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Abstract: Transistor count continues to increase for silicon devices following Moore’s Law. But the failure of Den-
nard scaling has brought the computing community to a crossroad where power has become the major limiting factor.
Thus future chips can have many cores; but only a fraction of them can be switched on at any point in time. This
dark silicon era, where significant fraction of the chip real estate remains dark, has necessitated a fundamental re-
thinking in architectural designs. In this context, heterogeneous multi-core architectures combining functionality and
performance-wise divergent mix of processing cores (CPU, GPU, special-purpose accelerators, and reconfigurable
computing) offer a promising option. Heterogeneous multi-cores can potentially provide energy-efficient computation
as only the cores most suitable for the current computation need to be switched on. This article presents an overview
of the state-of-the-art in heterogeneous multi-core landscape.
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1. Introduction

The emergence of multi-cores and eventually many-cores
(multiple processing cores or CPU on a single chip) has brought
the computer community to a crossroad. Desktops, laptops,
and smartphones have all made the irreversible transition toward
multi-cores due to thermal/power constraints, reliability issues,
design complexity, and so on. As transistor density continues
to enjoy the exponential growth according to Moore’s Law, the
number of on-chip cores (but not the performance) is predicted
to double every two years. However, we cannot ride this growth
curve for on-chip cores in the future. The primary challenge turns
out to be the increasing power density on chip that prevents all
the cores to be switched on at the same time. This phenomenon,
known as dark silicon, is driving the evolution of heterogeneous
multi-core architectures.

Traditionally, multi-cores are just designed as just a collection
of identical (possibly simple) cores. These homogeneous multi-
cores are simple to design, offer easy silicon implementation, and
regular software environments. Unfortunately, general-purpose
emerging workloads from diverse application domains have very
different resource requirements that are hard to satisfy with a set
of identical cores. In contrast, there exist many evidences that het-
erogeneous multi-core solutions consisting of different core types
can offer significant advantage in terms performance, power, area,
and delay. At the same time, heterogeneous multi-cores are per-
fect fit for the dark silicon regime as only the cores suited for an
application need to be switched on.

This article delves into heterogeneous multi-core architectures
with their associated challenges and opportunities. We first
present the technological, architectural, and application trends
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that are responsible for the advent of heterogeneity. We broadly
classify heterogeneous multi-cores into performance heterogene-
ity, where cores with the same functionality but different power-
performance characteristics are integrated together and functional
heterogeneity, where cores with very different functionality are
interspersed on the same die. We present performance heteroge-
neous multi-core architectures and the software support required
to realize the full potential of such architectures. We then pro-
ceed to give an overview of different kinds of processing elements
present in current functional heterogeneous multi-cores, such as
graphics processing cores, special-purpose accelerators, and re-
configurable computing.

Heterogeneous multi-cores is an evolving technology at this
point with myriads of challenges. This opens up interesting re-
search problems in all aspects of the computing stack, starting
from devices, circuits, architecture all the way to the software
layer including operating systems, compilers, and programming
paradigms. We invite the readers to explore these exciting oppor-
tunities offered by heterogeneous multi-core landscape.

2. Background

The first microprocessor was introduced in 1971 in the form
of Intel 4004 — a 4-bit general purpose programmable CPU on
a single chip. Since then, the microprocessor industry has wit-
nessed unprecedented growth in performance fueled by multiple
factors: Moore’s Law, Dennard scaling, and micro-architectural
innovations. Moore’s Law [50] is an observation made by Gor-
don Moore in 1965 that the number of transistors incorporated in
a chip approximately doubles every 18–24 months, resulting in
an exponential increase in transistor density. As the processing
speed is inversely proportional to the distance between transis-
tors on an integrated circuit, Moore’s Law implies that the speed
(clock frequency) of the microprocessors will also double every
24 months. This exponential growth in processor speed contin-
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ued unabated till about 2005. For example, the 64-bit Intel Xeon
processor launched in 2005 runs at 3.8 GHz and has 169 million
transistors. This is in stark contrast to Intel 4004 that had a clock
frequency of 740 KHz and only 2,300 transistors.

While Moore’s Law was responsible for the sustained increase
in clock frequency, the processor performance improved further
due to several micro-architectural innovations including proces-
sor pipeline, out-of-order execution, speculation, cache memory
hierarchy. These advancements enabled the processor to execute
multiple instructions per cycle by exploiting instruction-level par-
allelism (ILP), boosting the critical instructions-per-cycle (IPC)
metric [29]. More importantly, as the ILP was extracted trans-
parently by the underlying architecture from single-threaded pro-
grams, the software developers enjoyed the performance benefit
without any additional effort. Together, the growth in clock fre-
quency and IPC ensued the relentless gain in processor perfor-
mance spanning over three decades.
Rise of Homogeneous Multi-core

The performance growth in uni-processors slowed down and
came to an end due to a variety of reasons: power wall, ILP
wall, and memory wall [57]. The primary limiting factor is
the so called power wall defined by the thermal design power
(TDP) — the maximum amount of power a micro-processor chip
could reasonably dissipate. For almost 30 years, Moore’s Law
was aided by Dennard scaling [19] to keep the processor power
within limit. According to Dennard’s theory, with a linear feature
size scaling ratio of 1√

2 (one process technology generation to
another), the transistor count doubles (Moore’s Law), frequency
increases by 40%, but power per transistor can be reduced by
1
2 keeping the total chip power constant [21]. The reduction in
power per transistor is achieved by scaling down the operating
voltage and current proportional to the feature size scaling. Scal-
ing down the operating voltage requires scaling down the thresh-
old voltage (Vth), which was feasible while leakage power was
minimal till 2005. However, at 65 nm process technology and be-
low, leakage power contributes significantly to total chip power
and lowering Vth results in exponential increase in leakage power.
Thus Vth and in turn the operating voltage cannot be scaled any
longer (because as operating voltage approaches Vth, the tran-
sistor delay increases rapidly, resulting in a drop in the clock
frequency) causing the breakdown of Dennard scaling. It is no
longer possible to keep the power envelope constant from gener-
ation to generation. Instead post-Dennard scaling leads to power
increase by a factor of 2 per generation for the same die area.
Keeping the power within TDP budget requires the chip to oper-
ate at a lower frequency than the native frequency. As dynamic
power is roughly proportional to cubic frequency, keeping the fre-
quency lower (instead of 40% increase per generation) can com-
pensate for the increase in leakage power due to the doubling of
transistor count. Indeed clock speed has stalled at roughly 4 GHz
in the past decade even as transistor count has exploded following
Moore’s Law (e.g., 4.31 billion transistors in Intel Ivy Bridge-EX
processor launched in 2014).

