
IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

[DOI: 10.2197/ipsjtsldm.8.38]

Regular Paper

Efficient Design Exploration Framework of SW/HW
Systems Based on Tightly-coupled Thread Model

Arif Ullah Khan1,a) Tsuyoshi Isshiki2,b) Dongju Li2,c) Hiroaki Kunieda2,d)

Received: June 2, 2014, Revised: August 22, 2014,
Accepted: October 15, 2014, Released: February 12, 2015

Abstract: In order to meet the increased computational requirement of today’s consumer portable devices, heteroge-
neous multiprocessor system-on-chip (MPSoC) architectures have become widespread. These MPSoCs include not
only multiple processors but also multiple dedicated hardware accelerators. Due to the increase complexity of the MP-
SoC, fast and accurate design space exploration (DSE) for best system performance at early stage of the design process
is desired. Any DSE solution is desired to provide best system partitioning scheme for best performance with efficient
area utilization. In this paper we propose a design space exploration framework for heterogeneous MPSoC based on
tightly-coupled thread (TCT) parallel programing model which can handles system partition exploration and HW syn-
thesis exploration. The proposed framework drastically reduces the exponential size design space into near-linear size
by utilizing the accurate HW timing models as the indicator for system bottleneck and guiding the enumeration pro-
cess of HW version combinations. Experimental results shows the accuracy of the proposed method with an average
estimation error of 1.38% for HW timing of each thread, and 2.80% estimation error for the system-level simulation,
where the simulation speedup factor was in the order of 5,000 times. Currently the proposed framework partially
depends on a high level synthesis (HLS) tool eXCite, but other HLS tools can be easily integrated into the proposed
framework.

Keywords: MPSoC, TCT Model, system performance estimation, design space exploration

1. Introduction

The number of processing engines in consumer embedded and
portable devices is increasing rapidly in order to meet the com-
putational performance requirement of these devices. With the
growing complexity of devices and the improvements in process
technology heterogeneous MPSoC architectures, which com-
bines embedded processors, multiple dedicated hardware accel-
erators and application specific instruction set processors (ASIPs)
connected to a network-on-chip (NoC) to provide a complete in-
tegrated system [1], are widely adopted.

Now in the era of heterogeneous MPSoC, where an applica-
tion will be divided into several software and hardware processing
nodes, new design methodologies are required to address differ-
ent aspects [2] of MPSoC design, which includes software pro-
gramming model, communication and synchronization between
various components, HW accelerator design, integration, system
level performance estimation and design space exploration.

Lack of a viable new programming model has held back sev-
eral multi-processor core architectures, like the PlayStation 3’s
Cell, from mainstream, because years later the application pro-
grammers have barely been able to comprehend how to write

1 Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565–0871, Japan

2 Graduate School of Science and Engineering, Tokyo Institute of Tech-
nology, Meguro, Tokyo 152–8550, Japan

a) khan@ist.osaka-u.ac.jp
b) isshiki@vlsi.ce.titech.ac.jp
c) dongju@vlsi.ce.titech.ac.jp
d) kunieda@vlsi.ce.titech.ac.jp

applications for it. If the tasks and processors in MPSoCs are
not synchronized effectively, will leads to potentially inconsistent
results during run-time. In a typical MPSoC programming, in-
sertion of API calls for explicit inter-thread communication and
synchronization is a time consuming, error prone and laborious
job.

As we look to the future in MPSoC design, we witness two
opposing forces that will have a profound impact. On one hand
increase in software content is driving up data processing require-
ments of SoC platforms whilst on the other hand we see em-
bedded processor clock frequencies being held in check as we
struggle to stay within stringent power envelopes. By replac-
ing computation intensive software part of the code with hard-
ware implementation will not only enhance the performance [3]
of the system but will also reduce overall power consumption
of a system [4]. Manual design and integration of hardware ac-
celerators is not straight forward and very time consuming es-
pecially when it involves multiple software and hardware pro-
cessing nodes. Several High-Level Synthesis (HLS) tools have
emerged in the past decade that attempt to address this challenge.
By using HLS tools dedicated hardware accelerators can be gen-
erated from software code, written in high-level languages like
‘C’. Integrating these hardware accelerators into a system is com-
plex operation because, both on system level and signal level, the
functionality and interfaces of those hardware accelerators differ
from rest of the system.

One of other key aspect in design of a heterogeneous MPSoC
is design space exploration, which is a process of exploring dif-
ferent system architecture for best performance under different

c© 2015 Information Processing Society of Japan 38

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

design constraints while preserving the overall functionality of
the system. Design space exploration is one of the obstacles for
a quick and efficient design of a heterogeneous MPSoC [5]. Now
in the era of heterogeneous MPSoCs in which systems include
multiple hardware and software processing nodes, design space
exploration poses a new set of requirement on the design tools
and methodologies. In past different methods are employed for
design space exploration of MPSoCs. Traditionally detailed sim-
ulation of a system is used for design space exploration, which
includes instruction accurate or cycle accurate instruction-set-
simulator (ISS). Hardware-Software co-simulation is used when
systems consists of hardware and software components. All these
techniques are impractical to evaluate a large number of design
choices due to prohibitively long simulation time. Use of statisti-
cal (analytical) workload models, which can evaluate large design
space exploration efficiently but they need application specific
methodologies for workload generation. There is a need for fast
exploration of functionally similar design alternatives of a sys-
tem with accurate estimations of performance, area and power, in
order to adjust the MPSoC architecture at an early stage of the
design process.

In this paper, we propose a new design space exploration
framework for SW/HW systems which attempts to solve many
of the design challenges stated above. First is the system parti-
tioning methodology for quickly exploring various SW/HW con-
figurations from the sequential application based on our Tightly-

Coupled Thread programming model [6]. Second is the HW
module generation exploration using HLS tool where a variety
of synthesis options (resource allocation constraints) are given by
our framework to the HLS tool in order to provide a wide se-
lection of area-time tradeoffs for each HW components. These
two dimensions of design space, system partition space and HW
synthesis space, create a very large design space to explore. For
this, we propose two orthogonal techniques to shorten the design
space exploration time. First is the trace-driven workload simula-
tion technology [7], [8] for fast evaluation of system performance
of each design points. Second is the design space pruning tech-
nique which drastically reduces the design search space by the
use of HW timing models extracted by the trace-driven workload
model.

Rest of the paper is organized as follows: In Section 2 an
overview of work which addresses various design aspects of an
MPSoC will be presented. In Section 3 TCT MPSoC design
space exploration framework will be explained which will be
followed by area-time pareto-optimal design space evaluation in
Section 4. Experimental results will be presented in Section 5,
which will be followed by discussion and conclusion in Section 6.

2. Related Works

Designing of an MPSoC from conception to realization is a
complex process which involves several steps. Extensive research
has been performed to address the difficulties designers are fac-
ing when going through these steps. Due to increase in processing
nodes in embedded systems, software design becomes more com-
plex. In current practice of parallel programming with MPI [9]
or OpenMP [10], the programmer should manually optimize the

parallel code for each target processing node to ensure error and
deadlock free communication and synchronization. This is a time
consuming and laborious job. In Ref. [11] Paulin et al. proposes
a MultiFlex, a multi-processor SoC programming environment,
targeted at symmetrical multiprocessing with distributed memory
architectures and distributed system object component (DSOC).
In their programing environment a programmer is responsible to
consider target architecture and related tuning of the application.
In Ref. [12] N. Pazos et al presented a framework and a set of
guidelines for transforming existing uni-processor software for
multimedia applications into parallel models that can be used for
design space exploration of MPSoC platforms. They proposed
general guidelines for architecture independent MPSoC program-
ing but they did not tackle the problem of communication and
synchronization between various processing element and how to
ensure deadlock free system.

