IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

[DOI: 10.2197/ipsjtsldm.7.37]

Regular Paper

Impact of Resource Sharing and Register Retiming on
Area and Performance of FPGA-based Designs

Yuko Hara-Azumr

SHiNyA HoNDA2

TosHINOBU MATSUBA
Hiroak1 Takapa

2,11 3

Hirovukt Tomryama
2

Received: May 10, 2013, Revised: August 30, 2013,
Accepted: October 30, 2013, Released: February 14, 2014

Abstract: Due to the increasing diversity and complexity of embedded systems, the use of high-level synthesis (HLS)
and that of FPGAs have been both becoming prevalent in order to enhance the design productivity. Although a number
of works for FPGA-oriented optimizations, particularly about resource binding, have been studied in HLS, the HLS
technologies are still immature since most of them overlook some important facts on resource sharing. In this pa-
per, for FPGA-based designs, we quantitatively evaluate effects of several resource sharing approaches in HLS using
practically large benchmarks, on various FPGA devices. Through the comprehensive evaluation, the effects on clock
frequency, execution time, area, and multiplexer distribution are examined. Several important discussions and findings
will be disclosed, which are essential for further advance of the practical HLS technology.

Keywords: high-level synthesis, FPGA, resource sharing, register retiming

1. Introduction

For increasing the design productivity of embedded systems,
high-level synthesis (HLS), which enables to design LSI circuits
at a higher abstraction level, is becoming prevalent these days [1].
There have been a number of researches in HLS to enhance
its technology for decades. Furthermore, as FPGAs have been
attracting more attention for improving the design productivity
and cost of embedded systems, FPGA-oriented HLS technologies
have been also well-studied. Especially, one of the major synthe-
sis processes in HLS, binding, which assigns operations/variables
to functional units (FUs)/registers, has been the most popular re-
search target because it highly affects the area and performance
(i.e., clock frequency) of synthesized circuits.

If multiple operations/variables are bound to the same
FUs/registers, they share the resources (i.e., FUs/register) and
may insert multiplexers (MUXs) before the shared resources. Re-
source sharing saves resource usage to generally reduce area, but
may degrade clock frequency due to MUX insertion. On the other
hand, resource unsharing will provide high clock frequency, but
may grow circuit area by using a lot of resources. However, actu-
ally, resource sharing does not always reduce area. Specifically,
the area of inserted MUXs may be rather larger than that of shared
resources if the resources are small enough (e.g., adders and reg-
isters). Such a fact has not been taken into account enough in
most existing binding algorithms, such as Refs. [2], [3], [4]. As

Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan
Nagoya University, Nagoya, Aichi 464-8603, Japan
Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Presently with TOYO Corporation

¥ yuko.hara.azumi @ieee.org

© 2014 Information Processing Society of Japan

long as such fact is ignored, area reduction cannot be achieved as
expected.

Another discussion is the efficiency of resource unsharing.
This is actually effective for improving clock frequency by re-
moving MUXSs, but obviously, not realistic in terms of area, espe-
cially for applications using a lot of expensive FUs (e.g., multi-
pliers). As have been suggested in Ref. [5], a simple and practical
means would be thus an intermediate solution between resource
sharing and unsharing, i.e., selective resource sharing [6], which
is to share only such expensive resources while unsharing the oth-
ers (i.e., small FUs and registers). However, this may not be yet
preferable in terms of performance because MUXSs, which are in-
serted for sharing such large FUs, may reside on (near-)critical
paths because large FUs are likely to have long delay. That is, the
effects of resource sharing approaches may depend on the appli-
cation features.

In this paper, we quantitatively evaluate various re-
source sharing approaches (i.e., combinations of FU shar-
ing/unsharing/selective sharing and register sharing/unsharing)
using several practically large applications which are widely used
in industry. Moreover, we further examine the effects of register
retiming [6], which is to balance path length across registers for
reducing critical path delay, both at register-transfer (RT) and
gate levels. The effects of these methods are discussed for one
4-input LUT-based FPGA and two 6-input LUT-based FPGAs, in
terms of performance (i.e., clock frequency and execution time),
circuit area, and MUX distribution. Through these discussions,
we will disclose important findings and directions for developing
more practical and sophisticated HLS algorithms.

To sum up, the contributions of this paper are
(1) that while Ref. [5] has only indicated the importance of se-

37

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

lectively sharing resources based on the evaluation on four
methods of sharing/unsharing FUs and registers, this paper,
besides those four methods, also examines an intermedi-
ate synthesis method (i.e., selective resource sharing) and
a method of suppressing clock prolongation (i.e., RT-level
retiming). These approaches are intuitive, and all the more,
we believe that their results demonstrate how important the
further study of more intelligent approaches are, which will
boost up the HLS community;

(2) and that we provide in-depth discussions on the effects of
each of six methods through MUX distributions, which more
clearly demonstrate the delay impact of each method for
each benchmark than Ref. [6].

The remainder of this paper is organized as follows. First, Sec-
tion 2 explains three techniques of handling resources (i.e., re-
source sharing, unsharing and selective sharing) and RT-level reg-
ister retiming. Next, Section 3 describes our experimental setup.
Section 4 then discusses the impacts of six synthesis methods in
terms of clock frequency, execution time, circuit area, and MUX
distribution. Finally, Section 5 concludes this paper.

2. RT-Level Approaches for Area and Perfor-
mance Improvement

This section briefly reviews effects on circuit area and per-
formance, particularly clock frequency, of resource sharing ap-
proaches through some examples. Also, RT-level register retim-
ing is explained with a pseudo code.

