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Abstract: This paper presents new methods of detecting missed arithmetic optimization opportunities for C compilers
by random testing. For each iteration of random testing, two equivalent programs are generated, where the arithmetic
expressions in the second program are more optimized in the C program level. By comparing the two assembly codes
compiled from the two C programs, lack of optimization on either of the programs is detected. This method is further
extended for detecting erroneous or insufficient optimization involving volatile variables. Two random programs dif-
fering only on the initial values for volatile variables are generated, and the resulting assembly codes are compared.
Random test systems implemented based on the proposed methods have detected missed optimization opportunities on
several compilers, including the latest development versions of GCC-5.0.0 and LLVM/Clang-3.6.
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1. Introduction

Compilers must be highly reliable, for they are infrastructure
tools for software development. If a compiler bug should result
in malfunctions of the application programs, it would be a very
hard and time consuming task to track down the cause, so the va-
lidity of the compilers is a crucial issue. In application domains
where performance is critical, compiler reliability refers also to
the performance of the generated codes in terms of the execution
speed or the memory usage. Thus, compilers must be also tested
if they perform intended optimization.

There have been many methods of validating compilers. Com-
piler test suites, such as Plum Hall [1], SuperTest [2], GCC (GNU
Compiler Collection) test suite [3], testgen2 test suite [4], are
large sets of programs to test the correctness of compilers. Al-
though they are powerful and essential tools for compiler de-
velopment, it is theoretically impossible to validate a compiler
completely with a finite set of test programs, and many bugs
are reported for well-developed compilers such as GCC *1 and
LLVM *2.

Random testing is a complement to these test suites. It attempts
to detect compiler malfunctions by huge volumes of randomly
generated programs. Several random test systems have demon-
strated their bug-finding performance on C compilers. CCG [5] is
a C code generator which attempts to search for compiler crashes.
Quest [6] found bugs in calling conventions (passing of argu-
ments and return values) of C compilers. Csmith [7] achieved
comprehensive testing of C compilers, which detected 79 bugs in
GCCs and 202 bugs in LLVMs over three years and made great
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contribution to improve the reliability of those open source com-
pilers. Orange3 [8], [9] is a random test generator targeting arith-
metic optimization which has reported 8 bugs and 5 bugs in the
latest versions of GCCs and LLVMs, respectively.

All the above methods test the correctness of the compilers by
executing generated codes and checking if they produce expected
results. So they do not examine other functions which do not
affect the execution results directly. For example, the compilers
pass the tests even if they perform extra computation which cause
unintended memory accesses or performance degradation.

There have been several attempts to detect such bugs lying un-
der the surface. NULLSTONE [10] is a test suite targeting C
compilers’ optimization, which consists of about 6,500 test pro-
grams to evaluate the effects of optimizers. Since it is a test
suite with a finite number of test cases, it is inevitable that its
bug detection ability is limited. Randprog [11] is a random test
system which detects invalid deletion of memory accesses for
volatile variables by comparing the memory access traces of the
two codes generated with and without an optimizing option. It
detects over-optimization but not under-optimization.

This paper newly proposes a method of detecting missed op-
portunities for arithmetic optimization (i.e., under-optimization)
in C compilers by randomly generated programs. A pair of equiv-
alent programs, one is unoptimized and the other is optimized
in the C program level, are generated and compiled assembly
codes are compared. An extended version of this method is also
proposed to test arithmetic optimization regarding volatile vari-
ables. A pair of programs which differ only on the initial val-
ues of volatile variables are generated and the resulting assembly
codes are compared to examine if optimization is performed as

*1 http://gcc.gnu.org/bugzilla/ (accessed 2015-05-06).
*2 http://www.llvm.org/bugs/ (accessed 2015-05-06).
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Fig. 1 Three methods for compiler random testing.

intended. Random test systems implemented based on the pro-
posed methods have detected missed optimization opportunities
on several compilers, including the latest development versions
of GCC and LLVM/Clang.