Another key aspect in an MPSoC design is to replace software
blocks with a dedicated hardware in order to meet real time per-
formance goals of a system. In recent years advancement in HLS
tools has made it easy to generate standalone hardware blocks but
there is still lack of seamless methodologies for generating and in-
tegrating hardware accelerators in a system that can offload work-
load from software processing nodes and enhance performance of
MPSoC running software written in a high level language like C.
In Ref. [13] Y. Ando et al. presented design space exploration tool
called System Builder. Their tool uses a HLS tool “eXCite” [14]
for generation of RTL description of hardware processes. In their
methodology, communication APIs between software processes
and hardware bound processes are written explicitly with chan-
nel models. In contrast, our TCT model eliminates the burden of
writing explicit communication and synchronization code.

In Ref. [15] Ian Page et al. proposes a hardware generation
methodology which uses a concurrent programming language
“occam” for expressing hardware accelerator and then generat-
ing hardware blocks. Their proposed methodology can be used
to generate hardware accelerators but it did not address the prob-
lem of communication and synchronization between hardware
and software. Other methodologies which uses C++ or C [16]
emerges during past decade and all these methodologies focus on
standalone generation of hardware accelerator. The hardware ac-
celerator generation framework proposed by David Lau [17] gen-
erates a tightly coupled hardware accelerator and their framework
also addresses the issues of hardware-software integration. Their
proposed framework is based on single threaded software model
and do not cover MPSoC. In Ref. [18] A. Samahi proposes a
methodology for hardware-software communication synthesis for
MPSoC and target at streaming applications. In their methodol-
ogy the communication between hardware and software is de-
fined by the designer.

In Ref. [19] Takuya et. al presented TECSCE, where soft-
ware components are utilized for HW/SW co-design framework.
While their framework provides automatic generation of commu-
nications and hardware components, it relies on the designer’s
manual descriptions of interface functions for communications
between software components.

The TCT MPSoC programming model offers following advan-

c© 2015 Information Processing Society of Japan 39

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

tages:
• The TCT MPSoC programing model allows the decompo-

sition of sequential programs written in C into concurrent
processes. System partitioning can be done directly on a ref-
erence C code. Thus very early in the design stage, system
partitioning and performance estimation analysis can be per-
formed. This will help the designer to quickly achieve the
desired performance goals for the MPSoC implementation.

• TCT compiler automatically generates inter-thread commu-
nication and synchronization codes for each of the concur-
rent threads to create the system-level concurrent execution
model. These communication/synchronization code inser-
tion is achieved by the data dependence analysis of the en-
tire application which frees the designer from dealing with
time-consuming and error-prone task of designing the inter-
thread communication codes. TCT compiler guarantees the
identical behavior of the original sequential code and the par-
allelized code, automatically avoiding race conditions and
deadlocks.

Early design space exploration is another key factor in cost
and performance efficient design of a heterogeneous MPSoC. In
Ref. [5] M. Gries presented a detail overview of different meth-
ods used for Design Space Exploration at system and micro-
architecture levels. In Ref. [20] P. van Stralen has proposed a sce-
nario based design space exploration methodology for MPSoCs.
They argue that since the number of workload scenario is too
large for exhaustive evaluation of all of the design alternatives.
Their work is based on workload aware design space exploration
by dynamically limiting the workload scenario. In Ref. [21] T.
Wild propose TAPES framework based on trace simulation for
fast design space exploration of complex SoC architecture. They
rely on manual specifications of the traces for each SoC compo-
nents, especially the timing behavior of CPUs and HW accelera-
tors.

In contrast to the previous works on design space exploration
mentioned above, our system performance estimation technique
based on trace-driven workload simulation technology [7], the
generation of application execution traces and accurate timing
models for both SW and HW components are carried out au-
tomatically, and near cycle accurate performance estimation for
each design instance can be achieved with significantly shorter
amount of time compared to conventional system-level simula-
tion technologies.

3. TCT MPSoC Design Space Exploration
Framework

Authors have previously proposed an application development
framework for an MPSoC based on the Tightly-Coupled Thread
(TCT) model [6], [22]. These works were further extended in
Ref. [8] where high-level synthesis tool was utilized to generate
HW accelerators for several SW threads defined by the TCT pro-
gramming model, and a unified timing modeling scheme was pro-
posed for both SW threads and HW accelerators for fast and ac-
curate performance estimation of mixed SW/HW components.

In this paper, we turn our focus on the design exploration
methodology of mixed SW/HW components, where authors’ pre-

Fig. 1 TCT MPSoC design space exploration flow.

vious works are integrated with new features to establish a com-
plete tool chain to enable a thorough design exploration of vari-
ous design decisions at each design phases. Figure 1 shows the
flow and various steps of the proposed design space exploration
framework.

Below summarizes the contribution of this paper.
A System partition exploration: We utilize the “thread scope”

semantics of the TCT model proposed in Ref. [6] to allow
the designers to express a variety of different system parti-
tion instances on a single C-source. Here, we introduce a
new effective macro-based coding style to control the thread
scope insertions to reflect the system partitioning strategy
(Section 3.1).

B System model generation: For each system partition in-
stance, a complete set of component models are generated
for RTL integration and functional verification. RTL gen-
eration using HLS tool eXCite and communication wrapper
RTL generation was presented previously in Ref. [8]. Here,
we additionally propose an automatic generation of cus-
tomized partial crossbar interconnect which has high scal-
ability with number of threads (Section 3.2.2). We have also
refined the systematic test environment generation for the en-
tire SW/HW systems as well as single-unit test models (Sec-
tion 3.2.4).

C HW thread resource allocation exploration: For each parti-
tioned behavioral C-codes for HW synthesis, we propose a
new resource allocation constraint generation scheme for the
HLS tool to control the area-time tradeoff exploration of the
HW synthesis design space (Section 3.3).

D Area-time Pareto-optimal design point evaluation: Output of
our proposed design exploration of mixed SW/HW system
is the enumeration of Pareto-optimal design points. By uti-
lizing our previous work on unified timing model for SW
threads and HW accelerators [8], we propose a new design
space pruning heuristic algorithm to obtain a near linear-
order number of instances of Pareto-optimal design candi-
dates from an exponential size exhaustive design space (Sec-
tion 4.3). Finally, our previous trace-driven workload simu-

c© 2015 Information Processing Society of Japan 40

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

lation technique [7], [8] is applied to evaluate the total num-
ber of clock cycles for each design candidates in order to
obtain the area-time Pareto-optimal design curve generation
from all system partitioning instances (Sections 5.2, 5.3).

3.1 System Partition Exploration
In TCT design space exploration framework a designer starts

from a pure sequential C description of the application. The se-
quential software is analyzed by TCT tools and feedback about
computation and communication intensive part of the code is pro-
vided by the tool. In the proposed framework the system parti-
tioning is done directly on the C programs by the designer.

In TCT MPSoC design framework system partitioning is car-
ried out by declaring thread scopes. A thread scope indicates a
separate parallel process, which we simply refer to as threads, to
be executed on a (separate) software processing node or as a ded-
icated hardware block. Thread scope’s statement syntax is given
as:

THREAD(name) { statements }
Any C statement (including function calls and nested thread-

scopes) can be included inside the thread-scope region as long
as the thread-scope forms a Single-Entry Single-Exit (SESE) re-
gion. Thread annotations can be inserted manually or through
MAPS framework [23]. MAPS framework assists the designer
with rich program analysis capabilities to emit thread annotated
code semi-automatically.