In post-Dennard scaling era, the abundance of transistors could
have been utilized to build more complex uni-processor micro-
architectures to further improve the IPC and thereby compensate

the lack of increase in clock speed. But the processors had already
hit the ILP wall. It was increasingly difficult to find any more
parallelism in single-threaded programs [76]. The heroic attempt
to uncover further ILP caused superlinear increase in processor
complexity [53] and associated power consumption without lin-
ear speedup in application performance. Thus such architectural-
level optimizations quickly reached the point of diminishing re-
turn. Moreover, the exponentially growing performance gap be-
tween processor and main memory (DRAM) led to the memory
wall [79] where system performance is dominated by memory
performance; making the processor faster (either in terms of IPC
or clock speed) will not affect the execution time of an applica-
tion. The ILP wall and the memory wall together precluded the
introduction of any more complexity in uni-processor design.

Computing systems, at this point, made an irreversible tran-
sition towards multi-core architectures in order to effectively em-
ploy the growing number of transistors on chip [24]. A multi-core
processor incorporates two or more processing elements (cores)
on a single chip. As transistor density goes up from one pro-
cess generation to another, individual core frequency and com-
plexity are kept constant or even reduced to accommodate for the
breakdown of Dennard scaling. Thus single-core performance
remained constant or degraded. This lack of single-core perfor-
mance is compensated by the presence of a large number of cores
that exploit thread-level parallelism (TLP) where the threads are
distributed across the cores and are executed in parallel. If the
code can be parallelized appropriately, the performance of the ap-
plication will be greatly improved even though each core is run-
ning at lower frequency. The first commercial dual-core proces-
sor is IBM Power 4 introduced in 2001, while the first dual-core
processor for desktop platforms (Intel Pentium Extreme Edition
840) was introduced in 2005. As of now, multi-cores are preva-
lent in all computing systems starting from smartphones to PCs
to enterprise servers.

Most multi-core architectures designed in the past decade are
homogeneous multi-core, that is, all the cores are identical both
in terms of instruction-set architecture (ISA) and the underlying
micro-architecture (pipeline, cache, branch prediction configura-
tion). Homogeneous multi-cores are easy to design and verify as
we simply need to replicate the core. So it was predicted that
the number of cores on chip will grow exponentially following
Moore’s Law. This trend has been maintained so far; for example,
the latest Intel Xeon Processor E7 consists of 15 cores. However,
just like the upward trajectory of single-core performance came to
a halt, simply increasing core count in homogeneous multi-core
will not remain profitable for very long.
Dark Silicon Era

Esmaeilzadeh et al. in a seminal paper [21] model multi-core
scaling limits by combining device scaling, single-core scaling,
and multi-core scaling to predict the speedup potential for par-
allel workloads for the next five technology generations. The
paper concludes that power and parallelism limitations will cre-
ate a large gap (13 X at 8 nm technology node with ITRS pro-
jections [13] for device scaling) between achievable performance
and the performance expected by Moore’s Law (doubling per-
formance every technology node). More importantly, increasing
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core count hits the power budget after certain point. Beyond this
point, more cores can be added; but these additional cores have to
be switched off or significantly under-clocked to satisfy the TDP
constraint. This phenomenon, where a significant fraction of the
cores have to be either idle (dark) or under-clocked (dim) at any
point in time, has been termed as “Dark Silicon” [49]. The study
claims that power limitations will severely curtail the usable chip
fraction: at 22 nm, 21% of the chip will be dark and at 8 nm, over
50% of the chip will not be utilized using ITRS device scaling
projections. Architectural decisions, power/thermal management
challenges, and reliability/variability challenges in the dark sili-
con era from hardware/software codesign perspective have been
discussed in Ref. [64].

Interesting, parallelism rather than power turns out to be the
primary contributing factor towards the performance gap for
most workloads [21] in the dark silicon era. Very few applica-
tions have enough parallelism and still cannot realize the per-
formance potential due to insufficient core count arising out of
power limitations. Most of the contemporary and emerging ap-
plications are not perfectly parallelizable to take advantage of the
abundant TLP offered by homogeneous multi-core architectures.
Amdahl’s Law [2] states that the speedup on a multi-core will
be limited to 1

S where S is the serial fraction of the application.
Even for an application with 99% parallel code, the remaining
1% sequential fraction limits the speedup to 100 X with an in-
finite number of cores. Thus most applications will have lim-
ited speedup with homogeneous multi-cores even with unlimited
power budget.

Taylor [72] categorizes the potential architectural responses to
the impending dark silicon era into four classes. The most obvi-
ous and pessimistic approach is the shrinking chip, where the chip
designers simply build smaller chips. This approach not only hin-
ders all architectural advancements, but is also problematic from
the point of view of cost, revenue, power and packaging issues.
The second possibility is dim silicon where the logic is severely
under-clocked to stay below the power budget. Dim silicon tech-
niques include multi-cores based on near-threshold voltage com-
puting [20], larger on-chip caches rather than logic to absorb
the dark silicon area, spatial dimming through dynamic voltage-
frequency scaling (DVFS), and temporal dimming through com-
putational sprinting [61] or Intel Turbo Boost [63] where the chip
is allowed to exceed the power budget momentarily to provide
short but substantial boost to performance followed by long pe-
riod of low-power operation. “Dim silicon” is effective only for
workloads with high degree of parallelism; but as lack of paral-
lelism rather than power is the main barrier for most workloads to
achieve high speedup, this approach does not have universal ap-
peal. A more futuristic solution is ultra low-power circuits where
transistors are built from new and emerging technology that pro-
vide better sub-threshold characteristics than CMOS devices [34]
and hence can improve energy-efficiency substantially. Last but
not the least, a promising approach and the one we focus on in
this article to circumvent dark silicon regime is heterogeneous

multi-core architectures.
In the dark silicon era, the silicon area becomes an exponen-

tially cheaper resource relative to power and the architects can

potentially “spend” area to “buy” energy-efficiency [72]. This
is the guiding principle behind heterogeneous multi-core archi-
tectures where different types of cores co-exist on the same die.
Given an application, only the cores that best fit the application
can be activated leading to faster and energy-efficient computing.
Heterogeneous computing architectures can be broadly classified
into two categories: performance heterogeneity and functional

heterogeneity.