2. Related Work

2.1 Random Testing of Compilers
The overall flow of compiler random testing is simple; random

test program generation, compile and execution, and error check-
ing are repeated as long as time allows. If errors are detected,
error programs (programs caused the errors) are minimized (or
reduced); smaller programs that still trigger the same errors are
searched, automatically or manually, to make bug localization
easier.

If we are interested in crash test like CCG [5], any test pro-
grams conforming to the language syntax, or even any random
character string will work as the test programs. However, if we
want to test the correctness of code generation, it involves two
major challenges: (1) how to decide the correctness of the com-
piled codes for randomly generated programs, and (2) how to
avoid generating test programs with undefined behavior. As the
test programs grow larger and contain more syntax features, it
becomes more difficult to tell the correct answers that the pro-
grams should produce. The undefined behavior includes zero di-
vision, overflowing a signed integer, dereferencing a null pointer,
out of bounds array accesses, etc., for which the standard [12] im-
poses no requirements to the computation results. A test program
with any undefined behavior is of no use, since any execution re-
sults are valid for such a program. It is very difficult to generate
large scale random programs without undefined behavior, for it
depends on dynamic behavior of the programs.

The existing methods for compiler random testing are classi-
fied into three categories; (1) differential testing methods, (2) pre-
computation based methods, and (3) equivalence-based methods.

(1) Differential testing
Differential testing [13] tries to test a compiler by comparing

the execution result with that obtained by the other compiler (or
other version of the same compiler or with different compiler
option), as shown in Fig. 1 (1). More than two compilers may
be used to decide the correctness by voting. Differential testing
eliminates the necessity of preparing expected results for the test
programs and thus solves the first challenge above. Based on this
approach, Csmith [7] achieved comprehensive testing of C com-
pilers. It detected 79 bugs in GCCs and 202 bugs in LLVMs over
three years and made great contribution to improve the reliability
of those open source compilers. However, this approach does not

resolve the second issue. In Csmith, undefined behavior is elimi-
nated in a conservative way. For example, it guards every divide
operation as “(b!=0)?(a/b):(a)” instead of “a/b.” Since ev-
ery arithmetic operation is always guarded, some optimizers will
never be invoked and will not be tested. This may limit the bug
detection abilities of the test programs.

(2) Precomputation-based methods
This approach tries to overcome the both of the two challenges

by computing the expected behavior, including every intermedi-
ate computation result, of a test program while it is generated. If
undefined behavior is detected, the program is modified so that
the behavior is well defined. Orange3 [8], [9] is based on this ap-
proach. For example, if zero division is detected during test pro-
gram generation on a subexpression a/(b<c) where b is known
to be smaller than c, the expression is altered into a/(c<b). Sim-
ilarly, signed overflow on integer addition, subtraction, and mul-
tiplication are eliminated by replacing the operations with sub-
traction, addition, and division, respectively. Out of range on the
right operand of shifts is resolved by inserting addition or subtrac-
tion to fit the operand in a proper range. This approach enables
generation of more sophisticated test cases than the differential
approach, but it is applicable to limited classes of C programs.
Orange3 detected bugs in the latest versions of GCC and LLVM
which had not been detected by Csmith, but it can test only arith-
metic optimization.

(3) Equivalence based methods
This approach gives two equivalent programs to a compiler

and check if the compiled codes yield equivalent execution re-
sults. This resolves the first of the two challenges. In Mettoc’s
method [15], variants are generated from correct test programs,
though not so many transformations to generate large classes of
programs to detect many errors as Csmith are not presented. Le
et al. [16] proposed a method of generating variants from a test
program which are equivalent with respect to the same inputs.
Orion, a test tool based on this method has reported 147 unique
bugs for GCC and LLVM. The second of the two challenges still
remains unresolved, but proved test cases can be used as seeds for
the variants.

Some types of compiler bugs can not be detected by simply
comparing the final values computed by the the compiled codes.
Even though the outputs of the codes are correct, intended opti-
mization might have not been applied, or necessary memory ac-
cesses regarding volatile variables might be eliminated.