For the demonstration of design space exploration, JPEG en-
coder [24] is used throughout this paper, because it is a real-world
multimedia processing problem, its moderate complexity is well
suited for the verification of the proposed design space explo-
ration framework. JPEG encoder application has the following
functional blocks:
• RGB: This function perform color space conversion from

RGB to YCbCr space
• BUF: line-buffers for 8x8 block processing, down-sampling

of chroma components
• BLK: 8x8 block processing controlling 4 Y-blocks and

Cb/Cr blocks
• DCT: The discrete cosine transform function convert

8x8 pixel block of YCbCr to frequency domain
• Q: DCT coefficient quantization is performed for reducing

the high frequency components
• E: Quantized coefficients are compressed using Huffman

coding.
• OUT: Each byte output data is stored.
Figure 2 shows the core part of the JPEG encoder. In the TCT

framework, root thread is defined as the code region which is not
enclosed by any thread scope.

Except for the explicit thread scope in emit byte, other thread
scope insertions are specified through TH XX macros whose def-
inition is linked to the system partition strategy specified by
THREAD COUNT as below:

#define THREAD_COUNT spc // spc=3,4,5,7,8,12,16

#if ENABLE_XX // if (ENABLE_XX==1), then THREAD(XX) is inserted

#define TH_XX THREAD(XX) // ex. #define TH_BLK THREAD(BLK)

Fig. 2 JPEG encoder program with thread scopes for the top function.

#else

#define TH_XX // ex. #define TH_BLK

#endif

Examples of thread scope insertion macro enable conditions
(ENABLE XX) are shown below.

#define ENABLE BLK (THREAD COUNT >=3)//inserted on spc=3,4,5,7,8,12,16

#define ENABLE RGB (THREAD COUNT>=4)//inserted on spc=4,5,7,8,12,16

#define ENABLE E (THREAD COUNT>=5)//inserted on spc=5,7,8,12,16

#define ENABLE DCT (THREAD COUNT>=7)//inserted on spc=7,8,12,16

#define ENABLE Q (THREAD COUNT>=7)//inserted on spc=7,8,12,16

#define ENABLE BUF (THREAD COUNT>=8)//inserted on spc=8,12,16

#define ENABLE BLK Y1 (THREAD COUNT>=12)//inserted on spc=12,16

#define ENABLE BLK C (THREAD COUNT>=16)//inserted on spc=16

First #define enables thread scope insertion of XX in that lo-
cation, whereas the second #define converts TH XX into null-
string which as no effect on the source code. A desired set of
thread scopes can be inserted by changing the condition before
the macro definitions. Thus, thread scope semantic of our TCT
programming model allows the designer to test different system
partition strategy on the same source code by simply changing
the definitions of these macros. In this work, we first explore the
system partition instances described below. Here, root thread and
THREAD(OUT) are included on all system partition instances,
where root thread is assumed to be executed on the processor, and
THREAD(OUT) as external device storing the output data, where
both threads will not be the target for HLS HW generation.
• SP3: root, BLK, OUT
• SP4: root, RGB, BLK, OUT
• SP5: root, RGB, BLK, E, OUT
• SP7: root, RGB, BLK, DCT, Q, E, OUT
• SP8: root, RGB, BUF, BLK, DCT, Q, E, OUT
TCT thread scope semantic offers another interesting feature

for system partitioning when thread scopes are inserted in the lo-
cations TH BLK Y1 and TH BLK C. Function BLK8x8 called
from these locations contains DCT, Q and E threads (when en-
abled by the TH XX macro definition). When multiple thread
scopes (BLK, BLK Y1, BLK C) calls this function, DCT, Q and
E threads will be cloned at each caller threads. This hierarchical
partition structure allows the designer to create a large number of
partitioned threads efficiently in the C code. By enabling thread
scopes for BLK Y1 and BLK C, we add the below set of system
partition instances in the exploration space:
• SP12: root, RGB, BUF, BLK, DCT, Q, E, BLK Y1, DCT2,

c© 2015 Information Processing Society of Japan 41

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

Fig. 3 Functional pipelines formed by concurrent threads in JPEG.

Fig. 4 System partition structure “SP16” of JPEG encoder (all other system
partitions can be derived by disabling some of these thread scopes).

Fig. 5 System verification RTL models generated by our design framework.

Q2, E2, OUT
• SP16: root, RGB, BUF, BLK, DCT, Q, E, BLK Y1, DCT2,

Q2, E2, BLK C, DCT3, Q3, E3, OUT
Figure 3 shows the core loop structures of system partition SP8

and its timing behavior, where directed edges in the left part of
the figure denotes the dependencies between threads. As this fig-
ure shows, the concurrent execution model created by TCT com-
piler operates in hierarchical functional pipeline fashion, where
the iteration throughput of each pipeline is different for each loop
structure (loops L0, L1 and L2 in Fig. 2).

Figure 4 shows the hierarchical system partition structure of
SP16. Here, loop structures are dependency edges are omitted
for simplicity, where vertically placed threads indicate dependen-
cies and horizontally placed threads indicate parallelisms.

3.2 System Model Generation
For each system partition instance, a complete set of compo-

nent models are generated for RTL integration and functional
verification. Figure 5 shows the system-level RTL verification
models and single-unit test model automatically generated by our
framework.

Fig. 6 Crossbar interconnect structure (a) full-crossbar (b) customized
partial-crossbar according to the communication requirement of the
partitioned application.

3.2.1 RTL Generation of SW/HW Threads
Separate C-source file is generated for each “thread scope” re-

gion, which can be implemented either as SW thread executed
on a processor or a HW thread synthesized by HLS tool. These
partitioned behavioral C-codes contain communication API calls
that are responsible for inter-thread communications (thread acti-
vation, data transfer and data receive).

In this paper, we assume that the main thread (code regions
outside any thread scopes) is implemented as SW thread only,
and all others are implemented as either SW or HW threads. For
SW thread, we use the RTL model of our TCT processor [22]
which contains inter-processor communication module for fast
message passing. Also, as explained in Section 3.1, OUT thread
is assumed to be an external device storing the output data, where
RTL verification module is generate as shown in Fig. 5 (a).
3.2.2 Customized Partial Crossbar Interconnect RTL

Model Generation
Our original efficient interconnect infrastructure [22] consist-

ing of communication module inside the processor and a fast
crossbar switch is automatically generated as RTL model. Here,
instead of providing a full point-to-point connectivity with a full
crossbar connection required for multi-core systems which may
run different applications, we optimize the connection according
to the connectivity requirements of the given system partition in-
stance which results in drastic decrease in interconnect circuit
area.

In Fig. 6 (a), a full crossbar connection is shown, whereas in
Fig. 6 (b) a partial crossbar connection which reflects the connec-
tivity requirements of the 7-thread design instance (SP7) given in
Section 3.1 as shown below:

T0→ {T1, T2, T4, T5, T6}, T1→ {T2}
T2→ {T3, T4, T5}, T3→ {T4}
T4→ {T5}, T5→ {T0, T6}, T6→ {empty}
Since N : 1 multiplexer can be implemented as a tree of N − 1

2-input multiplexers, the total number of 2-input multiplexers re-
duces from 42 multiplexers in original full-crossbar interconnect
to only 6 multiplexers in the customized partial crossbar intercon-
nect.