2.1 Resource Sharing and Unsharing

Binding approaches in HLS can be largely categorized into
two: resource sharing and unsharing. Resource sharing assigns
multiple operations/variables to the same FU/register. For ex-
ample, from the behavioral description shown in Fig.1 (a), the
circuits shown in Fig. 1 (b) and (c)*! may be synthesized by FU
and register sharing, respectively. In general, as shown in these
figures, multiplexers (MUXs) would be inserted before resources
shared by distinct operations or variables. Various resource shar-
ing algorithms have been presented in the last few decades, such
as Refs. [2], [3], [4], which aim at area reduction through mitigat-
ing MUX insertion under less resources. Although indeed sharing
reduces resource usage, the cost of inserted MUXs is not small,
because of which area reduction cannot be always achieved. Par-

r=a+b
...=r/luseofr
s=c+d

(a)

Fig. 1 MUX insertion by resource sharing: (a) A behavioral description,
(b) FU sharing, and (c) Register sharing.

*I Precisely, in FPGA-based designs, every register has a feed-back loop

(i.e., the output of a register is given back to its input) in order to keep
a value for multiple cycles, for which a MUX is inserted. In this paper,
however, such MUXs are not depicted in figures in order to distinguish
between MUXs for the feed-back loop and ones for register sharing.

© 2014 Information Processing Society of Japan

ticularly for FPGA-based designs, the area (i.e., the number of
LUTs) to realize small FUs (e.g., adder) and those for MUXs
are comparable [7]. Thus, depending on the resources, e.g., as
shown in Fig. 1 (b), resource sharing rather costs area. Further-
more, MUX insertion would degrade clock frequency.

On the other hand, resource unsharing benefits from removing
those MUXs for clock improvement. However, it has a draw-
back of area increase, especially for applications where a num-
ber of expensive FUs, such as multipliers, are required. More-
over, some MUXs can still remain even after resource unshar-
ing. As shown in Fig. 2 (b), which depicts a circuit synthesized
from the description in Fig. 2 (a), MUXs may be inserted before
a register to which a single multi-defined variable is assigned,
e.g., r in Fig. 2 (a). Resources need to be unshared after all vari-
ables are renamed so that all assignments are to variables with
distinct name (i.e., Static Single Assignment (SSA) transforma-
tion [8]: Fig. 2 (c)), in order to remove these MUXs as illustrated
in Fig.2(d). Some commercial HLS tools, e.g., eXCite [9], lo-
cally perform SSA transformation for dataflow analysis.

2.2 Selective Resource Sharing

An intermediate approach between the two reviewed in Sec-
tion 2.1 is selective resource sharing, which is to share only large
resources (e.g., multiplier) and unshare the others [6]. Compared
with resource unsharing (Fig. 3 (a)), this approach will suppress
the area of both resources and MUXs, as described in Fig. 3 (b)
which have small area by sharing multipliers.

However, clock improvement may not be expected as can be
achieved by resource unsharing. Because large resources are
likely to have long delay and originally reside on (near-)critical
paths, MUXs inserted to share them also tend to reside on such

[c][d]
r=a+b rM=a+b [a] [b]
..=r/luseofr| ...=r1/luseof r1 “
r=c*d r2=c*d
(a) (b) (c) (d)

Fig. 2 MUX insertion by resource unsharing and removal of such
MUXSs: (a) A behavioral description with a multi-defined vari-
able r, (b) MUX insertion before unshared register r, (c) An
SSA-transformed behavioral description, and (d) MUX removal.

10 0O
[f

sniniohihey by
(a)

100 w0

di .
W e

Fig.3 Critical path delay: (a) Resource unsharing and (b) Selective resource
sharing.

38

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

paths and end up increasing the path delay. For example, the ver-
tical arrows in Figs.3 (a) and 3 (b) show the critical path delay
of each circuit. As can be found from these figures, selective re-
source sharing will mitigate the entire area at the cost of clock
degradation.

2.3 RT-level Register Retiming

As explained in Section 2.2, selective resource sharing tends to
unbalance path delays. In order to shorten the unbalancedly long
path delays, conventionally, register retiming has been applied at
gate level during logic synthesis. This optimization technique re-
locates registers so that path delays before and after the registers
can be balanced in order to shorten critical paths while preserving
the functional equivalence.

Generally, more impacts on LSI circuits can be obtained by ap-
plying optimizations at higher abstraction levels of the LSI design
flow. Similarly for register retiming, further benefits of improving
clock frequency are expected by applying it at RT level, i.e., one
abstraction level higher than gate level. In order to apply register
retiming at RT level, it needs to be performed during HLS, more
specifically after binding [6].

In the following, an algorithm of RT-level register retiming is
described in Algorithm 1 and explained using examples in Fig. 4,
where only paths related to retiming of FU f are highlighted and
listed. Definition of notations used in Algorithm 1 and Fig. 4 can
be found in Table 1.

Descriptions at lines 4-8 of Algorithm 1 are for shortening crit-
ical paths which became longer due to MUXSs inserted to share
large FUs. First, it finds and removes paths which are connected

PATH=

PATH=
{path(k.u,p,), path(lv,p,), {path(kup,), path(iv.p,), {path(kr.p,), path(,r.p),

PATH=

path(u,f,p), path(v,tp)} path(kr,p,), path(ir,p),
path(r,f,p)}

if overlap(u,v)
(a) (b) (c)

Fig.4 RT-level register retiming: (a) An original circuit which shares FU f£,
(b) A refined circuit where the lifetime of values stored in registers u
and v overlaps, and (c) A refined circuit where the lifetime of values
stored in registers u and v does not overlap.

path(r,f,p)}

if Joverlap(u,v)

Table 1 Definition of notations.