There have been some efforts to detect such incompleteness.
NULLSTONE [10] is a test suite targeting compiler optimization.
It consists of about 6,500 test programs that evaluate the effects of
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Table 1 Transformations for error program minimization in Orange3.
(1) Expression elimination, (2) Top-down minimization, (3) Bottom-
up minimization, and (4) Value and type minimization.

before after
(1) t1 = ((x8*x0)+x2);
t2 = x5*(x4%x1);

· · ·

t1 = 256;

t2 = x5*(x4%x1):

· · ·
(2) int x1 = 5;
int x2 = 7;

int t = (x1+x2)/x1;

if ( t==2 ) OK();

else NG();

int x1 = 5;

int x2 = 7;

int t = (x1+x2);

if ( t==12 ) OK();

else NG();

(3) int x1 = 2; int x2 = 3;
int t = (x1+x2)*x1;

if ( t==10 ) OK();

else NG();

int x1 = 2; int x2 = 3;

int t = (2+x2)*x1;

if ( t==10 ) OK();

else NG();

int x3 = 1;

int t = (-3+2)*x3;

if ( t==-1 ) OK();

else NG();

int x3 = 1;

int t = -1*x3;

if ( t==-1 ) OK();

else NG();

(4) long x1 = 42233720;
int x2 = 100;

int t = (x1+x2)<<(x1<3);

if ( t==42233820 ) OK();

else NG();

long x1 = 28;

int x2 = 100;

int t = (x1+x2)<<(x1<3);

if ( t==128 ) OK();

else NG();

long long x1 = 1; long x1 = 1;

volatile int x2 = 4; int x2 = 4;

more than 40 optimizing transformations of the compilers. Since
it is a test suit consisting of a finite number of test cases, it is
inevitable that its bug detection ability is limited. Randprog [11]
is a random test generator which tries to detect invalid optimiza-
tion regarding volatile variables (which must be accessed exactly
as written in the source codes). It compiles and executes test pro-
grams involving volatile variables both with and without optimiz-
ing options and compares the two memory access traces. If the
numbers of loads and stores on each volatile variable are differ-
ent, then miscompile (over-optimization) is detected. However,
this method is not able to find under-optimization where volatile
variables may block necessary optimization.

2.2 Minimization of Error Programs
Minimization of error programs is another important issue, for

the test programs in random testing can be of thousands of lines
and it is virtually impossible to locate the causes of the errors
without boiling down the error programs. The most popular min-
imization method is delta debugging [17], in which transforma-
tions to reduce the size of error programs are applied repeatedly
as long as the programs produce the error.

C-Reduce [14] is a general minimizer which takes a C program
triggering an error as an input and outputs a minimized C pro-
gram. It is based on transformations to reduce the size of C pro-
grams and static analysis to avoid undefined behavior.

Orange3 [9] implements its own minimizer which can handle
only programs that Orange3 generates but runs much faster. Ta-
ble 1 summarizes the transformations used in Orange3; (1) ex-
pression elimination replaces some of the expressions by their ex-
pected values; (2) top-down minimization substitutes an expres-
sion by one of the operands of the root operator (the expected val-
ues of the expressions are recomputed, accordingly); (3) bottom-
up minimization replaces a variable reference or an operation by
its expected value; and (4) value and type minimization makes the

Fig. 2 Overall flow of error program minimization in Orange3 [9].

absolute values of constants smaller and types simpler. Figure 2
is the overall flow of minimization. Basically, each of (1) through
(4) is applied until it has no more effect. If some transformations
are adopted, preceding steps are retried. The repetition terminates
when none of the transformations is applicable.

Note that this kind of minimization procedure does not guar-
antee that the results are minimum. The results are dependent on
the order of transformations, so a smaller error program might be
obtained by a different sequence of transformations. However,
the results are minimal in the sense that the programs cannot be
made smaller by any of the transformations without eliminating
the errors.

3. Random Testing for Detecting Arithmetic
Optimization Opportunities

3.1 Overview
In this section, a random testing method for detecting arith-

metic optimization opportunities missed by C compilers is pro-
posed. It is based on the equivalence based method shown in
Fig. 1 (c). For each test iteration, two equivalent programs, one is
unoptimized and the other is optimized in the C language level,
are given to the compiler under test. The compiler’s optimization
ability is evaluated by comparing the resulting assembly codes,
instead of executing the codes.