Figure 7 shows the comparison of full-crossbar complexity
against customized partial-crossbar. Here, the connectivity re-

c© 2015 Information Processing Society of Japan 42

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

Fig. 7 Comparison of crossbar complexity: full-crossbar vs. customized
partial-crossbar.

quirements correspond to SP3, SP4, . . . SP12, SP16 in Section 3.1
for JPEG encoder case.

As we can see in the figure, while the number of 2-input mul-
tiplexers on N-terminal full-crossbar increases in the order of
O(N2), the customized partial-crossbar increases at a much lower
rate, which presents a good scalability for large number of termi-
nals.
3.2.3 Communication Wrapper Module Generation for HW

Threads
Due to the different communication protocol supported by the

HLS tool eXCite and our TCT interconnect, we automatically
generate the communication wrapper module for the protocol
conversion as reported in Ref. [8]. This communication wrapper
needs to be custom-generated for individual HW threads since the
configuration of communication channels (data size, input/output
port IDs, source/destination information) differs.
3.2.4 Test Vector Generation for SW/HW Threads

From the original C-codes containing thread scope descrip-
tions, code instrumentation is performed to generate the test vec-
tor at the interconnect boundaries. Input vectors and output vec-
tors feeding into and out of each SW/HW thread is generated
in separate files which are used for individual SW/HW compo-
nent functional verification with RTL simulation as well as the
verification of the entire SW/HW system. For the system-level
verification, output data received by THREAD(OUT) module are
checked against the output data obtained this test vector genera-
tion framework.

For single-unit test model shown in Fig. 5 (b), single-unit test
module containing the input/output vectors for a particular thread
drives the RTL simulation for the HW thread via communication
wrapper module for thread-level functional verification. Also,
this single-unit test model is used to verify the HW timing ex-
traction method described in the later section.

3.3 HW Synthesis Exploration
Here, we describe the tool flow for generating a set of RTL

descriptions for each HW component (partitioned C-code) with
different resource allocation strategies using HLS tool. The ob-
jective here is to generate a variety of HW versions having area-
time tradeoffs so as to provide the designer with wide spectrum
of design choices on each system partitioning instance. On the
particular HLS tool “eXCite” we utilize for this work, we use the

Table 1 Resource allocation of ADD components on DCT HW-thread
(numbers in bracket indicates bit-widths, and ADD (all) is the total
component count).

HW version # 1 2 3 4
ADD(7) 12 4 0 0
ADD(9) 1 1 0 0
ADD(10) 3 3 0 0
ADD(17) 1 1 1 0
ADD(18) 3 3 3 0
ADD(27) 2 2 2 0
ADD(32) 2 2 2 1
ADD(all) 24 16 8 1

following synthesis options to create multiple HW versions:
• “Best performance with maximum component sharing”:

Sufficient number of datapath components are allocated to
maximize performance (minimizing the number of control
steps) while components are shared as much as possible.

• “Maximum component sharing”: In this synthesis option,
the user can additionally specify the datapath resource allo-
cations (number of datapath components with particular bit-
width for each component type). If no resource allocation is
specified, the tool will allocate the minimum (one at most)
for each datapath component type.

In order to automate the generation of J multiple HW compo-
nent versions, we developed a tcl script that controls the eXCite
tool to perform the following tasks:
(1) Initial synthesis: Synthesize the target C-code with “Best

performance with maximum component sharing” option.
(2) Synthesis of “middle” versions: Parse the generated RTL

(Verilog) code from Step 1 to extract the resource allocation
information, and then generate J − 2 varieties of resource
allocation constraints for each component type to produce
these J − 2 “middle” versions. Here, we take a simple strat-
egy of linearly sweeping the initial “best performance” re-
source allocation.

(3) Synthesis of “maximum component sharing” version: Fi-
nally, synthesize the target C-code with no resource alloca-
tions to generate the most compact RTL.

In Table 1, resource allocations of adders with various bit-
widths on J = 4 HW versions are shown for DCT HW-thread. To
deal with the resource allocation of various bit-width, we first cre-
ate a resource allocation list in the increasing order of bit-widths,
and gradually decrease the resource allocation from the small-
est available bit-width. In the example shown in Table 1, there
are initially 24 ADD components with bit-widths ranging from
7 to 32. Using the linear sweep strategy among J versions with
M components at version 1 (“Best Performance”), the number of
components at version j (j = 1, . . . , J) is set as

⌈
M−1
J−1 (J − j) + 1

⌉
.

4. Area-time Pareto-optimal Design Point
Evaluation

In this section, we explain the overall design space exploration
methodology to present the designers with area-time Pareto-
optimal design curves. One of the important challenges in de-
sign space exploration is to provide a search space pruning tech-
nique to drastically reduce the search space size. Another key
issue is how to reduce the evaluation time of each design points,

c© 2015 Information Processing Society of Japan 43

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

where the conventional means was via time consuming RTL sim-
ulations. We will first outline our previous work on the timing ex-
traction technique for HW components generated with HLS tool,
which becomes an essential means to realize the design search
space pruning process as well as reducing the overall design eval-
uation time.

4.1 HW Timing Extraction Technique
Our timing extraction technique for HW components is based

on the novel trace-driven workload simulation technology [7].
This technology is composed of the following key concepts:
• Branch bitstream is a compact encoding scheme for repre-

senting the program execution trace as a sequence of branch
condition bits. It is generated through source-level instru-
mentation for emitting branch condition bits in the execution
order.

• Program trace graph (PTG) is an abstract workload model of
the application that contains accurate cycle counts for indi-
vidual instruction streams. PTG-node consists of function-
start, function-end, branch, call, as well as communication
instructions (CT, DT, DS) inserted by the TCT compiler.
PTG-edge corresponds to the code segment bordered by
PTG-node instructions and is annotated with accurate cycle
count information.

Figure 8 (a) shows an example of PTG, where a PTG-node
consists of function-start, function-end, branch and call. PTG-
edge corresponds to the code segment without conditional jumps,
and the timing information is annotated on the PTG-edge. Also
in Fig. 8 (a), branch bitstream of 1011001 represents the program
execution trace that can be decoded into the PTG-edge sequence
(e0 e1 e7 e9 e2 e3 e3 e4 e5 e7 e8 e6). This trace decoding is accom-
plished by traversing the PTG and reading the branch bitstream
one bit at a time upon reaching a branch node to determine which
branch path to continue traversing.

In similar way we construct a PTG for each thread called the

Fig. 8 (a) Program trace graph (PTG), (b) Thread-PTG-sync-nodes for
modeling communication.

thread program trace graph (T-PTG) that corresponds to the PTG
that is enclosed by the SESE thread-scope region as shown in
Fig. 8 (b). Each T-PTG is terminated by thread-start and thread-
end nodes instead of function-start and function-end nodes in the
normal PTG. Each TCT thread includes TCT communication in-
structions (CT, DT, DS) that interact with other threads through
MPSoC interconnect.

Based on this technology, we have previously extended the
PTG representation to model the algorithmic state machine of the
HW components generated by HLS tool eXCite [8]. It consists of
the following steps:
(1) State transition graph extraction: RTL code generated by eX-

Cite is parsed and the state transition information is extracted
to construct the state transition graph (STG).

(2) STG reduction: Unconditional STG-edges are collapsed and
annotated as the state machine cycles between adjacent con-
ditional states. Also, a group of conditional STG-edges cor-
responding to the handshaking protocol of the message chan-
nel accesses of the HW component are identified and re-
placed with communication state nodes of the matching TCT
communication instructions (CT, DT, DS).