3. Performance Heterogeneous Multi-core

Performance heterogeneous multi-core architectures consist of
cores with different power-performance characteristics but all
sharing the same instruction-set architecture. The difference
stems from distinct micro-architectural features such as in-order
core versus out-of-order core. The complex cores can provide
better performance at the cost of higher power consumption,
while the simpler cores exhibit low-power behavior alongside
lower performance. This is also known as single-ISA heteroge-
neous multi-core architecture [39] or asymmetric multi-core ar-
chitecture. The advantage of this approach is that the same bi-
nary executable can run on all different core types depending
on the context and no additional programming effort is required.
However, either the system designer or the runtime management
layer has to identify the appropriate core type for each application
or even for different phases within the same application. Asym-
metric multi-cores can be further classified into static asymmet-

ric multi-core and dynamic asymmetric multi-core depending on
whether the mix of cores can be configured at runtime.

3.1 Static Asymmetric Multi-core
In static asymmetric multi-cores, the mix of difference core

types are fixed at design time. For example, Fig. 1 shows a
static asymmetric multi-core consisting of 12 small cores and 1
big core. Examples of commercial asymmetric multi-cores in-
clude ARM big.LITTLE [26] integrating high-performance out-
of-order cores with low-power in-order cores, nVidia Kal-El
(brand name Tegra3) [52] consisting of four high-performance
cores with one low-power core, and more recently Wearable Pro-
cessing Unit (WPU) from Ineda consisting of cores with varying
power-performance characteristics [33]. An instance of the ARM
big.LITTLE architecture integrating quad-core ARM Cortex-A15
(big core) and quad-core ARM Cortex-A7 (small core), as shown
in Fig. 2, appears in the Samsung Exynos 5 Octa SoC driving
high-end Samsung Galaxy S4 smart-phones.

Performance heterogeneous asymmetric multi-core architec-

Fig. 1 Performance heterogeneity: Static and dynamic asymmetric multi-
core architectures.
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Fig. 2 ARM big.LITTLE static asymmetric multi-core.

Fig. 3 Power-Performance characteristics of small, big cores.

tures are a promising solution to two related but critical prob-
lems today: performance limits due to Amdahl’s Law [2] and en-
ergy efficiency of multi-core computing in the dark silicon era.
Hill and Marty in a seminal paper [30] argue that heterogeneous
multi-cores where the sequential code fragment can be mapped
to a complex core — capable of exploiting instruction-level par-
allelism (ILP), for example, through out-of-order execution and
hence accelerate the execution of the sequential fraction — im-
prove the speedup of the application quite dramatically. This
is because the parallel portion of the code can be accelerated
through the array of simple cores offering TLP while the sequen-
tial portion can be expedited by exploiting ILP through the com-
plex core.

The energy-efficiency advantage of heterogeneous computing
is quite obvious. At any point, we simply need to turn on the
core(s) that is most power-efficient for the current computing
need without negatively impacting the performance. For exam-
ple, in a smartphone, the low-power small core can take care of
simple tasks such as email client, web browsing etc. saving en-
ergy, while the complex core has to be switched on for compute-
intensive tasks such as 3D gaming, browsing flash-based websites
etc. sacrificing energy. This model of computing fits in well in
the dark silicon era where thermal constraints anyway restrict the
fraction of cores that can be switched on at any point in time; so
it is beneficial to switch on the appropriate cores for better energy
efficiency. Note that apart from micro-architectural differences,
these architectures offer additional design points in the power-
performance trade-off curve through dynamic voltage-frequency
scaling (DVFS) of the cores.

Figure 3 shows the power-performance heterogeneity of
heterogeneous multi-core architecture for commercial ARM
big.LITTLE architecture as reported in Ref. [60]. The evaluation

platform we use is the Versatile Express development platform
comprising of a prototype chip with two Cortex-A15 cores and
three Cortex-A7 cores at 45 nm technology. All the cores imple-
ment ARM v7A ISA. While each core has private L1 instruction
and data caches, the L2 cache is shared across all the cores within
a cluster. The L2 caches across clusters are kept seamlessly co-
herent via the cache coherent interconnect so that an application
can be easily migrated from one cluster to the other. The architec-
ture provides DVFS feature per cluster. But all the cores within a
cluster should run at the same frequency level. Moreover an idle
cluster can be powered down if necessary. The chip is equipped
with sensors to measure frequency, voltage, power, and energy
consumption of each cluster as well as performance counters.

Figure 3 plots the Instructions Per Cycle (IPC) and the aver-
age power (Watt) for benchmark applications on Cortex-A7 and
Cortex-A15 cluster, respectively. In this experiment, we set the
the same voltage (1.05 Volt) and frequency (1 GHz) level for the
two clusters and utilize only one core at a time to run the bench-
mark. Note that we can only measure the power at cluster level
rather than individual core level. So the power reported in this
figure corresponds to the power in a cluster even though only one
core is running the benchmark application, while other cores are
idle. Clearly, A15 has significantly better IPC compared to A7
(average speedup of 1.86) but far worse power behavior (1.7 times
more power than A7 on an average).
Software Support

Sophisticated runtime management techniques are required to
leverage the unique opportunity offered by heterogeneous multi-
cores towards energy-efficient computing. This includes (a) de-
termining the core type that is most suitable for an application or
the phase of an application, (b) moving the application to the ap-
propriate core through task migration, and (c) setting the proper
voltage-frequency level for the cores such that the performance
requirements of the applications are satisfied at minimal energy
while not exceeding the thermal design power (TDP) constraint.

