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Efficient Revocable Group Signature Schemes Using Primes

Toru Nakanishi†1 and Nobuo Funabiki†1

Group signature schemes with membership revocation have been intensively
researched. In this paper, we propose revocable group signature schemes with
less computational costs for signing/verification than an existing scheme with-
out the update of the signer’s secret keys. The key idea is the use of a small
prime number embedded in the signer’s secret key. By using simple prime inte-
ger relations between the secret prime and the public product of primes for valid
or invalid members, the revocation is efficiently ensured. To show the practical-
ity, we implemented the schemes and measured the signing/verification times in
a common PC (Core2 DUO 2.13GHz). The times are all less than 0.5 seconds
even for relatively large groups (10,000 members), and thus our schemes are
sufficiently practical.

1. Introduction

1.1 Backgrounds
A group signature scheme 1),2),5),6),8),9),12),16),20),21) allows a group member to

anonymously sign a message on behalf of a group. In the group signature
scheme, a group manager controls the membership of members, and the manager
(or a third party) can cancel the anonymity of signatures to trace the signers.
One of important topics in the group signature scheme is membership revoca-
tion 2),5),6),9),20),21). Namely, the membership of a member should be disabled
without influencing the other members.

Some schemes 2),5),6),8),9),21) deal with the membership revocation. However, in
the schemes of Refs. 2), 6), the verification requires a computation with O(R)
complexity, where R is the number of revoked members.

In Ref. 9), an approach using a dynamic accumulator is proposed with the
signing/verification costs of O(1) w.r.t. N and R, where N is the group size.
However, whenever making a signature, the signer has to modify a secret key.
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The computation of the modification is linear on the number of joining and
removed members since the last time he signed. In the worst case, it is O(N).
In Ref. 8) using a similar approach, the signer’s modification of his secret key
requires the computation depending on the number of revocations since the last
time he signed. Thus, in the worst case, the signer is required O(R) computation.
In Ref. 5), a group signature scheme from bilinear maps is proposed, where the
same revocation approach is adopted. Therefore, since these schemes 5),8),9) force
a signer to modify his secret key with O(N) or O(R) complexity before signing,
they are not suitable for large groups.

1.2 Previous Works
In Ref. 21), a revocable scheme suitable for middle-scale groups with about

1,000 members is proposed. For such groups, the signing/verification are almost
independent from N and R, and any signer does not need to modify the secret key.
However, for larger groups, the signing/verification requires a cost that depends
on N/�n, where �n is a security parameter of strong RSA assumption, which is
currently 1,024 or 2,048. In Ref. 20), an extended scheme suitable for the larger
groups is proposed. In that scheme, the group is partitioned into sub-groups,
and the scheme of Ref. 21) is utilized for each smaller sub-groups. In addition, it
is kept secret which sub-group the signer belongs to.

Indeed, in the scheme of Ref. 21), the signing/verification algorithms have a
complexity independent from N and R (w.r.t. the number of exponentiations),
but the algorithms are complex due to the utilized zero-knowledge proofs. In
this scheme, the manager publishes a membership data where each bit indicates
whether the assigned member is valid or not. The group signature proves that
the signer’s bit is 1 while concealing which bit it is. In the proof, some integer
equations and inequations on secret data are proved. However, since the zero-
knowledge proof of the integer inequation based on Ref. 7) is complex, the group
signature is also complex.

1.3 Our Contributions
In this paper, we propose revocable schemes with more efficient sign-

ing/verification algorithms. The first scheme is suitable for the small groups.
In the scheme, a small and unique prime number is assigned to each member and
is embedded in the member’s secret key, and the manager publishes the product
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of primes of valid members. The group signature proves that the signer’s prime
is the factor of the published product. In the adopted zero-knowledge proof,
the efficiency depends on the complexity of the proven relations and the sizes
of the proven secrets. Since the relation of the product used in this scheme is
very simple, the good efficiency is achieved. However, as the group size increases,
the product of unique primes is also huge. Thus, since the zero-knowledge proof
becomes inefficient due to the increase of the sizes of proven secrets, this scheme
is not suitable for middle-scale or large groups.

In the second scheme, the manager publishes the product of primes of revoked
members, and the group signature proves that the signer’s prime is coprime to
the published product. This relation is also simple. Generally, the number of
revoked members is smaller than the number of valid members, and thus we can
expect that this scheme will be more efficient than the first one.

Since the proven secrets of both schemes depend on N or R, these are not
suitable for large groups. We furthermore apply the first scheme to the approach
in Ref. 20) to obtain the extended scheme for large groups.