(3) Graph matching between reduced-STG and PTG: After STG
reduction, the reduced-STG reflects the same abstract com-
putational model as PTG of the original SW code. Graph
matching is performed to identify the corresponding edge
pairs of reduced-STG and PTG. The state machine cycles on
the STG-edges are then back-annotated to the corresponding
PTG-edges to reflect the HW timing.

4.2 Timing Characterization of HW Threads
Timing behavior of HW components depends on two factors.

First is the state machine cycles annotated to the PTG-edge that
characterizes the individual fine-grain computational workload
of the HW’s algorithmic state machine. Second is the input-
dependent program execution behavior encoded as branch bit-
stream and then decoded back as PTG-edge sequence. In the case
of JPEG encoder, input data set includes the input image as well
as the compression rate setting where HW timing behavior can
change drastically depending on the nature of input image and
the compression rate. In case of THREAD(Q), DCT coefficient
quantization contains conditional check to determine whether the
costly division is necessary. In the case of THREAD(E), Huffman
encoding behavior depends largely on the sequence of quantized
DCT coefficients. For these reasons, it is very important that the
design space exploration is carried out on a variety of input data
instead of a single input data. We will use the below two notations
to characterize the timing behavior of HW components, where j

is the HW version index and k is the index of the input data set
used in the application execution:
• PTG-edge cycle count c j(ei): The timing information an-

notated to PTG-edge ei of the jth HW version characterizes
the fine-grain workload of the corresponding set of compu-
tations.

• PTG-edge occurrence nk(ei): On the kth input data set,
branch bitstream is generated and decoded as PTG-edge
sequence as described previously. PTG-edge occurrence

c© 2015 Information Processing Society of Japan 44

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

nk(ei) is the number of occurrence of PTG-edge ei in the
kth PTG-edge sequence. As reported in Ref. [8], PTG-edge
sequence decoding takes roughly the same amount of com-
putation time compared to the application’s execution time,
and where the enumeration of PTG-edge occurrence can be
done during the PTG-edge sequence decoding.

From the above two annotated parameters c j(ei) and nk(ei) on
PTG-edge ei, HW cycle count T (j, k) of jth HW version on kth

input data set is simply calculated as the sum-of-products of the
two parameters:

T (j, k) =
∑

c j(ei) · nk(ei) (1)

The significance of Eq. (1) is that once the PTG-edge cycle
counts on J sets of HW versions are extracted, using our HW
timing extraction technique, and K sets of PTG-edge occurrences
are enumerated through PTG-edge sequence decoding, then J×K

combinations of HW cycle counts T (j, k) can be computed essen-
tially on-the-fly. This fact is a large contrast to the conventional
HW timing characterization that requires J × K sets of RTL sim-
ulation runs. These HW cycle counts represent the overall inter-
nal workload of the algorithmic state machine inside each HW
thread, but excludes other timing factors induced by the intercon-
nect and inter-thread communications, which are to be handled
later by our trace-driven workload simulation framework.

Figure 9 shows the HW cycle counts of two HW threads on
various HW versions and input data sets. Here, “ImX Y” in
the graphs is the input data set (X: input image data, Y: com-

Fig. 9 HW cycle counts (Y axis) on various HW versions (X axis) and input
data sets (each curve). (a) THREAD (RGB), (b) THREAD (E).

pression setting) where the two images have the same size of
300x400 pixels. HW cycle counts of THREAD(RGB) shown in
Fig. 9 (a) are identical on all input data sets, since its computation
workload is independent on the image data and compression set-
ting. On the other hand, HW cycle counts of THREAD(E) shown
in Fig. 9 (b) present high dependency on the input data sets.

4.3 Pareto-Optimal Design Candidate Selection
Here, design search space pruning technique utilizing the HW

cycle counts is explained. In generating area-time Pareto-optimal
design curves of the SW/HW system, there is one issue of how to
take into account the difference in the program execution behav-
ior on various input data sets in the design search space. In this
work, we choose to perform the design exploration separately on
each input data set, that is, for K sets of input data used for pro-
gram execution, K separate Pareto-optimal design curves will be
generated. Therefore, in this part, we focus on enumerating the
Pareto-optimal design candidates for a single program execution
trace on certain input data set.
4.3.1 HW Version Set Pruning

The first step in design space pruning is a trivial process of
eliminating HW versions that are not area-time Pareto-optimal.
As described in the previous section, various HW versions are
generated by linearly sweeping the resource allocations for each
component type, in the expectation that smaller resource alloca-
tion leads to smaller circuit area. While this expectation holds
true for many cases, there are some cases where the circuit over-
head for inserting multiplexers on shared datapath components
exceeds the resource allocation reduction thereby increasing the
overall circuit area.

Also, SW threads are treated in the same manner as HW
threads, where SW cycle counts are obtained from the original
PTG-edge cycle counts that corresponds to the SW execution on
the processor, and SW thread area corresponds to the processor
area. HW version index j = 0 is allocated for SW thread, and
j = 1, 2, . . . , J corresponds to HW threads. Figure 10 shows
the area-time plots of HW/SW threads on system partitions SP3
and SP4. While RGB thread is same for SP3 and SP4, BLK
thread in SP3 is split into BLK and E threads in SP4. Here, dot-
ted red circles denote non-Pareto-optimal HW versions. The cir-
cuit area data were obtained from Synopsys Design Compiler on
0.18 um CMOS library, where the area unit is measured in um2.
For system partitions with more number of threads (SP5, SP7,
SP8, SP12, SP16), all synthesized HW threads had smaller area
and smaller cycle counts compared to that of the processor (SW
thread), and thus SW threads were all excluded from the area-
time Pareto-optimal HW version sets on these system partitions.

Table 2 shows the area-time Pareto-optimal HW version set
and the total design space size for each system partition instance.
Total design space size is given as the product of the number of
HW versions for all HW threads, corresponding to an exhaus-
tive search where all combinations of HW versions at each HW
thread are evaluated. Even after the HW version pruning, we can
observe the exponential growth of the design space size on the
number of HW threads.

c© 2015 Information Processing Society of Japan 45

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

Fig. 10 Area-time plots of HW/SW threads on SP3 and SP4 (dotted red circles denote non-Pareto-optimal
HW versions).

Table 2 Area-time Pareto-optimal HW version set and the total design
space sizes for each system partition instance.

System
partitioning

Pareto-optimal HW version sets
(numbers represent HW version indices)

#design
points

SP3 BLK{ 0, 1, 2, 3, 4 } 5
SP4 RGB{ 1, 3, 4}, BLK{ 0, 1, 2, 3, 4} 15
SP5 RGB{1, 3, 4}, BLK{1, 2, 3, 4}, E{1, 2, 3} 48
SP7 RGB{1, 3, 4}, BLK{1, 2, 3, 4}, DCT{1, 3, 4},

Q{1}, E{1, 2, 3}
108

SP8 RGB{1, 3}, BUF{1, 2, 3, 4}, BLK{1, 2, 3, 4},
DCT{1, 3, 4}, Q{1}, E{1, 2, 3}

288

SP12 RGB{1, 3}, BUF{1, 2, 3, 4}, BLK{1},
DCT{1, 3, 4},Q{1},E{1, 2, 3}, BLK Y1{1, 4},
DCT2{1, 3, 4}, Q2{1}, E2{1, 2, 3, 4}

1,728

SP16 RGB{1, 3}, BUF{1, 2, 3, 4}, BLK{3, 4},
DCT{1, 3, 4}, Q{1}, E{1, 2, 3},
BLK Y1{1, 4}, DCT2{1, 3, 4}, Q2{1},
E2{1, 2, 3, 4}, BLK C{2, 3}, DCT3{1, 3, 4},
Q3{1},E3{1, 2, 3}

62,208

4.3.2 HW Design Point Enumeration
As the final preparation phase for the actual design space ex-

ploration, we describe the algorithm for reducing the design space
size by enumerating a small set of design points that are expected
to be Pareto-optimal. As illustrated in Fig. 3, TCT Model gener-
ates a system partition where threads execute in pipeline fashion.
The key insight for deriving the HW design point enumeration al-
gorithm is the fact that pipeline throughput is determined by the
critical (slowest) pipeline stage, and therefore speeding up this
critical pipeline stage will lead to increase in the overall pipeline
throughput.