Figure 3 shows the dataflow of the test in each iteration. First,
a set of abstract syntax trees (ASTs) representing random arith-
metic expressions is constructed. While a C program (org.c)
containing the arithmetic expressions is generated from the ASTs,
another set of trees (ASTs’) is derived from the original ASTs
by applying tree-level optimization (such as constant propagation
and constant folding), from which another C program (opt.c) is
generated. The two C programs are compiled and the resulting
assembly codes (org.s and opt.s) are compared.

If the compiler is not able to perform an equivalent level of op-
timization as performed on the ASTs, there should be some dif-
ference on the two assembly codes. Moreover, the test may detect
cases where stronger optimization is performed on opt.c but not
on org.c when such optimization is blocked by some redundant
dataflow in org.c or some other earlier transformation on org.c
eliminate the conditions to fire the stronger optimization.

3.2 Test Program Generation
The original (unoptimized) ASTs are constructed in the same
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way as in Orange3 [9]. First, a set of variables with randomly
determined types and initial values are generated. Then, binary
trees of random shapes are generated, and operators and variables
are randomly assigned to the internal nodes and the leaf nodes, re-
spectively. The correct value of every subtree in the trees is com-
puted in a bottom-up manner. If a subtree results in undefined
behavior, the subtree is modified so that the undefined behavior
will be eliminated.

Then, optimized ASTs are created by reducing each of the orig-
inal ASTs. Any type of tree optimization is applicable, but in this
paper we focus on constant propagation (substitution of variables
by their values) and constant folding (replacement of subexpres-
sions by their expected values). These optimizing transforma-
tions are performed by replacing each variable or operator node
by a constant node. However, the reduction must not be done on
nodes that depend on volatile variables, whose values might be
updated from outside at any time during execution.

For this purpose, all the nodes on the paths from the volatile
variable nodes to the root node are marked as volatile and the
other nodes as normal. Then, the tree is traversed in a depth first
manner and the subtrees whose root nodes are marked as normal

Fig. 3 Dataflow of testing for detecting optimization opportunities.

Fig. 4 Optimization of AST.

Fig. 5 Example pair of test programs.

are replaced by nodes with the corresponding constants. Figure 4
shows an example, where v4 is a volatile variable. All the an-
cestor nodes of v4 are marked as volatile (“v”) and all the other
nodes as normal (“n”). Every time a normal node is encountered
during depth first tree traversal, the subtree rooted by the node is
replaced by a constant node. In our method, variables declared
as const volatile are treated in the same way as volatile
variables, though compilers may perform stronger optimization
on const volatile variables than volatile variables.

Figure 5 is an example pair of the test programs (org.c and
opt.c) generated by our method. The both programs have assign
statements with arithmetic expressions in lines 21–23, where pos-
sible constant propagation and constant folding have been per-
formed in opt.c. Some variables are declared global (in lines
5–9) and others local (in lines 12–19). Although nonvolatile vari-
ables are not used in opt.c, all the variables declared in org.c
are also declared in opt.c. This is to avoid unnecessary changes
on the assembly code. In spite that the compiled codes are com-
pared but not executed, the programs compare the results with the
expected values in lines 25–28. If not, optimizers would eliminate
all the assign statements in lines 21–23 whose left hand size vari-
ables are never referenced. These programs were generated with
a parameter #op = 10 which specifies the target number of the
operations per test program. We assume that the value to this pa-
rameter is set between 1 to about 10,000, depending on the qual-
ities of the compilers under test. The number of assign statement
(which is smaller than #op) is determined randomly per program.

3.3 Comparison of Assembly Codes
Even if the compiler under test performs desired optimization

on both test programs org.c and opt.c, the resulting assembly
codes org.s and opt.s are not always identical. The same set
of instructions may appear in different order. Instructions of the
same operations but of different data sizes or of different address-
ing modes may be used. Actually, it is not a simple task to judge
if codes are under-optimized and it might only be concluded by
compiler designers. Thus, our goal here is to enumerate suspi-
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cious cases which will be examined later. For this purpose, two
empirical measures are used.