REG A set of registers
FU A set of FUs
RES A set of resources (registers and FUs),

ie, RES =REG + FU

SHARED_FU A set of shared FUs, i.e., SHARED_FU C FU

IN_PORT (k) A set of input ports of resource k.
ie, [INPORT(k)|>1 if ke FUand
[INPORT (k)| =1 if keREG

PATH A set of paths between resources

IN_REG,,4(p) | A setof registers connected to port p in the original
circuit, i.e., IN.REG,,,(p) € REG

path(k, 1, p;) A path from resource k to resource /’s input port py,

where p; € INPORT(])
True if the lifetime of values u and v overlaps each
other, otherwise false

overlap(u, v)

© 2014 Information Processing Society of Japan

Algorithm 1 RT-level register retiming

1: Input: An RTL circuit where selective resource sharing is applied
2: Output: A refined RTL circuit by RT-level register retiming
3: forall f,ps; f € SHARED_FU, p; € IN_.PORT(f) do
4: PATH := PATH — {path(u, f, py) | u € IN_REG ,,4(py)}
5: REG :=REG U {r}
6: PATH := PATH U {path(r, f, ps)}
7. forall u;u € IN_REG,.4(pys) do
8 PATH := PATH U {path(k,r,p,) | k € IN_REG ,;,(py),
DPu € IN_PORT (u), path(k,u, p,) € PATH}

9: if loverlap(u,v), Ju,v € IN_REG,.4(py),u # v then

10: PATH := PATH U {path(r, h, py) | path(u, h, p,) €
PATH,Yh € RES}

11: PATH := PATH — {path(k,u, p,) | path(k,u, p,) €
PATH, k € IN_REG ,;4(py)}

12: PATH := PATH — {path(u, h, p,) | path(u, h, p;,) €
PATH,¥Yh € RES}

13: REG := REG — IN_REG,+4(py)

14: end if

15: end for

16: end for

to input ports of shared large FUs (line 4), e.g., a path which
is connected from register u to input port p; of shared FU f in
Fig.4 (a). Next, register r is newly added (line 5) right before
shared FU f, for the purpose of moving MUXs from the front of
FU f to that of register r. In other words, register r plays a role
like a dedicated register of FU f so that register r directly gives
data to FU f, without passing through any MUXs. Then, a path
from register r to FU f is newly connected (line 6), as well as the
ones from other FUs (e.g., FUs k and / in Fig. 4 (b)) to register r,
as displayed.

Descriptions at lines 9-14 are then for removing redundant reg-
isters in order to reduce area. If the lifetime of values stored in
registers which were originally connected to the same shared FU
(e.g., registers u and v connected to FU f in Fig.4 (a)) overlaps
each other, Algorithm 1 completes at line 9 (Fig.4 (b)). Other-
wise, because these values can share the same register (i.e., the
dedicated register r), the registers storing the values (i.e., regis-
ters u and v) are redundant and can be removed. To realize this,
first, paths are added to connect from the dedicated register r to
FUs which have incoming paths from these redundant registers
u and v, such as FU f in Fig.4 (c) (line 10). Then, paths which
are connected to these redundant registers «# and v are all removed
(lines 11-12). Finally, these registers themselves are also removed
at line 13.

This RT-level register retiming is more effective for applica-
tions which are more resource-hungry and have more MUXSs in-
serted before the shared FUs. By performing this in conjunction
with selective resource sharing, clock improvement and area mit-
igation can be expected at the same time.

3. Experimental Setup

Our HLS framework, which is described in Fig. 5, integrates
COINS*2[10] for SSA transformation and eXCite for HLS. eX-
Cite takes as input C programs and clock frequency constraint,
transforms the C programs to a CDFG, and performs back-end

*2 Although eXCite performs SSA transformation for dataflow analysis, we

found that COINS more powerfully performs it than eXCite does.

39

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

[BehavioraIIDescription)— else (RIS)

A 4 XC
[SSATransformation] eXCite
Transformation

v
HLS Tool-Compatible ‘

! CDFG -

Conversion > Scheduling «Clock Constrai
SSA-form Behavioral Scheduled DFGs . Resources are
Description Allocation allowed to be

¥ Resources ~sharable or.no

FU/S, FUIUS, or
¥ FU/SS
[Register Transfer Level Description)

Logic Synthesis ‘
Place-and-Route

Fig. 5 Overall synthesis flow.

if RIUS
HLS framework

Simulation ‘

processes (i.e., scheduling, allocation and binding) for generat-
ing synthesizable RTL descriptions. In the back-end processes,
first, scheduling is performed under the designer-given constraint
on clock frequency. Allocation then determines the number of
resource instances available based on the scheduled result. As
many instances of FUs as their compatible operations (e.g., adder
and addition operation) is used if designers do not allow resource
sharing, otherwise the maximum number of instances among all
control steps is set as the resource constraint. Such decision can
be made for each type of resources individually. Finally, binding
is performed to assign operations/values to FUs/registers under
the resource constraints. If multiple operations/values scheduled
to different control steps are assigned to the same FU/register in-
stance, such instance is said shared *>.