Each design point within the design space is denoted as
DN(i1, i2, . . . , iN) where N is the number of HW threads in the
system partition, and in is the HW version index on nth HW thread
(n = 1, 2, . . . ,N). Due to the HW version pruning process, each
HW version set is sorted by the decreasing order of area and in-
creasing order of cycle counts. Also, the HW cycle count notation
T (j, k) in Eq. (1) is modified to Tn (in) on HW version in on nth

HW thread. Here, input data set index k is ignored since the de-
sign space evaluation is separated for each input data set. Next,
we define two operators for retrieving the HW version index in:

Fig. 11 HW design point enumeration algorithm.

Table 3 HW design point enumeration on system partition SP7 (RGB{1, 3,
4}, BLK{1, 2, 3, 4}, DCT{1, 3, 4}, Q{1}, E{1, 2, 3}).

HW version index HW cycle counts
RGB BLK DCT Q E

(4) 3,035,797 (4) 1,937,734 (4) 2,396,884 (1) 1,718,477 (3) 1,504,628
(3) 2,252,744 (4) 1,937,734 (4) 2,396,884 (1) 1,718,477 (3) 1,504,628
(3) 2,252,744 (4) 1,937,734 (3) 1,051,684 (1) 1,718,477 (3) 1,504,628
(1) 1,192,972 (4) 1,937,734 (3) 1,051,684 (1) 1,718,477 (3) 1,504,628
(1) 1,192,972 (3) 943,084 (3) 1,051,684 (1) 1,718,477 (3) 1,504,628
(1) 1,192,972 (3) 943,084 (3) 1,051,684 (1) 1,718,477 (2) 1,418,078
(1) 1,192,972 (3) 943,084 (3) 1,051,684 (1) 1,718,477 (1) 1,393,839
(1) 1,192,972 (3) 943,084 (1) 983,284 (1) 1,718,477 (1) 1,393,839
(1) 1,192,972 (2) 917,434 (1) 983,284 (1) 1,718,477 (1) 1,393,839
(1) 1,192,972 (1) 914,584 (1) 983,284 (1) 1,718,477 (1) 1,393,839

• IDX AO(n): This operator returns the highest HW version
index (area-optimal HW version index) of nth HW thread.

• IDX NEXT (n, in): This operator returns the highest HW
version index after in (that is, the index immediately smaller
than in). If in is the smallest HW version index, it returns 0.

The HW design point enumeration algorithm is described in
Fig. 11. DPset is the enumerated design point set. In (1), the
algorithm starts from the area-optimal design point. In (3), the
critical HW cycle count Tmax and the corresponding HW thread
index c is evaluated. In (4), HW version index ic of the critical
HW thread is updated to IDX NEXT (c, ic) which is the HW ver-
sion with less HW cycle count.

Table 3 shows the HW design point enumeration on 5 HW
threads (SP7). In the table, shaded cells represent the critical HW
version at each design point, where they are replaced by smaller

c© 2015 Information Processing Society of Japan 46

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

Table 4 Comparison of design space search sizes.

System
Partitioning

HW versions at each thread S IZEENUM S IZETOT AL

SP3 5 5 5
SP4 3, 5 7 15
SP5 3, 4, 3 8 36
SP7 3, 4, 3, 1, 3 10 108
SP8 2, 4, 4, 3, 1, 3 12 288

SP12 2, 4, 1, 3, 1, 3, 2, 3, 1, 4 15 1728
SP16 2, 4, 2, 3, 1, 3, 2, 3, 1, 4, 2, 3, 1, 3 21 62,208

HW version indices on the succeeding design point.
Next, let us compare the total number of enumerated design

points obtained by our algorithm against exhaustive search space
size. Let S n be the number of HW versions on nth HW thread.
Then the number of enumerated design points S IZEENUM and
the exhaustive search space size S IZETOT AL are given as :

S IZEENUM =

N∑

n=1

S n − N + 1

S IZETOT AL =

N∏

n=1

S n (2)

Table 4 shows the design space size comparison on each sys-
tem partition instance.

5. Experimental Results

In this section, we first show the experimental results on the
accuracy of our HW timing characterization technique and trace-
driven workload simulation on the overall SW/HW system au-
tomatically synthesized from our proposed design space explo-
ration framework. We then show the design space coverage of
the proposed HW design point enumeration algorithm compared
against the exhaustive design search space. Finally, the over-
all design space exploration results as a set of area-time Pareto-
optimal curves on various system partitions and input data sets
are shown.

For the experiments in this section, following machine envi-
ronments were used to run the RTL simulation and our design
space exploration framework:
(1) RTL simulation: Synopsys VCS on Linux server machine

(2.53 GHz Intel Xeon E5630 16-core CPU with 16 GB mem-
ory)

(2) Design space exploration framework (including trace-driven
workload simulation): Windows 7 machine (3.4 GHz Intel
Core i7-2600 CPU with 8 GB memory)

5.1 Comparison of Trace-Driven Workload Simulation and
RTL Simulation

Here, timing accuracy of our HW thread timing characteriza-
tion technique described in Section 4.2 is examined. Table 5
shows the comparison of cycle counts obtained by trace-driven
workload model in Eq. (1) against actual RTL simulation on a
given input data set. Here, RTL simulation is performed sepa-
rately on each HW thread on the single HW unit test environment
explained in Section 3.2.4. We can see that the HW cycle counts
estimated by our model have high accuracy with 1.38% average
estimation error on 5 HW (SP7) version set.

In Table 6, we show the cycle count comparison of the

Table 5 Comparison of HW cycles count of each HW version on RTL simu-
lation and trace-driven workload model (TW) cycle counts on sys-
tem partition SP7.

HW versions RTL cycle
count

RTL sim
time (sec)

TW cycle
count

estimation
error

RGB 1 1,137,495 9.05 1,192,972 4.65 %
RGB 3 1,952,248 14.38 2,008,636 2.80 %
RGB 4 2,979,713 16.04 3,035,797 1.84 %
BLK 1 919,309 8.98 914,584 0.51 %
BLK 2 922,178 9.35 917,434 0.51 %
BLK 3 947,828 8.44 943,084 0.50 %
BLK 4 1,942,478 12.48 1,937,734 0.24 %
DCT 1 970,424 7.03 983,284 1.30 %
DCT 3 1,041,674 7.37 1,051,684 0.95 %
DCT 4 2,386,874 10.91 2,396,884 0.41 %

Q 1 1,769,608 5.45 1,718,477 2.97 %
E 1 1,388,782 8.50 1,393,839 0.36 %
E 2 1,415,871 8.36 1,418,078 0.15 %
E 3 1,472,933 7.92 1,504,628 2.10 %

Table 6 Comparison of SW/HW system cycles count on RTL simulation
and trace-driven workload simulation on system partition SP7 (en-
tire trace-driven workload simulation time is 0.348 sec).