If the numbers of the instructions in the two assembly codes
are different, it is possible that one of them (in most cases org.s)
is under-optimized. Let n and n′ be the numbers of the instruc-
tions in org.s and opt.s, respectively. Then the first measure is
defined as:

r1 =
n′

n
. (1)

Smaller r1 means that opt.s has fewer instructions than org.s,
so it is likely that org.s under-optimized when r1 is smaller than
a threshold.

Miss of optimization opportunities may also be predicted by
examining how different the instructions used in the two assem-
bly codes are. This is seized by counting the the numbers of the
instructions of the same operations. For example, x86 instruc-
tions addb (8 bit), addw (16 bit), addl (32 bit), and addq (64 bit)
are all classified as add instructions, in spite that their data sizes
and addressing modes are different. Let no and n′o be the numbers
of the instructions of operation o in org.s and opt.s, respec-
tively. Let m and m′ be the numbers of the operations of the
instructions used in org.s and opt.s, respectively, and let mu be
the number of the operations o where no = n′o holds. For exam-
ple, the instruction counts in Table 2 results in m = 7, m′ = 6,
and mu = 2 (for nsrl = n′srl and nxor = n′xor). Then, the second
measure is defined as:

r2 =
mu(

m + m′

2

) . (2)

Smaller r2 means more different operations are used in the two
files, so there should be under-optimization on org.s when r2 is
smaller than a proper threshold.

In our method, the geometric mean of the r1 and r2 is used as
the overall measure.

r =
√

r1 · r2 . (3)

Namely, the test case is classified as potentially under-optimized
when r is smaller than a threshold.

3.4 Minimization of Error Programs
The test cases that detected potential under-optimization are

minimized for close examination. The same minimization strat-
egy as Orange3 can be used, with slight modifications, to mini-
mize a pair of programs simultaneously.

Table 2 Example of instruction counts.

operation #instructions
org.s opt.s

add 350 235
sub 100 98
imul 56 23
idiv 8 -
shl 32 38
srl 25 25
xor 12 12

This distribution results in m = 7, m′ = 6, mu = 2, and r2 =
2(

7+6
2

) ≈ 0.31.

Every time one of the minimizing transformations listed in Ta-
ble 1 is attempted on unoptimized ASTs, a pair of C programs
org.c and opt.c are generated in the same way described in
Section 3.2. If the reduced test case still resulted in r smaller
than the threshold, then the transformation is adopted, otherwise
it is cancelled. A single threshold is used throughout the mini-
mization procedure. The procedure terminates when none of the
transformations is applicable any more.

4. Random Testing of Optimization Involving
Volatile Variables

Equivalence-based random test is further extended in this paper
to test over- or under-optimization regarding volatile variables.

Volatile variables are the variables that might be read or written
by other processes or hardware devices outside of the program
in which the variables are declared, and that must be loaded or
stored exactly as described in the program. Thus,
( 1 ) compilers must not perform optimization to delete loads and

stores of volatile variables, but
( 2 ) compilers should perform optimization wherever volatile

variables are irrelevant.
Our second method presented in this paper uses a pair of pro-

grams, which differ only on initial values of volatile variables, as
a test case and compares the compiled code to examine (1) and
(2) above. Figure 6 (a) shows the dataflow of test by this method.
Random ASTs are constructed from which org.c is generated,
as is in Orange3. Then, the other program vol.c is generated
from the same ASTs, where different initial values are given to
volatile variables (as shown in (b)). The two resulting assembly
codes org.s and vol.s are compared by the same criteria as in
the previous section.

Since compilers must not perform optimization using the
knowledge on the values of the volatile variables, the assembly
codes org.s and vol.smust be the same except for the part that
initialize the variables. By comparing the two assembly codes,
over-optimization (deletion of some instructions that must not be
deleted) on either of the codes will be detected. At the same time,

Fig. 6 Outline of random testing of optimization involving volatile
variables.
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under-optimization due to some confusion involving volatile vari-
ables will be also detected. Any initial values will do for the
volatile variables in vol.c. Note that the initial values to const
volatile variables must be same in the both programs (line 16),
for different initial values to those variables lead to different as-
sembly codes. Since we do not run the code generated from
vol.c, the expected values in line 8 of vol.c are not recom-
puted.