The first step required in this process is an accurate power-
performance estimation mechanism. As an application is run-
ning on one core type, one needs to predict its power, perfor-
mance behavior on the other core types and at different voltage-
frequency levels so as decide whether the application should be
migrated and to where. Such a power-performance model for
ARM big.LITTLE architecture has been developed in Ref. [60].
This modeling is challenging for a real architecture for various
reasons. First, the big core and the small core are dramatically
different, not just in the pipeline organization, but also in terms of
cache hierarchy and the branch predictor. Thus given the cache
miss rate or branch misprediction on one core type, we have to
estimate the same for the other core type. Second, we are con-
strained by the performance counters available on the cores and
cannot assume additional profiling information that is simply not
available such as inter-instruction dependency. These challenges
are overcome through a combination of static program analy-
sis (to identify inter-instruction dependency), mechanistic mod-
eling that builds analytical model from an understanding of the
underlying architecture (such as impact of pipeline stalls due to
inter-instruction dependency and resource constraints versus miss
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events on performance), and empirical modeling that employs
statistical inferencing techniques like regression to create an ana-
lytical model (for inter-core miss events estimation).

These prediction can then be employed to choose the suitable
core type for an application or the phase of an application and
its DVFS. For performance optimization, Craeynest et al. [73]
propose a scheduling technique for asymmetric multi-cores using
online performance estimation across different core types. Simi-
larly, Koufaty et al. [38] propose a dynamic heterogeneity aware
scheduler, which schedules tasks with very low memory stalls
on complex cores for higher performance. But these works do
not consider power issues. A study by Winter et al. [77] evaluates
various scheduling and power management techniques for hetero-
geneous multi-cores with special considerations to the scalability
of the approaches. They propose a thread scheduling algorithm
called Steepest Drop, which has little overhead but does not con-
sider frequency scaling of the cores.

A control-theory based approach that synergistically integrates
multiple controllers (handling different constraints or optimiza-
tion goals) to achieve energy-efficiency for multiple applications
running on heterogeneous multi-core system has been proposed
in Ref. [51]. However, this approach suffers from scalability is-
sues due to centralized decision making regarding task migra-
tion and power allocation among the cores under tight TDP con-
straint. This scalability issue is addressed through a distributed
approach based on the solid foundations of price theory from eco-
nomics in Ref. [68]. The resource allocation, DVFS, task map-
ping, and migration are all controlled through the virtual market
place, where the commodity being traded is processing unit using
virtual money. The framework is realized as a collection of au-
tonomous entities called agents, one for each task, core, cluster,
and the entire chip. The performance requirement is modeled as
the demand while the processing capability is modeled as the sup-
ply (depends on core type and frequency). The principle of price
theory states that the market is only stable at a price equilibrium,
which is the price at which the supply is equal to the demand and
hence corresponds to the minimal energy consumption. Across
a range of workloads, the price theory based power management
framework reduces average power consumption to 2.96 W com-
pared to 5.99 W for Linux heterogeneity-aware scheduler (which
makes naive task migration decision) plus on-demand governor
(for DVFS) at the same or even better performance level.

3.2 Dynamic Asymmetric Multi-core
Even though static asymmetric multi-cores are clearly po-

sitioned to accommodate software diversity (mix of ILP and
TLP workload) much better than homogeneous multi-cores with
promising results, they are still not the ideal solution. As the
mix of simple and complex cores has to be frozen during de-
sign/fabrication time, a static asymmetric multi-core lacks the
flexibility to adjust itself to the dynamic nature of workload. Any
change in the applications requirements would have a big impact
on the production costs. The next logical step forward to support
both diverse and dynamic workload is to design dynamic asym-
metric multi-cores that can, at runtime, tailor itself according to
the applications [30]. Such adaptive architectures are physically

fabricated as a set of simple, homogeneous cores. At runtime, two
or more such simple cores can be coalesced together to create a
more complex virtual core. Similarly, the simple cores partici-
pating in a complex virtual core, can be disjoined at any point of
time. A canonical example is to form coalition of two 2-way out-
of-order (ooo) cores to create a single 4-way ooo core. In other
words, we would like to dynamically create static asymmetric
multi-cores through simple reconfiguration. Figure 1 shows a dy-
namic asymmetric multi-core architecture consisting of 16 base
cores that has been configured at runtime to create one medium
core and one big core. The following section presents some of
the dynamic asymmetric multi-core architectures proposed in the
literature.

The Core Fusion architecture [35] presents a detailed architec-
tural solution to support runtime core coalescing. The physical
substrate comprises of identical, relatively efficient 2-issue out-
of-order cores. At runtime, these cores can be fused together to
create larger (eight-issue or four-issue) out-of-order cores. The
proposed architecture has a reconfigurable, distributed front-end
and instruction cache organization that can leverage individual
core’s front-end structure to feed an aggressive fused back-end,
with minimal over-provisioning of individual front-ends.

Kumar et al. provides another interpretation of the core coali-
tion in Conjoined-Core Chip Multiprocessing [40] where neigh-
boring cores can share complex structures (e.g., floating-point
units, crossbar ports, instruction caches, data caches, etc.)
thereby saving significant area.

Federation [71] architecture proposed by Tarjan et al., on the
other hand, enables a pair of scalar cores to act as a 2-way
out-of-order core by inserting additional stages to their internal
pipelines. The key insight that makes federation work is that
it is possible to approximate traditional out-of-order issue with
much more efficient hardware structures (e.g., replacing content
addressable memory and broadcast networks with simple lookup
tables). These out-of-order structures are then placed between a
pair of scalar cores and in conjunction with the fetch, decode,
register file, cache, and datapath of the scalar cores, one can
achieve an ensemble that is competitive in performance with an
out-of-order superscalar core. Federated cores are best suited
for workloads that usually need high throughput but sometimes
encounter sequential code fragment. Federation provides faster,
more energy-efficient virtual out-of-order cores for sequential
workloads without sacrificing area that would reduce thread ca-
pacity for parallel workload.