HW design
points

RTL cycle
count

RTL sim
time (sec)

TW cycle
count

estimation
error

{4,4,4,1,3} 3,264,084 142.53 3,226,879 1.13 %
{3,4,4,1,3} 2,692,388 139.31 2,693,684 0.04 %
{3,4,3,1,3} 2,452,460 132.81 2,435,549 0.68 %
{1,4,3,1,3} 2,280,539 124.90 2,255,805 1.08 %
{1,3,3,1,3} 2,011,140 117.70 1,996,898 0.70 %
{1,3,3,1,2} 2,011,002 117.57 1,954,135 2.82 %
{1,3,3,1,1} 2,011,757 117.50 1,943,311 3.40 %
{1,3,1,1,1} 2,013,908 116.66 1,942,467 3.54 %
{1,2,1,1,1} 2,012,802 118.09 1,942,086 3.51 %
{1,1,1,1,1} 2,012,217 117.83 1,942,067 3.48 %

SW/HW system-level behavior of trace-driven workload simu-
lation against RTL simulation. As we have explained in Sec-
tion 4.1, our trace-driven workload simulation framework mod-
els the dynamic timing behavior of the interconnect, such as
data transfer stalls due to request collision on the same destina-
tion, and inter-thread communication, such as buffer-full stalls at
the senders and buffer-empty stalls at the receivers. As we can
see in the table, our trace-driven workload simulation exhibits
high cycle accuracy having 2.80% average estimation error on
the system-level simulation. Comparing the simulation time, 10
RTL simulation runs take 1,245 seconds, whereas the trace-driven
workload simulator requires only 0.348 seconds, which translates
to a 5,000 times speedup. Here, the trace-driven workload simu-
lator takes PTG information and branch bitstream data as inputs,
and performs PTG-edge sequence decoding during the workload
simulation to obtain the overall cycle counts reported in Table 6.

5.2 Pareto-Optimality Evaluation of Enumerated HW De-
sign Points

We have already shown in Eq. (2) that the design point enu-
meration algorithm can drastically reduce the design space search
size, from exponential size to near-linear size with respect to the
number of HW threads. What we need to verify is the quality
of the enumerated design points, that is, how close they are lo-
cated to the actual Pareto-optimal curve. In Fig. 12, we compare
the Pareto-optimal design points obtained by exhaustive search
against the one obtained by our design point enumeration algo-
rithm on the 4 input data sets on 10 HW-thread partition. For the

c© 2015 Information Processing Society of Japan 47

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

Fig. 12 Pareto-optimal curves obtained by exhaustive search (EXH) and our
design point enumeration method (DPE) on system partition SP12.

inputs with high compression setting (Im1 20 and Im2 20), our
enumeration algorithm can find many of the Pareto-optimal de-
sign points. For the inputs with low compression setting (Im1 80
and Im2 80), however, the shape of Pareto-optimal curve be-
comes more complex in which our algorithm fails to enumerate
many of those finely sampled Pareto-optimal design points. This
limitation of our enumeration algorithm mainly comes from the
fact that the criticality of each HW threads on the overall sys-
tem performance is approximated simply by the total HW cy-
cle count, that is, the throughput of each HW thread is estimated
by the average workload. For HW threads whose workload is
highly dependent on the input data (such as THREAD(Q) and
THREAD(E)), there is a large temporal fluctuation in the individ-
ual workload (cycle counts of processing a single 8x8 block data)
that can have larger impact on the system throughput. Improve-
ment of our design point enumeration algorithm will be addressed
in our future works. Despite its limitations on several cases, we
believe that our design point enumeration algorithm provides an
effective means to prune out the huge design space that is essen-
tial in carrying out the design space exploration.

5.3 Pareto-Optimal Design Curves of All System Partition
Instances on Various Input Data Sets

Figure 13 shows the overall Pareto-optimal design points ap-
proximated by our design point enumeration algorithm of all 7
system partition instances explained in Section 3.1 on the 4 in-
put data sets. As we can see in these figures, by the combination
of multiple system partition instances together with multiple HW
version combinations within each system partition instance, we
are able to cover a very wide range of system performance and
circuit area for the entire design space. Dotted lines in the fig-

Fig. 13 Pareto-optimal curves obtained by our design point enumeration
method on 7 system partition instances.

Fig. 14 Overlay of Pareto-optimal design curves on the 4 input data sets.

ures show the Pareto-optimal points of the combined system par-
tition instances. Figure 14 shows the overlayed Pareto-optimal
curves of the 4 input data sets. It can be clearly seen from the
figure that system performance can vary with different input data
sets, demonstrating that it is essential to evaluate the system per-
formance on a wide range of input data sets in order to validate
whether the system satisfies the given performance requirements.

6. Conclusions

In this paper, we presented a new design space exploration

c© 2015 Information Processing Society of Japan 48

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

framework for SW/HW systems where two dimensions of design
explorations, system partition exploration and HW synthesis ex-
ploration, are tackled with techniques based on TCT program-
ming model and trace-driven workload simulation technology.
We proposed a design space pruning method which drastically
reduced the exponential size design space into near-linear size
by utilizing the accurate HW timing models as the indicator for
system bottleneck and guiding the enumeration process of HW
version combinations. In the experiments, we showed detailed
results on the accuracy of our trace-driven workload simulation
technology compared to RTL simulation, which revealed an aver-
age estimation error of 1.38% for HW timing of each thread, and
2.80% estimation error for the system-level simulation, where the
simulation speedup factor was in the order of 5,000 times. We
also explained the system model generation features where all
RTL components of the complete system are automatically gen-
erated (except for the processor element which was pre-designed)
including customized partial crossbar interconnect, communica-
tion wrapper for HW threads for protocol conversion. In addition
to above a complete system-level functional test environment is
generated also as single-unit test environment to guarantee func-
tional equivalency between the synthesized SW/HW system and
the original sequential application. We believe that our design
space exploration framework for SW/HW systems, even though
the current implementation partially depends on the HLS tool eX-
Cite, can be applied to other HLS tools by porting the commu-
nication protocol converters for RTL integration to our efficient
interconnect and adapting the HW timing model extraction fea-
tures.

Acknowledgments This work is supported by VLSI Design
and Education Center (VDEC), the University of Tokyo, Synop-
sys, Inc., and Y Explorations, Inc.

References

[1] Wolf, W.: The future of multiprocessor systems-on-chips, Design Au-
tomation Conference, pp.681–685 (2004).

[2] Martin, G.: Overview of the MPSoC Design Challenge, Design Au-
tomation Conference, pp.274–279 (2006).

[3] Kanbara, H., Nakatani, T., Umehara, N., Ishihara, N. and Tomiyama,
H.: Speed Improvement of AES Encryption using hardware acceler-
ators synthesized by C Compatible Architecture Prototyper (CCAP),
Workshop on Synthesis And System Integration of Mixed Information
Technologies (SASIMI 2007), pp.130–134 (2007).

[4] Adding Hardware Accelerators to Reduce Power in Embedded Sys-
tems, available from 〈http://www.altera.com/literature/wp/wp-01112-
hw-reduce-power.pdf〉

[5] Gries, M.: Methods for evaluating and covering the design space dur-
ing early design development, Integration, the VLSI Journal, Vol.38,
No.2, pp.131–183 (2004).

[6] Urifianto, M.Z., Isshiki, T., Khan, A.U., Li, D. and Kunieda, H.: De-
composition of task-level concurrency on C programs applied to the
design of multiprocessor SoC, IEICE Trans. Fundamentals, Vol.E91-
A, No.7, pp.1748–1756 (2008).