To show the effectiveness of the proposed schemes, we implemented the schemes
on a PC. In this paper, we compare the execution times of the signing/verification
with those in the scheme of Ref. 21).

1.4 Related Works
A scheme based on the idea similar to our second scheme is proposed in Ref. 13).

In this scheme, a prime number is used for the revocation management, and the
product of the primes of all revoked members is published. The group signature
proves that the signer’s prime is coprime to the published product. However, the
serious problem is that the primes used in this scheme are large (about 1,000 bits),
and thus the product is very huge. This is why the zero-knowledge proof based
on the product is very inefficient even in the case where R is small. On the other
hand, in our scheme, any prime number can be used. Thus, we can choose a
unique prime from the smallest prime in sequence. Therefore, our second scheme
is efficient even for the middle-scale group.

2. Model and Security Definitions

We show a model of group signature scheme with membership revocation. This

model and the following security requirements are derived from Refs. 3), 4), 6),
18), except the revocability, which we introduce in this paper.

Group signature scheme with membership revocation consists of the following
algorithms:
KeyGen: This probabilistic key generation algorithm for the group manager,

on input 1�, outputs the group public key gpk, the initial membership data
md[0] and manager’s secret key msk.

Join: This is an interactive protocol between a probabilistic algorithm Join-
U for the i-th user and a probabilistic algorithm Join-GM for the group
manager, where the user joins the group controlled by the manager w.r.t.
gpk. Join-U, on input gpk, outputs usk[i] that is the user’s secret key. On
the other hand, Join-GM, on inputs gpk, msk,md[t], outputs reg[i] and
md[t + 1].

Revoke: This probabilistic algorithm, on inputs gpk, md[t], revoked member’s
ID i, and reg[i], outputs new membership data md[t + 1].

Sign: This probabilistic algorithm, on inputs gpk, usk[i], a membership data
md[t], and signed message M , outputs the signature σ.

Verify: This is a deterministic algorithm for verification. The input is gpk, a
membership data md[t], a signature σ, and the message M . Then the output
is ‘valid’ or ‘invalid’.

Open: This deterministic algorithm, on inputs gpk, msk, reg, σ and M , out-
puts i, which indicates the signer of σ.

Then, the security requirements, Traceability, Revocability, Anonymity, and
Non-frameability, are defined as follows.

2.1 Traceability
The following traceability requirement captures the unforgeability of group

signatures. Consider the following traceability game between an adversary A
and a challenger, where A tries to forge a signature that cannot be traced to one
of members corrupted by A.
Setup: The challenger runs KeyGen, and obtains gpk, msk and md[0]. He

provides A with gpk and md[0], and run A. He sets t = 0, and sets CU and
RCU with empty, where CU denotes the set of IDs of users corrupted by A,
and RCU denotes the set of IDs of revoked users in CU .
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Queries: A can query the challenger about the following.
H-Join: A can request the i-th user’s join. Then, the challenger executes

the join protocol, where the challenger plays both the roles of the joining
user and the manager. This corresponds to a honest user’s join. Increase
t by 1.

C-Join: A can request the i-th user’s join. Then, A as the joining user
executes the join protocol with the challenger as the manager. The chal-
lenger adds i to CU . This corresponds to a corrupted user’s join. Increase
t by 1.

Revocation: A requests the revocation of a member i. The challenger
responds new md[t + 1]. The challenger adds i to RCU if i ∈ CU .
Increase t by 1.

Signing: A requests a signature on a message M for a member i. The
challenger responds the corresponding signature using the current md[t],
if i /∈ CU .

Corruption: A requests the secret key of a member i. The challenger
responds the secret key if i /∈ CU . The challenger adds i to CU .

Open: A requests to open a signature σ on the message M . The challenger
responds the corresponding signer’s ID i.

Output: Finally, A outputs a message M∗ and a signature σ∗.
Then, A wins if
( 1 ) Verify(gpk, md[t], σ∗, M∗) = valid,
( 2 ) for i∗ = Open(gpk, msk, reg, σ∗, M∗), i∗ /∈ CU , and
( 3 ) A did not obtain σ∗ by making a signing query at M∗.

Traceability requires that for all PPT A, the probability that A wins the trace-
ability game is negligible.

2.2 Revocability
The revocability captures that any revoked member cannot compute any sig-

nature accepted by honest Verify. This property can be formalized in the frame-
work of the traceability, as in Ref. 6). However, to clearly distinguish the mean-
ings of the traceability and the revocability, we separately define these require-
ments.