Comparison and minimization are performed in the same way
as described in Sections 3.3 and 3.4, respectively.

5. Implementation and Experimental Results

5.1 Implementation
A random test system based on the proposed methods has been

implemented using the libraries of Orange3 *3. It is written in Perl
5.20 and runs on Windows Cygwin, Max OS X, Ubuntu Linux,
etc.

Table 3 summarizes the types and the operators used in ran-
dom program generation. Signed and unsigned integer types
were used but floating point types were not. This is because they
would compile into dedicated extended instructions such as SSE
by which small changes on source code would result in large dif-
ference in the assembly codes and yet it would be difficult to de-
cide which code sequences ran faster. Most of the binary arith-
metic operators were used, but the modulo operator (“%”) was
excluded from the test program, for it lead to many move instruc-
tions and makes the error judgement difficult.

5.2 Result of Testing for Arithmetic Optimization Opportu-
nities

The test was run on 10 versions of the compilers including
GCC, LLVM/Clang, SunCC, and IntelCC. The parameter to con-
trol the number of operations per test program (#op) was set to
500, taking into account that 1,000 had been enough for mis-
compile detection in Orange3 for GCCs of version 4.4 through
4.8 [9] and that one of the compilers under test this time (SunCC)
was tested for more time consuming optimization options. The
test was run for 12 hours for each version where the CPU was
Intel(R) Core(TM) i7–4930K 3.40 GHz with 15.6 GiB RAM *4.
The threshold of r was set to 80%. This value was determined
empirically: smaller threshold than 70% detected almost no dif-
ferences while almost all test cases were decided as positive with
threshold larger than 90%.

Table 3 Types and operators used in test program generation.

types
signed, unsigned
char, short, int, long, long long

scopes local, global
classes none (auto), static
modifiers none, const, volatile, const volatile

arithmetic (+, -, *, /)
logical (&&, ||)

operators comparison/relational (==, !=, <, >, <=, >=)
bitwise (<<, >>, &, |, ˆ)
type-conversion

*3 https://github.com/ishiura-compiler/Orange3 (accessed 2015-05-30).
*4 We used the same parameters for the both experiments in Table 4 and

Table 6 for comparison, though smaller run time was enough for the ex-
periment of Table 4.

The result is summarized in Table 4. Column “opt” shows the
tested optimization options, “#test” the numbers of pairs tested
within the run time of 12 hours, and “#diff” the numbers of
test cases that detected differences on the compiled codes with
r smaller than the threshold.

Large number of test cases detected differences on the as-
sembly codes for all the compilers under test. As will be de-
scribed later, those actually included cases that detected under-
optimization. However, we could not conclude that all the cases
were due to under-optimization. This is partly because all the
test cases were not well minimized, and partly because we could
not tell the pairs of assembly codes had really performance differ-
ences for all the minimized cases. Thus, #diff in this experiment
does not necessary serve as a measure of the strength of compiler
optimizers, though we can see that the newer versions of the same
compiler series have the smaller difference counts.

Table 5 summarizes the result of minimization where the first
100 test cases (as indicated in column “#diff”) that had detected
differences in the experiment of Table 4 for each of GCC-4.8.2
and LLVM/Clang-3.3. The CPU was Intel(R) Core(TM) i7–
5500U 2.40 GHz with 7.7 GiB RAM. Column “ave time” shows
the average run time per test case, and subcolumns “before” and
“after” under “ave #op” are the numbers of operators in the test
programs (org.c in Fig. 3) before and after minimization, respec-
tively. “#min” indicates the number of well minimized test cases
which contained less than 10 operators.