Using the framework, in this paper, the effects of resource shar-
ing/unsharing on clock frequency, execution time (i.e., the num-
ber of execution cycles X the clock period), and area of syn-
thesized circuits are quantitatively evaluated by the following
methods: FU sharing & register sharing (FU/S+R/S), FU shar-
ing & register unsharing (FU/S+R/US), FU unsharing & register
sharing (FU/US+R/S), and FU unsharing & register unsharing
(FU/US+R/US). For R/US, different registers were allocated to
each instance of variables. To do so, we have applied SSA trans-
formation to input C programs during the framework described
in Fig. 5*4. In addition to these four methods, to examine the ef-
fects of selective resource sharing and RT-level register retiming,
the following two methods are also evaluated: selective FU shar-
ing & register unsharing without and with RT-level register re-
timing (FU/SS+R/US and FU/SS+R/US+RT, respectively). Only
multipliers were selected for resource sharing. We realized these
six methods through varying whether each type of resources is
allowed to be shared or not, during allocation.

In our evaluation, eight realistic benchmarks were used:
FLOAT_ADD (fadd) and FLOAT MUL (fmul) in Ref. [11], and
adpcm, AES Encryption (aesenc), blowfish, gsm, mips, and sha
in Ref. [12]. Table 2 describes the number of variables for non-
SSA and SSA descriptions in columns 2-3 and that of opera-
tions in columns 4-8. One 4-input LUT-based FPGA (Virtex-
4: xc4vfx100-ff1152-12) and two 6-input LUT-based FPGAs

The scheduling and binding algorithms are unrevealed. While schedul-
ing seems to be performed based on the ASAP scheduling, we cannot
find the binding algorithm, which is complex.

If variables are assigned in exclusive conditions and used outside of the
conditional statements, such variables are re-converted to a multi-defined
variable, to which the same register is allocated.

© 2014 Information Processing Society of Japan

Table 2 Characteristics of benchmark programs.

Benchmarks Variables Operations
Non-SSA SSA | Add. Mul. Div. Shft. Cmp.

adpcm 270 1,279 | 286 70 4 182
aesenc 191 436 | 210 13 14 31
blowfish 126 414 | 278 27
fadd 186 378 31 13 31
fmul 116 198 | 23 4 4 20
gsm 155 452 | 212 53 3 93
mips 37 84 9 4 36
sha 56 240 | 132 3 37

Table 3 FU instances (for FU/S and FU/SS).

Benchmarks | Add./Sub. Mul. Div. Shft. Cmp.
adpcm 74 16 2 105
aesenc 18 2 1 13
blowfish 152 17
fadd 17 7 18
fmul 11 4 2 12
gsm 34 3 2 22
mips 4 2 32
sha 26 1 6

Table 4 Registers (bits) for Virtex-4.

Benchmarks | FU/S+ FU/S+ FU/US+ FU/US+ |FU/SS+ FU/SS+
R/S R/US R/S R/US R/US R/US+RT

adpcm 6,350 16,716 4914 13,542 | 14,385 13,046

aesenc 2,765 6,556 3,753 5,432 5,072 5,398

blowfish 3,750 13,872 1,662 13,366

fadd 2,648 3,801 4,964 4,457

fmul 1,841 1,272 1,816 682

gsm 2,968 9,876 1,965 4,339 3912 6,653

mips 1,076 1,346 509 746

sha 2,822 8,547 1,423 7,052

(Virtex-5: xc5vIx110-ff676-3 and Virtex-6: xc6vex195t-1f784-
2)[13] were specified as target devices. After HLS, logic syn-
thesis and place-and-route were done by Synplify Pro D-2010.03-
SP1 and ISE 13.4, respectively. Besides applying gate-level regis-
ter retiming, the constraint on clock frequency was automatically
set during logic synthesis, so that the maximum clock frequency
can be achieved. HDL simulation was conducted by Modelsim
6.2e [14] to measure the execution cycles.

During HLS, while as many FUs as their compatible operations
specified in Table 2 were used for FU/US, the maximum number
of instances required among all control steps (i.e., the minimum
number of FU instances) specified in Table 3 was used for FU/S
and FU/SS. Similarly, to store values in the datapath, while as
many registers as variables in Table 2 were used for R/US, the
minimum number of registers was used for R/S. Note that opti-
mizations during logic synthesis often vary the number of regis-
ters at the gate level from that at the RT level. Thus, we show
the number of registers after logic synthesis, in Table 4, for each
of six synthesis methods on the Virtex-4 device. The results in
Table 4 did not change largely for Virtex-5 and 6.

4. Experimental Results

For each FPGA device, Figs.6, 7, and 8 describe clock im-
provement, execution time improvement, and area overhead™,
respectively, against the results of FU/S+R/S (baseline), by those
of the other five methods for three benchmarks (i.e., adpcm, aes-

*3 Negative values mean area reduction.

40

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

WFU/S+R/US W FU/US+R/S 0 FU/US+R/US I FU/SS+R/US [FU/SS+R/US+RT]
200% 200% 200%
150% 150% 150%
100% 100% ¢ 100% -
50% - 50% - — 1 - 50% - Ti I -
0% 0% - L 0% | \|l' I | w‘ wl| T wl' w-l T
. < te) N 3 .
o S SRS L F R 50 LS &SRS LR S0% 6(«'\00 PSP R O
S L ,Q\os AN P f v_)\oi <

100%

(a)

(b) (c)

Fig. 6 Clock frequency improvement: (a) Virtex-4, (b) Virtex-5, and (c) Virtex-6.

[EFU/S+R/US W FU/US+R/S

[0 FU/US+R/US W FU/SS+R/US [0 FU/SS+R/US+RT |
0,

50%

100%

o

-50%?

0% |

Nl

-100%

-50%?

R
—50%’2’b

-100%

-100%

120%

(a)

(b)

Fig. 7 Execution time improvement: (a) Virtex-4, (b) Virtex-5, and (c) Virtex-6.