Consider the revocability game that is the same game as the traceability except

that A wins if
( 1 ) Verify(gpk, md[t], σ∗, M∗) = valid,
( 2 ) CU = RCU .
( 3 ) A did not obtain σ∗ by making a signing query at M∗.
In this game, A tries to forge a valid signature, in the situation that all corrupted
members are revoked.

Revocability requires that for all PPT A, the probability that A wins the
revocability game is negligible.

2.3 Anonymity
The following anonymity requirement captures the anonymity and unlinkability

of signatures. Consider the following anonymity game.
Setup: The challenger runs KeyGen, and obtains gpk, msk and md[0]. He

provides A with gpk and md[0], and runs A. He sets t = 0 and CU with
empty.

Queries: A can query the challenger. The available queries are the same ones
as in the traceability game.

Challenge: A outputs a message M and two members i0 and i1. If i0 /∈ CU

and i1 /∈ CU , the challenger chooses φ ∈R {0, 1}, and responds the signature
on M of member iφ using the current md[t].

Restricted queries: Similarly, A can make the queries. However, A cannot
query the opening of the signature responded in the challenge.

Output: Finally, A outputs a bit φ′ indicating its guess of φ.
If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ] − 1/2|.

Anonymity requires that for all PPT A, the advantage of A on the anonymity
game is negligible.

2.4 Non-frameability
This property requires that a signature of an honest member cannot be com-

puted by other members and even the manager.
Consider the following non-frameability game.

Setup: The challenger runs KeyGen, and obtains gpk, msk and md[0]. He
provides A with gpk, msk and md[0], and run A. He sets t = 0 and HU

with empty, where HU denotes the set of IDs of honest users who are not
corrupted by A.
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Queries: In the run, A issues the following queries to the challenger.
H-Join: A can request the i-th honest user’s join. Then, A as the manager

executes the join protocol with the challenger as the i-the user. The
challenger adds i to HU . Increase t by 1.

C-Join: A can request the i-th corrupted user’s join. A plays the roles of
the manager and the i-th user. Thus, the challenger just obtains a new
md[t + 1]. Increase t by 1.

Revocation: A can request the revocation of member i. A plays the role
of the manager to execute the revocation of the member. Thus, the
challenger just obtains a new md[t + 1]. Increase t by 1.

Sign: A can request a signature for a signed message M , user’s ID i, and
the current md[t]. The challenger replies Sign(gpk, usk[i], md[t], M), if
i ∈ HU .

Corruption: A can request to corrupt a member by sending the member’s
ID i. The challenger returns usk[i], if i ∈ HU . The challenger deletes i

from HU .
Output: Finally, A outputs a message M∗ and a signature σ∗.
Then, A wins if
( 1 ) Verify(gpk, md[t], σ∗, M∗) = valid,
( 2 ) for i∗ = Open(gpk, msk, reg, σ∗, M∗), i∗ ∈ HU , and
( 3 ) A did not obtain σ∗ by making a signing query at M∗.

Non-Frameability requires that for all PPT A, the probability that A wins the
non-frameability game is negligible.

3. Preliminaries

3.1 Assumptions
We adopt the strong RSA assumption. Let n = pq be an RSA modulus for

safe primes p, q (i.e., p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are prime), and let
QR(n) be the set of quadratic residues modulo n, that is, the cyclic subgroup
of Z

∗
n generated by an element of order p′q′. The strong RSA assumption on

QR(n) means that finding (u ∈ QR(n), e ∈ Z>1) s.t. ue = z (mod n) on inputs
(n, z ∈ QR(n)) is infeasible. We furthermore adopt the DDH assumption.

3.2 CL Signature Scheme
Our group signature schemes utilize Camenisch-Lysyanskaya (CL) signature

scheme 10). The adopted version is the one in Ref. 8) with a slight modification.
Key generation: Let �n be a security parameter. The secret key consists of

safe primes p, q, and the public key consists of n = pq of length �n and
a, g1, . . . , gL, h ∈R QR(n), where L is the number of blocks.

Signing: Let �m be a parameter. Given messages m1, . . . , mL ∈ ±{0, 1}�m ,
choose a random number r of length �r (r can be chosen from Zn in the
applied group signature scheme 8)) and a random prime e of length �e s.t.
�e ≥ �m + 2. Compute y s.t. y = (agm1

1 · · · gmL

L hr)1/e mod n. The signature
is (e, y, r).