The minimizer reduced the size of test programs in several sec-
onds on average. The longest runtime among 200 cases were
47.3 seconds. Not all but more than 80% of the test programs
were minimized to the size of less than 10 operators, of which
code inspection or further manual minimization was possible.
The maximum number of the operators in the minimized pro-
gram among 200 cases were 31. Out of the 94 and 82 minimized
test cases for GCC-4.8.2 and LLVM/Clang-3.3, respectively, we

Table 4 Result of test for arithmetic optimization opportunities.

compiler (target) opt #test #diff
GCC-4.4.7 (A) -O3 53,374 30,852
GCC-4.6.4 (A) -O3 53,113 27,416
GCC-4.7.3 (A) -O3 53,237 24,222
GCC-4.8.2 (A) -O3 54,000 20,119
GCC-5.0.0* (B) -O3 49,574 17,925
LLVM/Clang-2.8 (B) -O3 61,008 1,110
LLVM/Clang-3.3 (B) -O3 60,495 1,105
LLVM/Clang-3.6** (B) -O3 55,804 434
SunCC-5.12 (C) -O5 33,552 3,994
IntelCC-15.0.1 (D) -O3 45,847 22,187

* version 5.0.0 20141010 (experimental)
** version 3.6.0 (trunk 217856)

time: 12 (h), size: 500, r: 80 (%)
CPU: Intel(R) Core(TM) i7–4930K 3.40 GHz, RAM: 15.6 GiB
A: x86 64-pc-linux-gnu, B: x86 64-unknown-linux-gnu,
C: linux-i386, D:Intel(R)-64

Table 5 Result of minimization for optimization opportunity test.

compiler #diff
ave
time

ave #op
#min

[sec] before after (#op< 10)
GCC-4.8.2 100 1.62 529.9 3.14 94
LLVM/Clang-3.3 100 3.19 524.9 5.90 82

CPU: Intel(R) Core(TM) i7–5500U 2.40 GHz, RAM: 7.7 GiB
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Fig. 7 Detected optimization opportunity for LLVM/Clang-3.6.

judged by assembly code inspection that 38 and 49 cases, respec-
tively, had detected under-optimization. For the other cases, we
could not decide if each pair of codes were of different perfor-
mance, though the codes looked different. Interestingly, it turned
out that opt.c compiled to less optimized code than org.c in 1
out of the 38 cases for GCC-4.8.2 and in 34 out of the 49 cases
for LLVM/Clang-3.3. As is shown in the following paragraphs,
detected under-optimization was not always of constant propaga-
tion nor constant folding. We guess this is because small changes
on input C programs might have big impact on how chains of
optimizers process intermediate representation.

Figure 7 shows the result of minimization of a test case on
LLVM/Clang-3.6 *5 (with -O3 option), which originally consisted
of 851 lines. The C codes org.c and opt.c differ only on line 6,
where variable a in org.c is replaced by constant 1, which should
compile into the same assembly codes. However, the resulting
assembly codes shown in (b) are very different; org.s contains

*5 clang version 3.6.0 (trunk 217334) (x86-unknown-linux-gnu)

Fig. 8 Detected optimization opportunity for GCC-4.8.2 (-O3).

a redundant code sequence. For comparison, org.c was com-
piled by GCC-4.8.2 (with -O3 option) to get the code org-gcc.s
in (c), which is equal to org.s in the essential part. Thus, it
was concluded that the optimizer of this version of LLVM/Clang
had room for improvement. This case was reported to the bug
database of LLVM/Clang *6 and modification was made in re-
sponse. Note that this test case did not detect missing of the
simple optimization to propagate constant 1 into variable a (as
expressed in org.c to opt.c). It revealed instead that much
stronger optimization, which should eliminates all the computa-
tions regarding the expression on line 06 in opt.c, was blocked
when constant propagation was not explicitly expressed in the C
program org.c. Thus, the proposed method may detect missing
of more sophisticated optimization, such as variable range propa-
gation, other than those performed on ASTs during test case gen-
eration.