[@FU/S+R/US W FU/US+R/S

O FU/US+R/US I FU/SS+R/US 0 FU/SS+R/US+RT]

120%

120%

90%

60%

90%

60%

90%

60% -

30% -

0% -

30% -

0% - T

[bl

0% -

L

3> & @ . ¢ > B & @ .
30% & S & 30y gf(o—é,@‘\—d,i\L@Lf S e T R
> > ‘0\ > > ‘0\ > > 0\
-60% -60% 60%
(a) (b) (c)
Fig. 8 Area overhead (in terms of Slices): (a) Virtex-4, (b) Virtex-5, and (c) Virtex-6.
| —~FU/S+R/S ——FU/S+R/US —~FU/US+R/S -=-FU/US+R/US —=FU/SS+R/US -o-FU/SS+R/US+RT |
250 50 100
200 40
150 30
100 20
50 10
0 m 0
LT TN S VR S S
3G P 6;\') & /\,fo\’
N % & '09 ’f,"

(b)

Fig. 9 MUX distribution (classified by the number of inputs): (a) apdem, (b) aesenc, and (c) gsm.

enc, and gsm)*® and by those of the three methods, except for
FU/SS+R/US and FU/SS+R/US+RT, for the other benchmarks.
In each figure, results for each benchmark and average on the
Virtex-4, 5, and 6 FPGAs are shown in (a), (b), and (c), re-
spetively. Furthermore, for the three benchmarks (i.e., adpcm,
aesenc, and gsm), the numbers and size of MUXSs inserted by the
six methods are illustrated on Virtex-4 in Fig. 9. In the following
subsections, we will discuss observations and findings obtained
from the results.

*6 Although fmul contains four multiplication operations, FU/SS+R/US
and FU/SS+R/US+RT were not applied since these multiplication op-

erations are all executed in parallel and no multipliers are shared.

© 2014 Information Processing Society of Japan

4.1 Clock Frequency

From Fig. 6, the following six features regarding clock fre-
quency are observed:

(1) FU/S+R/US leads to clock improvement for some designs
Through
in-depth analysis of logic synthesis reports, we found that this
method often decreases MUXs before registers but increase
MUXs before FUs since a lot of incoming paths concentrate from

and degradation for the others against the baseline.

a large number of registers to the small number of FUs. Because,
as have been also reported in Ref. [15], control logic for MUXs
inserted before FUs resides on critical paths in most cases, the in-
crease of such MUX(s critically affects the clock frequency, which

41

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

Table 5 Comparison of Virtex-4 and 5 in terms of LUT and inter-Slice de-

lays (ps).
Devices LUT delay | inter-Slice delay [18]
[16], [17] 1-hop 2-hop
Virtex-4 (Speed Grade -12) 150 751 906
(5.0x) (6.0x)
Virtex-5 (Speed Grade -3) 80 665 723
(8.3x) (9.0x)

led to clock degradation by up to 17%.

(2) For all designs, except for fmul*’, FU/US+R/S improves
clock against both the baseline and FU/S+R/US.] By thorough
analysis on logic synthesis reports, we also found that in most
cases, paths from the controller to MUXs inserted before FUs
go through more gates and encourage longer critical path delay
rather than those from data registers to the MUXs. Thus, reduc-
tion of the former paths contributes to more clock improvement
in this method than in FU/S+R/US.

(3) Although FU/US+R/US achieves the highest clock fre-
quency in most designs, FU/US+R/S outperforms in some others.
When using a lot of resources through unsharing, two counter ef-
fects would happen at the same time: clock improvement by re-
moving all MUXs from critical paths, and clock degradation due
to growing global interconnections (i.e., inter-LUT interconnec-
tions) along with an increase in area. In newer FPGA devices,
the delay of inter-LUT interconnection is much larger than that
of intra-LUT interconnection (i.e., LUT delay itself). This ef-
fect becomes more significant when using LUTs located in farther
Slices. This can be seen, for example in case of Virtex-4 and 5,
from Table 5 summerizing LUT and inter-Slice delays extracted
from [16], [17], [18], where values in parentheses are normalized
by the corresponding LUT delay; the 1-hop inter-Slice delay (i.e.,
when using LUTs in the most neighboring Slices) of Virtex-5 is
8.3x of the LUT delay, which is larger than the case of Virtex-4
(i.e., 5.0x); And, similarly, the 2-hop inter-Slice delay of Virtex-5
(i.e., 9.0x) is larger than that of Virtex-4 (i.e., 6.0x). Thus, for
clock improvement, FU/US+R/S is preferable for larger bench-
marks on newer FPGA devices, otherwise FU/US+R/US. Actu-
ally, in Fig. 6, for larger benchmarks such as adpcm and blowfish
on the Virtex-6 FPGA device, FU/US+R/S achieved higher clock
frequency than FU/US+R/US.

(4) By sharing multipliers, which have long delay and reside
on critical paths, for all benchmarks and devices, FU/SS+R/US
ends up degrading clock frequency due to MUX insertion on such
critical paths, compared with FU/US+R/US. Especially for the
largest benchmark (i.e., adpcm) on the 4-input LUT-based FPGA
(i.e., Virtex-4), a lot of MUXs concatenated, which are realized as
a long chain of 4-input LUTs, before the shared multipliers, result
in significant clock degradation as can been seen in Fig. 6 (a). For
the 6-input LUT-based FPGAs, on the other hand, these MUXs
are merged each other and implemented with the smaller number
of LUTs (shallower in depth), leading to less clock degradation.
Furthermore, as explained in (3), area reduction by sharing large
FUs helps shorten global interconnection for the 6-input LUT-
based FPGAs, which to some extent cancels out the drawback of
MUX insertion on critical paths.