Verification: Given messages m1, . . . , mL and the signature (e, y, r), check
ye = agm1

1 · · · gmL

L hr (mod n) and 2�e−1 < e < 2�e .
3.3 SPK

As main building blocks, we adopt the signatures converted by Fiat-Shamir
heuristic 15) from honest-verifier zero-knowledge proofs of knowledge, abbreviated
as SPK. The adopted proofs show the relations among secret representations.
The SPK of a representation on QR(n) is proposed in Ref. 14). We furthermore
use the SPK of representations with equal parts 11) (on different groups), and
SPK of a representation with parts in intervals 11). The details are described
in Appendix. We adopt the notations on SPK in Refs. 8), 11). For instance,
SPK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃h̃γ ∧ α ∈ [u, v]}(m) denotes the signature
on message m proving the knowledge of (α, β, γ) s.t. y = gαhβ, ỹ = g̃h̃γ , and
α ∈ [u, v]. In the case where the message m is not needed, we omit (m) from this
notation.

4. Basic Scheme

4.1 Idea
In the proposed scheme, we utilize the component of the scheme of Ref. 8)

for the anonymous group membership authentication, and attach a revocation
mechanism to it. The underlying scheme 8) is the most efficient among the RSA-
based schemes.

The scheme is informally as follows. When a member joins, the member sends
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f(x) to the manager, where f is a one-way function and x is a secret. The
manager returns a CL signature S = Sign(x) to the member, where Sign is
the signing function of the manager in CL signature. Then, the group signature
consists of E = Enc(f(x)), where Enc is a CCA2 secure ElGamal encryption
function using the manager’s public key, and the following SPK on the signed
message M .

SPK{(x, S) : S = Sign(x) ∧ E = Enc(f(x))}(M).
When opening the signature, the manager decrypts E to check the sender of f(x)
in joining.

To obtain the revocability, the proposed scheme adopts a CL signature S =
Sign(x, d) for two messages, where d is a unique prime assigned to the joining
member. To reduce the size of d, d is chosen as small as possible and different
from other member’s d. In addition, the manager publishes the product D of d

of all valid members. The group signature consists of E and the following SPK.
SPK{(x, d, S, k) : S = Sign(x, d) ∧ E = Enc(f(x)) ∧ D = kd}(M).

A revoked member cannot prove D = kd on his d embedded in S, and thus the
revocability is ensured. Since this SPK excludes the SPK for integer inequa-
tions (which is used in the previous work 21), as mentioned in Introduction), the
signing/verification is efficient unless D becomes huge (i.e., for small groups).

4.2 Proposed Algorithms
As well as the underlying scheme 8), our scheme has security parameters

�n, �m, �e, �s, �c, �E , �Q, �d s.t. �c + �e + �s +1 < �Q and max(�Q, �d)+ �c + �s +1 <

�E < �n/2. Based on the suggestion in Ref. 8), we adopt �n = 2,048, �P =
1,600, �Q = 282, �c = 160, �e = �s = 60 and variable �d, �E depending on N or R.

KeyGen:
The input is 1�n , where �n is the security parameter.

( 1 ) As the setup the CL signature scheme, compute two (�n/2)-bit safe primes
p, q and n = pq, and chooses a, g1, g2, h ∈R QR(n).

( 2 ) As the setup of the CCA2 secure ElGamal cryptosystem, choose �Q-bit
and �P -bit primes Q, P s.t. Q|P − 1. Let F be an element of order Q in
Z
∗
P . Choose XG, XH ∈R ZQ and compute G = FXG mod P and H =

FXH mod P .
( 3 ) Output gpk = (n, a, g1, g2, h, Q, P, F, G, H), msk = (p, q, XG), and

md[0] = D0, where D0 = 1.
Join:
This interactive protocol is conducted on an authenticated channel. The com-

mon inputs of Join-U and Join-GM is gpk = (n, a, g1, g2, h, Q, P, F, G, H). The
input of Join-GM consists of msk = (p, q, XG) and md[t] = Dt.
( 1 ) [Join-U] Choose xi ∈R ZQ, and generate Yi = Gxi mod P . This cor-

responds to f(x) explained in Section 4.1. Then, choose r′i ∈R Zn, and
compute ci = gxi

1 hr′
i mod n. Send Yi, ci to Join-GM. In addition, com-

pute

Wi = SPK{(ξ, ρ′) : ci = gξ
1h

ρ′
mod n ∧ Yi = Gξ mod P},

and send Join-GM it.
( 2 ) [Join-GM] If this SPK is invalid, abort. Otherwise, choose ei ∈R {0, 1}�e

s.t. Ei = 2�E + ei is prime. Assign a unique prime di to this member i,
where di is chosen as small as possible and different from other member’s di.
Choose r′′i ∈R {0, 1}�e , and set yi = (agxi

1 gdi
2 hr′

i+r′′
i )E−1

i . Send (yi, Ei, r
′′
i )

back to Join-U. Compute Dt+1 = Dtdi. Output reg[i] = (Yi, di) and
md[t + 1] = Dt+1.