Figure 8 shows a minimized test case for GCC-4.8.2 with -O3
option. The two C programs in (a) differ only on line 07 and ex-
pected to compile to the same code. However, assembly codes (b)
are different; computation of the branch condition is not folded
away in org.s. This case was reported to the bug database of
GCC *7 after confirming the same syndrome still appeared on the
development version of GCC-4.8.4 *8. Modification on the com-
piler has not been made but the cause of under-optimization was
discussed.

In our current minimization procedure, succinct programs as
Figs. 7 and 8 were not obtained from all of the test cases listed in

*6 http://llvm.org/bugs/ bug #20916
*7 http://gcc.gnu.org/bugzilla/ bug #61839
*8 gcc version 4.8.4 20140622 (prerelease) (x86-unknown-linux-gnu)
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Table 6 Result of test for optimization involving volatile variables.

compiler (target) opt #test #diff
GCC-4.4.7 (A) -O3 45,795 5
GCC-4.6.4 (A) -O3 45,204 15
GCC-4.7.3 (A) -O3 44,157 13
GCC-4.8.2 (A) -O3 44,986 12
GCC-5.0.0* (B) -O3 40,510 10
GCC-5.0.0* (B) -Os 49,220 12
LLVM/Clang-2.8 (A) -O3 47,582 0
LLVM/Clang-3.3 (A) -O3 46,843 0
LLVM/Clang-3.6** (B) -O3 42,973 3
SunCC-5.12 (C) -O5 32,260 253
IntelCC-15.0.1 (D) -O3 36,363 16,952

CPU, parameters, and targets are same as Table 4

the column “#diff” in Table 4. There were cases where assem-
bly codes differ for large C programs but not after applying any
minimizing transformation. There should be a lot of room for
improvement in the method of comparing assembly codes, espe-
cially in the criteria of deciding the codes are different.

It should be also noted that our test detected the lack of
other optimization than constant folding and constant propaga-
tion which was implemented in the test generator. We consider
that small changes on test programs make big difference on how
chains of optimizers are invoked, and thus our method may be
effective on compilers with sophisticated optimization passes.
Missing of the stronger optimization such as variable range prop-
agation might be easily detected by implementing the same opti-
mization in AST level in the test generator. Other tree optimiza-
tion such as strength reduction may be worth implementing in the
test generator to enhance effectiveness of the test.

5.3 Result of Testing of Optimization Involving Volatile
Variables

Test of volatile variable related optimization is performed with
the same settings of the compilers, the CPU, and the parame-
ters as in Section 5.2. The result is summarized in Table 6.
Column “opt” shows the tested optimization options, “#test” the
numbers of pairs tested within the run time of 12 hours, “#diff”
the numbers of test cases that detected potential over- or under-
optimization.

A fewer differences were detected than those in Section 5.2.
We examined all the “#diff” cases except for those for IntelCC.
All the test programs were successfully auto-minimized to the
size of less than 10 operators, and it was confirmed that all the
differences were due to under-optimization (namely, no over-
optimization was detected).

Figure 9 shows a minimized test case for GCC-5.0.0 *9 (with
-Os option; original C program was of 691 lines). The two source
programs in (a) differ only on the initial values of the volatile vari-
able c (line 5). The resulting assembly codes should be different
only on the initialization of the variables, but the two codes in (b)
are different; org.s contains a redundant code sequence which
should be optimized away. This test case was reported to the bug
database of GCC *10, and modification was made in response.

*9 gcc version 5.0.0 20141215 (experimental) (x86-unknown-linux-gnu)
*10 http://gcc.gnu.org/bugzilla/ bug #64322

Fig. 9 Detected optimization opportunity for GCC-5.0.0 (-Os).

6. Conclusion

New methods of detecting missed arithmetic optimization op-
portunities for C compilers based on random testing have been
proposed. The effectiveness of the methods were shown through
experiments, in which under-optimization cases for the latest ver-
sions of GCC and LLVM/Clang were detected.

However, not all the test cases which detected potential under-
optimization were not properly minimized. Further research
should be done on the minimization procedure or the criteria of
comparing assembly codes. Incorporating optimizing transfor-
mations on abstract syntax trees other than constant folding and
constant propagation would be future work to improve the perfor-
mance of the proposed method.
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