally occur. The proposed technique replaces slow array accesses
in the possible dependences with fast scalar variable accesses, so
that the numbers of execution cycles are reduced without pipeline
stalls. The proposed technique automatically generates forward-
ing units at behavioral level. We implemented a tool that auto-
matically performs the source-level transformation and applied
the tool to three benchmark loops. The transformed code were
synthesized to gates with loop pipelining in HLS and logic syn-
thesis for evalutation. The proposed technique could reduce the
numbers of execution cycles by 34% on average compared to the
state-of-the-art previous work with the moderate increases in gate
counts by 15% on average, so we claim that the proposed tech-
nique is effective for quickly generating high-performance hard-
ware accelerators with high-level synthesis.

References

[11 Gajski, D.D. et al.: High Level Synthesis: An Introduction to Chip and
System Design, Kluwer Academic Publishers (1992).

[2] Aho, A.V,, Lam, M.S., Sethi, R. and Ullman, J.D.: Compilers: Princi-
ples, Techniques, and Tools, Second Edition, Prentice Hall (2006).

[3] Snider, G.: Performance-Constrained Pipelining of Software Loops
onto Reconfigurable Hardware, FPGA ’02 Proc. 2002 ACM/SIGDA
10th International Symposium on Field-programmable Gate Arrays,
pp.177-186 (2002).

[4] Gao, L., Zaretsky, D., Mittal, G., Schonfeld, D. and Banerjee, P.: A
Software Pipelining Algorithm in High-Level Synthesis for FPGA Ar-
chitectures, ISQED '09 Proc. 2009 10th International Symposium on
Quality of Electronic Design, pp.297-302 (2009).

[5] Morvan, A., Derrien, S. and Quinton, P.: Efficient Nested Loop Pipelin-
ing in High Level Synthesis using Polyhedral Bubble Insertion, /EEE
International Conference on Field-Programmable Technology, pp.1-10
(2011).

[6] Kondratyev, A., Lavagno, L., Meyer, M. and Watanabe, Y.: Realis-
tic performance-constrained pipelining in high-level synthesis, Design,
Automation & Test in Europe Conference & Exhibition, pp.1382—1387
(2011).

[71 Ravi, S., Lakshminarayana, G. and Jha, N.K.: Removal of memory
access bottlenecks for scheduling control-flow intensive behavioral de-
scriptions, /ICCAD (1998).

[8] Alle, M., Morvan, A. and Derrien, S.: Runtime Dependency Analysis
for Loop Pipelining in High-Level Synthesis, Design Automation Con-
ference (2013).

[9] Patterson, D.A. and Hennessy, J.L.: Computer Organization & Design:
The Hardware/Software Interface, Fourth Edition, Morgan Kaufmann
(2008).

Shingo Kusakabe received his B.S. in
electrical and electronic engineering from
Tokyo City University in 2014. He is cur-
rently working toward M.S. degree in the
same university. He is a student member
of IPSJ.

© 2014 Information Processing Society of Japan

Kenshu Seto received his B.S. in electri-
cal engineering, M.S. and D.Eng. in elec-
tronics engineering from the University of
Tokyo in 1997, 1999 and 2004, respec-
tively. From 2004 to 2006, he was a re-
searcher at VLSI Design and Education
Center (VDEC), the University of Tokyo.
He joined the department of electrical and

| ——
- T
electronic engineering, Tokyo City University (renamed from
Musashi Institute of Technology) in 2007. His primary research

interests include high-level synthesis and compiler techniques for
System-on-Chips (SoCs).

(Recommended by Associate Editor: Takashi Takenaka)

124