A hardware-software co-designed approach towards dynamic
asymmetric multi-core design is presented in Bahurupi architec-
ture [58]. Bahurupi is physically fabricated as a set of clusters,
each containing four simple 2-way out-of-order cores. Figure 4
shows an example of 8-core Bahurupi architecture with two clus-
ters (C0–C3) and (C4–C7). At runtime, two or more such simple
cores within a cluster can form a coalition to create a more com-
plex virtual core. Similarly, the simple cores participating in a
complex virtual core, can be disjoined at any point of time. Thus
we can create diverse range of heterogeneous multi-cores on-
demand through simple reconfiguration. The highlighted cores
in Fig. 4 are involved in two coalitions of two (C0, C1) and four
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Fig. 4 Bahurupi dynamic heterogeneous multi-core.

(C4–C7) cores. In this example one parallel application runs its
two threads on cores C2 and C3, one medium-ILP sequential
application is scheduled to coalition (C0–C1) and one high-ILP
sequential application is scheduled to coalition (C4–C7). Care-
ful task scheduling on Bahurupi architecture [59] yields speedup
ranging from 10% to 62% compared to static homogeneous and
heterogeneous multi-cores across a large range of task sets.

When running in coalition mode, participating cores coopera-
tively execute a single thread in a distributed fashion. Basically,
the cores execute basic blocks of the sequential thread in parallel
and fall back to a centralized unit for synchronization and de-
pendency resolution. Dependency comes in the form of control
flow and data dependence. Bahurupi handles these with compiler
support and minimal additional hardware.

A new instruction called sentinel instruction is added to the
ISA, which is the first instruction of each basic block of the code.
Basic blocks are constructed at compile time along with the in-
formation about live-in and live-out registers to/from each basic
block. This information is encoded in the corresponding sentinel
instruction, which also embeds control flow information, specifi-
cally, length of the basic block and whether it ends with a branch
instruction. Thus, sentinel instructions capture both the depen-
dency and the control flow information among the basic blocks.

Physically, all the cores share a global PC, synchronization
logic, global register file, and global renaming logic. Cores par-
ticipating in the coalition make use of these global structures
while other cores can independently run different threads. The
only communication across the cores is through the live-in and
live-out register values. A broadcast mechanism is used to let
the producer core send its live-out register value to any consumer
core. Each core snoops the broadcast bus for live-in registers.
The architecture includes a cache structure with reconfigurable
banked L1 instruction and data caches where each bank is asso-
ciated with a core. Cores participating in the coalition share a
combined L1 instruction and data cache reconfigured from their
banks.

The results presented in Ref. [58] show that, in case of integer
applications, a 2-core or 4-core coalition can perform very close
to a 4-way or 8-way out-of-order processor, respectively. On the

other hand, for floating point applications, a 2-core or a 4-core
coalition can even outperform a 4-way or 8-way true out-of-order
processor. This is because Bahurupi can look far ahead in the fu-
ture to exploit ILP as the compiler resolves dependencies across
basic blocks.

The architectures described so far combines simple physical
cores to create complex virtual cores. Unlike other solutions,
Morphcore architecture [36] starts off with a traditional high per-
formance out-of-order core and makes internal changes to allow
it to be transformed into a highly threaded in-order SMT core
when necessary. MorphCore modifies the internal pipeline of an
out-of-order core by adding components that allow fast switching
between out-of-order mode and in-order mode. The fetch stage is
modified such that it can switch between 8 threaded in-order SMT
core and a dual-issue out-of- order core. The decision to switch
between execution modes is automatically taken care of by the
hardware and not by the operating system. Generally, when the
OS spawns more than two tasks (threads), the hardware switches
to SMT mode and when the number of threads reduces to less
than two, then the hardware switches to out-of-order mode.

Composite Cores architecture [44] has some similarity with
MorphCore. The architecture allows fast switching between in-
order and out-of-order execution. Essentially, there are two dif-
ferent pipelines connected together on the same CPU die — an
out-of-order pipeline and an in-order pipeline. The connectivity
between these two allows fast migration of processes from one
engine to another. The two engines share the front-end of the
pipeline, the branch predictor and the instruction, data caches.
An extra hardware component is added to the system — a reac-
tive PID controller that is in charge of detecting when to migrate
from one pipeline to another. The online controller tries to max-
imize energy savings by choosing the right core configuration at
runtime. The controller integrates a complex performance esti-
mator to decide where the task will be migrated.

Other works approached the idea of dynamic asymmetric
multi-core systems together with code parallelization as in the
case of the Voltron processor [82]. Voltron uses multiple homo-
geneous cores that can be adapted for single and multi-threaded
applications. The cores can operate in coupled mode when they
act as a VLIW processor that will help exploit the hybrid forms
of parallelism found in the code. Voltron relies on a very complex
compiler that is able to exploit parallelism from the serial code,
partition the code into small threads, schedule the instruction to
the cores and direct the communication among between the cores.
In coupled mode, the cores pass values among themselves on a
specialized bus. The main challenge here is the difficulty of code
parallelization.

TFlex processor [37] does not use physically shared resources
among the cores and instead is dependent on a special distributed
micro-architecture called Explicit Data Graph Execution (EDGE)
with unique instruction-set architecture (ISA), which is config-
ured to implement the composable lightweight processors. EDGE
ISAs creates programs that are encoded as a sequence of blocks
that have atomic execution semantics and these blocks are exe-
cuted by different cores. The non-traditional ISA is the biggest
downside of this architecture.
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4. Functional Heterogeneous Multi-core

A large class of heterogeneous multi-cores comprise of cores
with different functionality. This is fairly common in the em-
bedded space where a multiprocessor system-on-chip (MPSoC)
consists of general-purpose CPU cores, GPU cores, DSP blocks,
and various hardware accelerators or IP blocks (e.g., video en-
coder/decoder, imaging, modem, communications such as WiFi,
Bluetooth). The heterogeneity is introduced here to meet the
performance demand under stringent power budget. Embedded
GPUs are ubiquitous today in mobile application processors to
enable not only 3D gaming but also general-purpose computing
on GPU for data-parallel (DLP) compute-intensive tasks such as
voice recognition, speech processing, image processing, gesture
recognition, and so on. Still programmable CPU and GPU cores
are not sufficient to accommodate certain demanding compute-
intensive tasks at tight power budget. Hence it is necessary to
include a large number of fixed-functionality hardware accelera-
tors in the MPSoC. Finally, the need to strike a balance between
flexibility and efficiency is driving the inclusion of reconfigurable
computing fabric in heterogeneous MPSoC as well. In this sec-
tion, we will cover GPUs, accelerators, and reconfigurable com-
puting elements of heterogeneous multi-core systems.