[7] Isshiki, T., Li, D., Kunieda, H., Isomura, T. and Satou, K.: Trace-
Driven Workload Simulation Method for Multiprocessor System-On-
Chips, Design Automation Conference, pp.232–237 (2009).

[8] Khan, A.U., Isshiki, T., Li, D. and Kunieda, H.: A Unified Perfor-
mance Estimation Method for Hardware and Software Components
in Multiprocessor System-On-Chips, IPSJ Trans. System LSI Design
Methodology, Vol.3, pp.194–206 (2010).

[9] The Message Passing Interface (MPI) Standard, available from
〈http://www-unix.mcs.anl.gov/mpi/〉

[10] OpenMP, available from 〈http://www.openmp.org〉
[11] Paulin, P.G., Pilikington, C., Langevin, M., Bensoudane, E. and

Nicolescu, G.: Parallel Programming Models for a Multi-Processor

SoC Platform Applied to High-Speed Traffic Management, Proc. In-
ternational Conference on Hardware Software Codesign, pp.48–53
(2004).

[12] Pazos, N., Ienne, P., Leblebici, Y. and Maxiaguine, A.: Parallel Mod-
elling Paradigm in Multimedia Applications: Mapping and Schedul-
ing onto a Multi-Processor System-on-Chip Platform, The Global Sig-
nal Processing Conference (GSPx) (2004).

[13] Ando, Y., Shibata, S., Honda, S., Tomiyama, H. and Takada, H.: Au-
tomatic Communication Synthesis with Hardware Sharing for Design
Space Exploration, IEEE International Symposium on Circuits and
Systems (ISCAS), pp.1863–1866 (2010).

[14] Y Exploration Inc., available from 〈http://www.yxi.com/〉
[15] Page, I. and Luk, W.: Compiling Occam into Field-Programmable

Gate Arrays, W. Moore and W. Luk, FPGAs, Oxford Workshop on
Field Programmable Logic and Applications, Abingdon EE and CS
Books Abingdon UK, pp.271–283 (1991).

[16] Martin, G. and Smith, G.: High-Level Synthesis: Past, Present, and
Future, IEEE Design & Test of Computers, Vol.26, No.4, pp.18–25
(2009).

[17] Lau, D., Pritchard, O. and Molson, P.: Automated Generation of Hard-
ware Accelerators with Direct Memory Access from ANSI/ISO Stan-
dard C Functions, IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM06, pp.45–56 (2006).

[18] Samahi, A. and Bourennane, E.: Automated Integration and Com-
munication Synthesis of Reconfigurable MPSoC Platform, Second
NASA/ESA Conference on Adaptive Hardware and Systems, pp.379–
385 (2007).

[19] Azumi, T., Samei Syahkal, Y., Hara-Azumi, Y., Oyama, H. and
Domer, R.: TECSCE: HW/SW Codesign Framework for Data Par-
allelism Based on Software Component, Embedded Systems: Design,
Analysis and Verification 2013, Vol.403, pp.1–13.

[20] van Stralen, P. and Pimentel, A.: Scenario-Based Design Space Ex-
ploration of MPSoCs, IEEE International Conference on Computer
Design (ICCD), pp.305–312 (2010).

[21] Wild, T., Herkersdorf, A. and Lee, G.: TAPES-Trace-based architec-
ture performance evaluation with SystemC, Design Automation for
Embedded Systems, Vol.10, No.2-3, pp.157–179 (2005).

[22] Urifianto, M.Z., Isshiki, T., Khan, A.U., Li, D. and Kunieda, H.: A
Multiprocessor SoC Architecture with Efficient Communication In-
frastructure and Advanced Compiler Support for Easy Application De-
velopment, IEICE Trans. Fundamentals, Vol.E91-A, No.4, pp.1185–
1196 (2008).

[23] Ceng, J., Castrillon, J., Sheng, W., Scharwachter, H., Leupers, R.,
Ascheid, G., Meyr, H., Isshiki, T. and Kunieda, H.: MAPS: An In-
tegrated Framework for MPSoC Application Parallelization, Design
Automation Conference, pp.754–759 (2008).

[24] Independent JPEG group, available from 〈http://www.ijg.org〉

Arif Ullah KHAN received his B.Sc. de-
gree in Electrical Engineering from
NWFP University of Engineering and
Technology Pakistan in 2001 and M.Sc.
degree in Information and Communica-
tion Engineering from Karlsruhe Institute
of Technology, Germany in 2004. From
2008 to 2011 he worked as a researcher

at Department of Communication and Integrated Systems, Tokyo
Institute of Technology. Currently he is working as a specially
appointed researcher at Department of Information Systems En-
gineering, Osaka University. His primary interests include vari-
ous aspects of MPSoC design including ASIP design, hardware-
software integration and network-on-chip. He is also interested
in “System in Package” design and 3D NoC design.

c© 2015 Information Processing Society of Japan 49

IPSJ Transactions on System LSI Design Methodology Vol.8 38–50 (Feb. 2015)

Tsuyoshi ISSHIKI received his B.E. and
M.E. degrees in Electrical and Electronics
Engineering from Tokyo Institute of Tech-
nology in 1990 and 1992, respectively.
He received his Ph.D. degree in Computer
Engineering from University of Califor-
nia at Santa Cruz in 1996. He is cur-
rently an Associate Professor at Depart-

ment of Communications and Integrated Systems in Tokyo In-
stitute of Technology. His research interests include MPSoC pro-
gramming framework, high-level design methodology for con-
figurable systems, bit-serial synthesis, FPGA architecture, im-
age processing, fingerprint authentication algorithms, computer
graphics, and speech synthesis. Prof. Isshiki is a member of IEEE
CAS, IPSJ and IEICE.

Dongju Li received her B.S. degree from
LiaoNing University and M.E. degree
from Harbin Institute of Technology,
China, in 1984 and 1987, respectively.
She worked as an IC design engineer
in VLSI Design Laboratory of Northeast
Micro-electronics Institute, Electronic In-
dustry Burean, China, from 1987–1993.

She is currently a Research Associate at Department of Com-
munications and Integrated Systems in Tokyo Institute of Tech-
nology. Her current research interests are in embedded finger-
print authentication algorithms, VLSI Architecture and Design
Methodology. System on Chip design for multimedia processing
including video CODEC. Dr. Li is a member of IEEE CAS and
IEICE.

Hiroaki KUNIEDA was born in Yoko-
hama in 1951. He received his B.E., M.E.
and Dr. Eng. degrees from Tokyo Institute
of Technology in 1973, 1975 and 1978,
respectively. He was a Research Asso-
ciate in 1978 and an Associate Professor
in 1985, at Tokyo Institute of Technol-
ogy. He is currently Professor at Depart-

ment of Communications and Integrated Systems in Tokyo Insti-
tute of Technology. He has been engaged in researches on Dis-
tributed Circuits, Switched Capacitor Circuits, IC Circuit Simula-
tion, VLSI CAD, VLSI Signal Processing and VLSI Design. His
current research focuses on fingerprint authentication algorithms,
VLSI Multimedia Processing including Video CODEC, Design
for System On Chip, VLSI Signal Processing, VLSI Architecture
including Reconfigurable Architecture, and VLSI CAD. Prof.
Kunieda is a member of IEEE CAS, SP society, IPSJ and IEICE.

(Recommended by Associate Editor: Kiyoharu Hamaguchi)

c© 2015 Information Processing Society of Japan 50