*7 Because fmul is relatively small, the absolute difference was not so large.

© 2014 Information Processing Society of Japan

(5) For most benchmarks and devices, FU/SS+R/US+RT
achieves considerable clock improvement compared with
FU/SS+R/US.
RT-level register retiming and area reduction by sharing large
FUs brought the highest clock frequency*®. Since FU/SS+R/US
performs the conventional gate-level register retiming, this

Especially for Virtex-6, the joint effects of

result evinces the effectiveness of more aggressively performing
retiming at a higher abstraction level, i.e., RT level.

(6) In most benchmarks, larger clock improvement is achieved
by FU/US and FU/SS for newer FPGA devices. This is because
in newer FPGA devices, which are based on more CMOS scal-
ing technology, global interconnections are more dominant and
area reduction through MUX removal and sharing of large FUs
is more effective to improve clock frequency, as have been seen
from Table 5. These impacts are bigger for larger benchmarks,
where the small number of FUs is shared by the large number of
operations (i.e., a lot of MUXs are inserted) when FU/S, and/or
where a lot of expensive operations are used (i.e., a lot of expen-
sive FUs will be required when FU/US).

From the aforementioned observations, the following conclu-
sions are derived, for achieving higher clock frequency; a higher
priority for unsharing should be given to FUs more than regis-
ters; FUs, particularly small ones, should be unshared for newer
FPGA devices (e.g., in Virtex-6 than in Virtex-4); when unshar-
ing FUs, registers should be also unshared in older FPGA devices
(e.g., in Virtex-4 than in Virtex-6), especially for larger designs;
large FUs had better be unshared in older FPGA devices; and
when sharing large FUs, register retiming should be performed at
higher abstraction levels, such as at RT level.

4.2 Execution Time

As for execution time (i.e., the number of execution cycles X
the clock period), the following two findings can be obtained from
Fig.7:

(1) In most benchmarks and FPGA devices, R/US improves ex-
ecution time compared with its counterpart R/S (i.e., FU/S+R/US
vs. FU/S+R/S, and FU/US+R/US vs. FU/US+R/S). If R/US
achieved higher clock frequency than R/S, its improvement rate
of execution time becomes further bigger, whereas if R/US was
outperformed in clock frequency, the difference between R/S and
R/US in execution time becomes smaller. In these experiments,
register unsharing is performed after SSA transformation, which
increased the chances of behavioral optimizations to encourage
operation-level parallelism, i.e., execution cycle reduction.

(2) No impact on the execution cycles was observed by FU/SS
and RT since they preserve operation-level parallelism obtained
by FU/US+R/US. Thus, for FU/SS+R/US w/ and w/o RT, the
results of clock frequency are directly reflected on those of the
execution time.

From these results, we can say that interestingly register un-
sharing can increase the potential of improving the execution
time.

8 FU/SS+R/US+RT achieved the highest clock frequency not only for ad-
pem but also for aesenc and gsm although the difference from the second
highest is very small.

42

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

4.3 Circuit Area

Similarly, four findings regarding area (i.e., the number of
Slices used) can be observed from Fig. 8:

(1) For some benchmarks, circuit area is countintuitively re-
duced by FU/US and/or R/US, i.e., by up to 57% in fmul on
Virtex-4. Because sharing small resources (e.g., adders and reg-
isters) by a number of operations/variables leads to insert a lot
of MUXs, which occupy large portion of the total area in such
benchmarks, unsharing is an effective way for area reduction.
Due to the large MUX area in total, even when unsharing in-
creased the circuit area, the rate of area overhead is smaller than
that of clock improvement, especially on newer FPGA devices.

(2) The area overhead by FU/US increases when R/S, but re-
duces when R/US. This may be explained by the structure of FP-
GAs. In FPGAs, a Slice contains multiple LUTs and flip-flops
(i.e., registers). If either of FUs and registers only are unshared
and the use of components in Slices is unbalanced (i.e., much
more LUTs are used than flip-flops and vice versa), the number
of Slices utilized may increase largely.

(3) FU/SS+R/US achieves smaller area than FU/US+R/US, ex-
cept for in aesenc on the 6-input LUT-based FPGAs (i.e., Virtex-5
and 6). This is because of FU area reduction by sharing large FUs
(i.e., multipliers) and MUX area suppression by limiting the FUs
to be shared. For aesenc on Virtex-5 and 6, on the other hand,
the logic synthesizer could not optimize well MUXs locally con-
centrated, leading to rather area increase. We did not clearly find
what differentiated the result of aesenc from those of adpcm and
gsm since it is resulted from very complicated combinational ef-
fects of the features of applications and those of optimizations
during logic synthesis.

(4) RT-level register retiming was conducted for clock im-
provement, but also has impacts on area increase/decrease. We
found that RT often brings further area reduction in the cases
where FU/SS reduced area and conversely area increase in the
other cases. As have been discussed in Section 4.1, area reduc-
tion and increase, especially on (near-)critical paths can now ac-
count for helping improving and degrading clock frequency, re-
spectively. It is natural for register retiming to slightly increase
or decrease area, but actually the effects of RT (e.g., adpcm) were
much larger than our expectation, which may be resulted from the
FPGA structures and very complicated effects of optimizations
during logic synthesis, discussed in (2) and (3), respectively.