4.1 Graphics Processing Unit (GPU)
A single CPU core is optimized to exploit instruction-level

parallelism, while multi-cores are designed to take advantage of
coarse-grained thread-level parallelism. In recent years, we have
witnessed an avalanche of applications with massive amount of
parallelism, for example, graphics, media processing, and signal
processing applications. The parallelism in this class of applica-
tions is known as data-level parallelism where the same computa-
tion is performed on hundreds or even thousands of data elements.
Massive data parallelism can only be exploited fully by deploying
thousands of very simple cores on chip. This is the idea behind
Graphics Processing Units (GPU). A GPU consists of thousands
of cores that execute in parallel. But the biggest advantage of
GPU is its power efficiency. As all the cores perform the same
computation, a group of cores can share a single front end for
instruction fetch and decode as shown in Fig. 5. As instruction
fetch/decode contributes to significant power consumption in a
processing core [27], this elimination of the frond-end processing
leads to extremely power-efficient design of the cores that need
only perform the computation. While GPUs have been originally
designed for graphics and gaming, the suitability of GPUs for
general-purpose data parallel applications (such as scientific com-
puting) was quickly observed. General-purpose computing on
GPUs was facilitated through CUDA programming standard [16]
introduced by nVIDIA for their graphics processors. As nVIDIA
graphics processors are ubiquitous in discrete GPU space, where
the GPU appear as a separate device, CUDA became a de-facto
standard for general-purpose programming on GPUs.

Discrete GPUs, while powerful, suffer from high communi-
cation cost with the CPU. The GPU device memory is dis-
tinct from CPU and it requires DMA to transfer data between
the two. Recently, GPUs are being integrated with CPUs on

Fig. 5 An abstraction of GPU architecture.

Fig. 6 Embedded GPU integrated with CPU cores on die.

the same die for MPSoCs. The CPU and GPU can then share
a unified memory address space making the different comput-
ing elements compatible with each other from programmer’s per-
spective and eliminating the costly memory copy operations from
one address space to another. In the desktop environment, AMD
accelerated processing unit (APU) [6] combines multi-core CPU
with full-featured GPU as an SoC; similarly, Intel Ivy Bridge [18]
integrated multi-core CPU with power-performance optimized
graphics processing units. Unlike the discrete GPU space that is
dominated by nVIDIA, the mobile GPU landscape is quite frag-
mented with many possible candidates. Apart from Radeon GPU
in AMD APU and IRIS in Intel SoC, the smartphone and tablet
platforms have recently featured many programmable embedded
GPUs [67] including Imagination PowerVR, ARM Mali, Qual-
comm Adreno, Vivante ScalarMorphic, nVIDIA Tegra, and oth-
ers.

Embedded GPUs are quite different from desktop GPUs along
multiple dimensions. First, as mentioned before, CPU and GPU
share a unified memory address space. A system bus connects
CPU, GPU, and the memory controller together as shown in
Fig. 6. The CPU and GPU need to share the memory band-
width and thus sharing the memory bandwidth effectively among
the processing elements remain a key challenge. At the same
time, shared and coherent memory across CPU and GPU enable
low latency data transfer. Secondly, power rather than perfor-
mance is the primary consideration in designing an embedded
GPU. For example, while running an FFT application, embedded
GeForce ULP GPU in Tegra consumes only 4 Watt, while high-
end GeForce 8800 GPU consumes about 480 Watt [8]. Third,
chip power budget being the critical resource in the dark silicon
era, it is important to allocate the power budget appropriately and
dynamically between the CPU and GPU. For example, Fig. 7
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Fig. 7 CPU-GPU power behavior for mobile 3D games.

shows the power behavior of the CPU (Cortex-A15 cluster only)
and the GPU on the Exynos 5 Octa MPSoC running a popular
Android game “Asphalt 7: Heat” over 2-minute lifetime. Clearly,
both the CPU and the GPU contribute equally to the power con-
sumption. AMD APU [6] and Intel Ivy Bridge [18] take care of
this power allocation in firmware. ARM introduced operating
system level control-theoretic framework to intelligently allocate
the power budget among the processing cores [3]. Quality-of-
Service (QoS) aware CPU-GPU power management for mobile
gaming applications has been explored in Refs. [55], [56]. Fi-
nally, given the fragmented nature of the embedded GPU market,
it is imperative to use a common and open programming stan-
dard for both graphics and general-purpose computing on GPUs.
OpenGL [78] for graphics and OpenCL [69] for general-purpose
computing are two such standards that are portable across differ-
ent mobile GPU platforms. OpenCL for mobile GPUs is still in its
infancy making widespread appearance only in 2014. Program-
ming, power/thermal management and memory bandwidth allo-
cation all remain open problems for integrated CPU-GPU SoC
devices.

4.2 Special-purpose Accelerators
General-purpose homogeneous and heterogeneous multi-cores

as discussed in the previous section are far more cost-effective
compared to an application-specific integrated circuit (ASIC)
accelerator custom designed for a specific functionality (e.g.,
video encoding). The software programmability of general-
purpose processors enables the same architecture to be reused
across a large class of applications, thereby effectively amortizing
the enormous non-recurring engineering (NRE) cost. However,
general-purpose processors also greatly lack the performance and
energy-efficiency of ASICs. For example, 3G mobile phone
receiver requires 35–40 giga operations per second (GOPS) at
roughly 1W budget, which is impossible to achieve without cus-
tom designed ASIC accelerator [17]. Thus current system-on-
chips (SoCs) include a number of special-purpose accelerators.
Shao et al. [66] analyzed die photos from three generations of
Apple’s SoCs: A6 (iPhone 5), A7 (iPhone 5S) and A8 (iPhone
6) to show that consistently more than half of the die area is ded-
icated to application-specific hardware accelerators and estimate
the presence of around 29 accelerators in A8 SoC. The ITRS
roadmap predicts hundreds to thousands of customized accelera-
tors by 2022 [13].

Hameed et al. [27] attempt to understand the sources inefficien-

cies in general-purpose cores through a case-study of the H.264
video encoding application. They observe that ASIC implemen-
tation is 500x more energy efficient compared to a four-core ho-
mogeneous multi-core. The difference comes from the overhead
to support programmability. The basic operations performed for
most applications are extremely low energy. But processing an in-
struction in a general-purpose core involves significant additional
overheads — instruction fetch, register fetch, data fetch, control,
and pipeline registers — that dominate the overall power. These
overheads are completely eliminated in ASIC accelerators at the
price of zero flexibility and exceedingly high development cost.
4.2.1 Design Methodologies

There are two possible directions to achieve ASIC-like perfor-
mance and energy-efficiency with processor-like application de-
velopment cost. The first option it to devise design methodolo-
gies that will simplify the creation of customized ASIC accel-
erators. A powerful technique to accomplish this goal is high-
level synthesis (HLS) [45] that allows the designer to specify an
abstract high-level behavioral specification of the accelerator for
automatically generating a register-transfer level (RTL) represen-
tation that realizes the abstract specification and is ready to be
synthesized in hardware. After almost two decades of research,
HLS tools have finally reached the level of maturity where they
can potentially be adopted by industry in the design flow. The
interested reader can refer to Ref. [46] for an extensive overview
of state-of-the-art HLS tools.

The conservation cores approach [74] focuses only on energy
efficiency rather than performance and targets automated hard-
ware synthesis of irregular code with little parallelism and/or poor
memory behavior. GreenDroid mobile application processor [25]
uses hundred or so automatically generated, highly specialized,
energy-efficient conservation cores to dramatically improve the
energy-efficiency of general-purpose mobile applications.

While HLS tools enable automated design of individual accel-
erators, future accelerator-rich architectures will call for compre-
hensive design-space exploration techniques to evaluate the po-
tential benefits and trade-offs of putting together general-purpose
cores and hundreds of accelerators together. Aladdin [65] is a
pre-RTL power-performance accelerator simulator offering such
quick and effective design space exploration option. For mobile
platforms, GemDroid [9] is a comprehensive simulation infras-
tructure for architects to conduct holistic evaluation of SoCs com-
prising of cores, accelerators, and system software.
4.2.2 Processor Customization

A second promising solution to achieve ASIC-like power-
performance behavior without completely sacrificing pro-
grammability is through processor customization [31], [32]. A
baseline processor core, is configured and extended to match
the application. Typically, different components of the micro-
architecture, such as register file, cache, functional units etc.,
are configurable according to the needs of the applications.
More interestingly, the instruction-set of the processor can be
extended with application-specific custom instructions. These
custom instructions capture frequently executed computational
patterns within an application or application domain. These
patterns are then synthesized as hardwired custom functional
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units and added to the data path of the processor to substan-
tially accelerate the execution of the application. Finally, the
application-development tool chain (e.g., the compiler) needs to
be updated to take advantage of these new custom instructions.
The custom instructions require incremental modification and
not complete re-design of the processor to be included. Thus
once the configuration parameters and the extensions have been
decided, an application-specific instruction-set processor (ASIP)
can be synthesized within hours along with the updated software
development tools through an automated process. Besides, as
the ASIP remains software programmable, it can be reused
across different applications — albeit with potentially reduced
performance. Examples of commercial customizable proces-
sors include Tensilica Xtensa core [43] and Stretch software
configurable processor [4]

The primary challenge in processor customization is to au-
tomate the selection of the appropriate custom instructions and
the configuration parameters for an application [31]. Earlier re-
search focused on identifying small but repetitive computational
patterns [5], [12], [15], [81] that can easily fit as additional func-
tional units in the processor datapath. These patterns have lim-
ited number of source and destination operands (just like basic
processor instructions) and do not include memory accesses. Re-
cent research reveals that bridging the gap between ASIC and
general-purpose core can only be realized through aggressive cus-
tomization where a single custom instruction can cover hundreds
of simple operations through wide SIMD datapath and custom
storage [27]. QsCORE [75] offers such broad-scale specializa-
tion capability by seeking to offload complete functions, typically
containing 1000 s of instructions, onto Quasi-specific (Qs) co-
processor cores. Unlike ASICs, a single QsCORE can support
multiple similar computations. An automated toolchain synthe-
sizes QsCORES by leveraging similar code patterns within/across
applications. The toolchain also performs extensive design space
exploration to consider the tradeoff between the computational
power of individual QsCORES and the area requirement, while
maximizing energy savings.
4.2.3 Approximate Accelerators

The conventional approaches to hardware acceleration strive to
maintain the accuracy of the computation and provide the exact
solution. An interesting aspect of the emerging media and ar-
tificial intelligence applications, which dominate the consumer
electronics domain, is that the algorithms involved either pro-
duce lossy results to save space and performance (such as lossy
image, video, audio encoding applications) or inexact solutions
simply because it is infeasible to compute the exact solution (as
in data mining, machine learning, etc.) This approximate nature
of the computation can be exploited to build accelerators that can
trade accuracy of computation for gains in both performance and
energy. The neural acceleration approach [22] proposes a low-
power reconfigurable accelerator called a Neural Processing Unit
(NPU). The NPU can perform the computation for a range of
neural network topologies. An algorithmic transformation con-
verts each approximable region of code to a neural model, which
is processed by the NPU to generate results with acceptable ac-
curacy but at substantially reduced energy cost.