One may expect that unsharing more FUs and registers will re-
move more MUXs, which will lead to larger clock improvement
at the cost of using more resources. But here, from the afore-
mentioned observations, we witnessed that this is not always the
case — for example, for not few designs in our experiments, selec-
tive resource sharing, which is to share critically large resources
only while unsharing the others, overcomes complete resource
unsharing (i.e., FU/US+R/US), in terms not only resource sav-
ing but also clock improvement, in spite of the fact that the for-
mer contains MUXs more than the latter. Such results indicate
that the efforts made by a number of existing works in order to
reduce resources by sharing and/or to improve clock frequency
by unsharing may not always work well. Good resource sharing
strategies may depend on the application features. Further explo-

© 2014 Information Processing Society of Japan

rations will be necessary for developing more sophisticated HLS
technologies, which should be definitely one important direction
in future HLS works.

4.4 MUX Distribution

Finally, in order to prove the discussions above, Fig.9 illus-
trates MUX distribution of the six methods in the three bench-
marks, adpcm, aesenc, and gsm. The x-axis and y-axis represent
the number of MUX inputs classified by the number of MUX
layers and the MUX counts in each classification, respectively.

(1) The two methods with R/S (i.e., FU/S+R/S and
FU/US+R/S) show greater values in the right of the figure
than the other methods, meaning that these two methods contain
a number of large MUXs. R/US pushes down the overall of the
graphs in adpcm and gsm, and shifts the peak of the line graphs
to left in aesenc, which indicates that R/US successfully achieved
great reduction of MUXs in all of the benchmarks. As can be
seen from the figure, the effects of MUX reduction by FU/US
and/or R/US are large especially in gsm, in terms of both MUX
counts and layers. These effects prove that resource unsharing
can effectively bring clock improvement and area reduction at
the same time.

(2) From Fig. 9, we can see that R/US has a bigger impact on
the reduction of the number of MUXSs than FU/US. R/US, how-
ever, may not always bring high clock frequency, i.e., when used
with FU/S. A small bump by FU/S+R/US in the right of each fig-
ure, which is especially remarkable at 65-128 in Fig. 9 (b) and at
33-64 in Fig. 9 (c), represents MUXs inserted before FUs. Such
MUXSs are on (near-)critical paths, leading to little clock improve-
ment or even clock degradation compared with the baseline (i.e.,
FU/S+R/S) as shown in Fig. 6. From these results, we can reaf-
firm that clock frequency is affected more by how large MUXs
are inserted on which paths, rather than by the number of MUXs
in the circuit.

(3) There is no big difference in MUX distribution among
FU/US+R/US, FU/SS+R/US, and FU/SS+R/US+RT. They ef-
fectively mitigate MUX insertion, or accept only small MUXs
when MUX insertion is inevitable. As have been discussed in
(2), clock frequency is largely affected by the location of MUXs
inserted. This may explain as well about clock improvement by
RT, which well relocates MUXs to avoid critical paths without
changing the size of MUXGs.

We have reaffirmed that the location of MUXs inserted is a
more essential factor for clock frequency than the number of
MUXs. Such important fact has been neglected by a number
of existing works in HLS literature, particularly about resource
binding such as Refs. [2], [3], which focus on the number of in-
terconnections between resources (i.e., equivalent to the size of
MUXSs), not but on their location. Obviously, these approaches
are not practical since the problem is not resolved in a realistic
perspective. This fact should be handled more carefully in the
future literature.

4.5 Discussion

In these experiments, we well-observed the effects of various
resource sharing methods and register retiming methods on clock

43

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

frequency, execution time, circuit area, and MUX distribution,
on three different FPGA devices which are widely used. As we
have witnessed from the above results, on FPGA-based designs,
clock frequency and circuit area may rather have a positive corre-
lation, i.e., the larger area, the higher clock frequency, especially
for large applications. Also, we have confirmed that the size and
location of MUXs inserted are a more critical factor for clock
frequency than the total size of MUXs, which have been con-
ventionally used as an optimization metric in a number of HLS
works.

These results will help not only circuit designers to usefully
utilize HLS tools but also researchers/developers to study better
strategies for resource binding and other optimizations. Explor-
ing such strategies considering not only features of applications
at both behavioral and RT levels but also device features (i.e., the
number of inputs to LUTs) is essential for both area and perfor-
mance improvement.

5. Concluding Remarks

As both high-level synthesis (HLS) and FPGAs have been at-
tracting more attentions, FPGA-oriented HLS optimizations have
been recently studied, especially about resource binding (or re-
source sharing), which gives large impacts on circuit area and
performance. However, due to oversight or neglect of some im-
portant facts in existing works, HLS technologies have been still
immature.

In this paper, we have quantitatively evaluated impacts of var-
ious resource sharing methods and register retiming methods on
clock frequency, execution time, circuit area, and MUX distri-
bution of HLS-generated circuits through eight practically large
benchmarks and three widely-used commercial FPGA devices.
Through experiments, we revealed a lot of important insights on
resource sharing which have not been well-focused. Further-
more, based on these results, we also have showed up inade-
quate approaches which have been taken in a number of existing
works. The important findings and directions disclosed in this
paper should contribute to development of more practical and so-
phisticated algorithms for further advance of the HLS technology.

Acknowledgments This work is in part supported by KAK-
ENHI 23300019.

References

[11 Gajski, D.D. et al.: High-Level Synthesis: Introduction to Chip and
System Design, Kluwer Academic Publishers (1992).

[2] Cong, J., Fan, Y. and Xu, J.: Simultaneous Resource Binding and In-
terconnection Optimization Based on a Distributed Register-File Mi-
croarchitecture, TODAES, Vol.14, No.3, Article 35 (May 2009).