4.3 Reconfigurable Computing
Traditional fixed-function ASIC-based accelerators discussed

in the previous section offer high efficiency but limited or zero
flexibility. At the other end of the spectrum, general-purpose pro-
cessors provide full flexibility through software programmabil-
ity but orders of magnitude difference in performance and en-
ergy compared to ASICs. Reconfigurable computing [14] fills
this gap between hardware and software with far superior perfor-
mance potential compared to programmable cores while main-
taining higher-level of flexibility than ASICs. We will briefly de-
scribe two broad classes of reconfigurable computing fabric that
have been introduced as part of heterogeneous multiprocessor
system-on-chip devices alongside general purpose cores, GPUs,
and fixed-function accelerators.
4.3.1 Field-Programmable Gate Arrays (FPGAs)

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated
semiconductor devices that can be electrically reprogrammed to
create almost any digital circuit/system within seconds [42]. FP-
GAs contain an array of computation elements, called config-
urable logic blocks, whose functionality can be changed instantly
through multiple programmable configuration bits. These logic
blocks, in turn, are connected through a set of programmable
routing resources. A digital circuit can be fabricated on FPGAs
by appropriately setting the configuration bits of the logic blocks
for the appropriate functionality and connecting these blocks to-
gether through reconfigurable routing. This comes at the cost of
area, power, and delay: an FPGA requires approximately 20 to
35 times more area than ASIC, has roughly 3–4 times slower per-
formance than ASIC and consumes about 10 times as much dy-
namic power [41]. Still, FPGAs strike a compelling compromise
between ASICs and general-purpose processors.

Recently, there has been considerable interest to bring general-
purpose cores and FPGAs together on a single SoC enabling close
coupling (high bandwidth) between the two. The Zynq platform
from Xilinx [62] and SoC-FPGA platform from Altera [1] are ex-
amples of such heterogeneous platforms in the current embedded
market. Such platforms typically integrate an application pro-
cessor such as dual-core Cortex A9 from ARM, with a highly
efficient reconfigurable FPGA fabric. These heterogeneous plat-
forms are becoming more and more complex and will integrate
more and more processors and logic elements. The new Xil-
inx UltraScale+MPSoC [80] contains 4 ARM-Cortex-A53 cores
running at up to 1.3 GHz, a Mali embedded GPU, up to 1 M logic
elements and 3 K DSPs (see Fig. 8). The processors offer the op-
portunity to implement the applications with frequently changing
specifications or standards, while the FPGA fabric allows to ac-
celerate critical components of the system for real-time respon-
siveness.

A complex SoC platform such as Xilinx UltraScale+ MPSoC
presents daunting challenges from programming point of view.
Mapping compute-intensive kernels onto the reconfigurable fab-
ric itself is a daunting proposition. Fortunately, there currently ex-
ist “C-to-gate” tools such as Xilinx Vivado synthesis tool [23] that
greatly relieves the burden of the programmers. The bigger obsta-
cle to the acceptance of such heterogeneous platforms is the diver-
gent programming strategy for each component: CPU, GPU, and
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Fig. 8 Xilinx UltraScale+MPSoC [source: Xilinx].

FPGAs. The emergence of open parallel programming standards
for heterogeneous computing systems such as OpenCL [69] is an
excellent development in the right direction. OpenCL programs
are portable across CPU, GPU, and FPGAs. There have been
some advances in compilation and runtime support for OpenCL
to different kinds of computing cores. But this remains a rich
area of research with the ultimate goal being transparent partition-
ing and mapping of a complete application on the MPSoC utiliz-
ing all its resources starting from a single high-level specification
(such as one in OpenCL). The relative merits of GPU, FPGAs,
and special-function accelerators (custom logic) have been inves-
tigated in Ref. [11]. The study concludes that GPUs and FPGAs
with their programmability are competitive with respect to cus-
tom logic when the available parallelism is relatively high. When
off-chip bandwidth is the major limitation, flexible cores such as
GPUs and FPGAs can keep up with custom logic in terms of per-
formance; but custom logic still maintains significant power ad-
vantage.
4.3.2 Coarse-Grained Reconfigurable Arrays (CGRAs)

Coarse-Grained Reconfigurable Arrays (CGRAs) [10] are
promising alternative between ASICs and FPGAs. As mentioned
before, FPGAs provide high flexibility, but may suffer from low
efficiency compared to ASICs [41]. This is due to the fine bit-
level granularity of reconfiguration opportunities offered by FP-
GAs that results in lower performance, higher energy consump-
tion, and longer reconfiguration penalty. In contrast, CGRAs, as
the name suggests, comprise of coarse-grained functional units
(FUs) connected via typically a mesh-like interconnect as shown
in Fig. 9. The functional units are capable of performing arith-
metic/logic operations and can be reconfigured on a per cycle
basis by writing to a control (context) register associated with
each functional unit. The functional units can exchange data
among themselves through the interconnect. As many functional
units work in parallel, CGRAs can easily accelerate compute-
intensive loop executions by exploiting instruction-level paral-
lelism. The primary challenge lies with the compiler that needs
to map and schedule the instructions on the FUs as well as take
care of the routing of data among the FUs through the intercon-
nect [7], [28], [48], [54]. A representative example of CGRA
architecture is ADRES [47] that tightly couples a VLIW (very-

Fig. 9 CGRA Architecture.

long instruction word) processor with coarse-grained reconfig-
urable matrix. A variation of ADRES architecture has been
introduced commercially as Samsung Reconfigurable Processor
(SRP) [70] as part of the mobile application processor system-
on-chip. The SRP consists of sixteen FUs, one or two register
files, four load/store units, scratch pad memory (SPM), an in-
struction cache for VLIW mode and configuration memory for
CGRA. High-performance and energy-efficiency of the SRP has
been demonstrated for multimedia applications, 3D graphics, and
software-defined radio.

5. Conclusions

The technology trends has ushered in the dark silicon era where
power rather than the transistor count is the limiting factor and
thus only a fraction of the chip can be powered on at any point
in time. Heterogeneous computing has emerged in response to
this development where area can be traded for energy-efficiency.
A heterogeneous multi-core integrates a diverse mix of process-
ing cores including general-purpose programmable cores, graph-
ics cores, special-purpose accelerators in custom logic, and even
reconfigurable fabric on a single chip. The cores most suited for
an application need to be switched on in heterogeneous comput-
ing platforms leading to low-power, high-performance comput-
ing. In this article, we detailed the technology trends driving
heterogeneous multi-cores, provided an overview of functional
heterogeneous and performance heterogeneous systems, as well
as discussed the obstacles to fully realize the potential of het-
erogeneity. Research in heterogeneous multi-core is currently at
a nascent stage. But heterogeneity offers exciting opportunities
and challenges for all layers of the computing stack starting from
devices, circuits, and architecture to operating system, compiler,
and programming layers.
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