[3] Cong, J., Liu, B. and Xu, J.: Coordinated Resource Optimization in
Behavioral Synthesis, Proc. DATE, pp.1267-1272 (2010).

[4] Pilato, C., Ferrandi, F. and Sciuto, D.: A Design Methodology
to Implement Memory Accesses in High-Level Synthesis, Proc.
CODES+ISSS, pp-49-58 (2011).

[5] Hara-Azumi, Y. et al.: Quantitative Evaluation of Resource Sharing
in High-Level Synthesis Using Realistic Benchmarks, 7SLDM, Vol.6,
pp.122-126 (Aug. 2013).

[6] Hara-Azumi, Y. et al.: Selective Resource Sharing with RT-Level Re-
timing for Clock Enhancement in High-Level Synthesis, Proc. ICESS,
pp-1534-1540 (2012).

[71 Hadjis, S. et al.: Impact of FPGA Architecture on Resource Sharing
in High-Level Synthesis, Proc. FPGA, pp.111-114 (2012).

[8] Aho, A.V. et al.: Compilers: Principles, Techniques, and Tools,

© 2014 Information Processing Society of Japan

Addison-Wesley Publishing Company, 2006.

[91 Y Exploration, Inc. (online), available from (http://www.yxi.com/)
(accessed 2012-11-28).

[10] Abe, S., Hagiya, M. and Nakata, I.: A Retargetable Code Generator
for the Generic Intermediate Language in COINS, IPSJ Journal: Pro-
gramming, Vol.46, No.SIG 14 (PRO 27), pp.12-29 (Oct. 2005).

[11] Hauser, J.: SoftFloat (online), available from (http://www.jhauser.us/
arithmetic/SoftFloat.html) (accessed 2012-11-28).

[12] Hara, Y. et al.: Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based high-level synthesis,
JIP, Vol.17, pp.242-254 (Oct. 2009).

[13] Xilinx (online), available from (http://www.xilinx.com) (accessed
2012-11-28).

[14] Mentor Graphics (online), available from (http://model.com/) (ac-
cessed 2012-11-28).

[15] Lee, S. and Choi, K.: High-Level Synthesis with Distributed Con-
troller for Fast Timing Closure, Proc. ICCAD, pp.193-199 (2011).

[16] Xilinx: Virtex-4 FPGA Data Sheet: DC and Switching Characteris-
tics, DS302 (v3.7) (Sep. 2009).

[17] Xilinx: Virtex-5 FPGA Data Sheet: DC and Switching Characteris-
tics, DS202 (v5.3) (May 2010).

[18] Minev, P.B. and Kukenska, V.S.: The Virtex-5 Routing and Logic Ar-
chitecture, Annual Journal of Electronics, pp.107-110 (Oct. 2009).

Yuko Hara-Azumi received her Ph.D.
degree in computer science from Nagoya
University in 2010. From 2010 to 2012,
she was a JSPS postdoctoral research
fellow at Ritsumeikan University. In
2012, she joined Nara Institute of Science
and Technology as an assistant professor.
Since 2014, she has been with the Gradu-
ate School of Science and Engineering, Tokyo Institute of Tech-
nology, where she is currently an associate professor. Her re-
search interests include system-level design automation for em-
bedded/dependable systems. She currently serves as organizing
and program committees of several premier conferences includ-
ing ICCAD, ASP-DAC, and so on. She is a member of IEEE,
IEICE and IPS]J.

Toshinobu Matsuba received his master
degree in computer science from Nagoya
University in 2010. From 2010, he is with
TOYO Corporation.

44

IPSJ Transactions on System LSI Design Methodology Vol.7 37-45 (Feb. 2014)

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu
University in 1999. From 1999 to 2001,
he was a visiting postdoctoral researcher
with the Center of Embedded Computer
Systems, University of California, Irvine.
From 2001 to 2003, he was a researcher
at the Institute of Systems & Information
Technologies/KYUSHU. In 2003, he joined the Graduate School
of Information Science, Nagoya University, as an assistant pro-

fessor, and became an associate professor in 2004. In 2010, he
joined the College of Science and Engineering, Ritsumeikan Uni-
versity as a full professor. His research interests include design
automation, architectures and compilers for embedded systems
and systems-on-chip. He currently serves as editor-in-chief for
IPSJ Transactions on SLDM. He has also served on the orga-
nizing and program committees of several premier conferences
including ICCAD, DAC, DATE, ASP-DAC, CODES+ISSS, and
so on. He is a member of ACM, IEEE and IEICE.

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Infor-
mation Engineering, Toyohashi Univer-
sity of Technology in 2005. From 2004 to
2006, he was a researcher at the Nagoya
University Extension Course for Embed-
ded Software Specialists. In 2006, he
joined the Center for Embedded Comput-

ing Systems, Nagoya University, as an assistant professor. His re-
search interests include system-level design automation and real-
time operating systems. He received the Best Paper Award from
IPSJ in 2003. He is a member of IPSJ.

Hiroaki Takada is a professor at the De-
partment of Information Engineering, the
Graduate School of Information Science,
Nagoya University. He received his Ph.D.
degree in information science from The
University of Tokyo in 1996. He was
a research associate at The University of
Tokyo from 1989 to 1997, and was an as-
sistant professor and then an associate professor at Toyohashi

University of Technology from 1997 to 2003. His research in-
terests include real-time operating systems, real-time scheduling
theory, and embedded system design. He is a member of ACM,
IEEE, IPSJ, IEICE, and JSSST.

(Recommended by Associate Editor: Nozomu Togawa)

© 2014 Information Processing Society of Japan