( 3 ) [Join-U] Output usk[i] = (xi, di, ri = r′i + r′′i , yi, ei = Ei − 2�E ). The
CL signature (Ei, yi, ri) of messages xi, di corresponds to S = Sign(x, d)
explained in Section 4.1.

Revoke:
The inputs are gpk, md[t] = Dt, revoked member’s ID i, and reg[i] = (Yi, di).
Compute Dt+1 = Dt/di. Output md[t + 1] = Dt+1.
Sign:
The inputs of this signing algorithm are gpk = (n, a, g1, g2, h, Q, P, F, G, H),

the signer’s secret usk[i] = (xi, di, ri, yi, ei) , the membership data md[t] = Dt,
and a signed message M ∈ {0, 1}∗. The algorithm is as follows:
( 1 ) Select r ∈R {0, 1}�n/2 and R ∈R ZQ. Set u = hryi mod n, U1 = FR mod P ,

U2 = GRYi mod P , and U3 = HR+ei mod P . (U1, U2, U3) corresponds to
E = Enc(f(x)) explained in Section 4.1.

( 2 ) Compute

Journal of Information Processing Vol. 16 110–121 (Sep. 2008) c© 2008 Information Processing Society of Japan



115 Efficient Revocable Group Signature Schemes

V = SPK{(ξ, δ, ρ, ε, α, β, γ, ζ, τ) : a = u2�E+ε

g−ξ
1 g−δ

2 hρ mod n

∧gDt
2 = a−αuβg−γ

1 hζ mod n

∧U1 = F τ ∧ U2 = Gτ+ξ ∧ U3 = Hτ+ε

∧ε ∈ {−2�e+�c+�s , 2�e+�c+�s} ∧ ξ ∈ {−2�Q+�c+�s , 2�Q+�c+�s}
∧δ ∈ {−2�d+�c+�s , 2�d+�c+�s}}(M).

This SPK corresponds to
SPK{(x, d, S, k) : S = Sign(x, d) ∧ E = Enc(f(x)) ∧ D = kd}(M),

explained in Section 4.1. In the SPK V , the first equation and the last
three range relations correspond to S = Sign(x, d), the second equation
corresponds to D = kd, and the remaining equations including U1, U2, U3

corresponds to E = Enc(f(x)).
( 3 ) Output the group signature σ = (u, U1, U2, U3, V ).

Verify:
The inputs are gpk, md[t], a target signature σ = (u, U1, U2, U3, V ) and the

message M . Check the SPK V . Output ’valid’ (resp., ’invalid’) if it is correct
(resp., incorrect).

Open:
The inputs are gpk, the secret key msk = (p, q, XG), reg with reg[i] = (Yi, di),

a target signature σ = (u, U1, U2, U3, V ) and the message M .
( 1 ) Verify σ. If it is invalid, abort.
( 2 ) Using XG, decrypt (U1, U2) to obtain Gxi . Search reg for i with Yi = Gxi .
( 3 ) Output i.

4.3 Security
Theorem 1 The basic scheme has the traceability under the strong RSA

assumption in the random oracle model.
Proof sketch.
Assume an adversary for the traceability game, and we will build an adversary

for CL signature. Let CL-SO be the signing oracle for CL signature. Consider
the following framework with the adversary A for the traceability game. Let N

be the maximum group size.
Setup. It is given the public key (n, a, g1, g2, h) of CL signature. As the real

algorithm, generate XG, XH and (Q, P, F, G, H). As the public key of group

signature, gpk = (n, a, g1, g2, h, Q, P, F, G, H) is given to A. Select i∗ ∈R

[1, N ].
Queries. Each query is simulated as follows.

Hash queries. At any time, A can query the hash function used in SPKs.
Responds with random values with consistency.

H-Join: Execute the following, according to i.
Case of i �= i∗: As Join-U, execute the real algorithm to produce

(xi, Yi, ci). In Join-GM, choose di as usual. Then, send messages
(xi, di) to CL-SO, which returns the CL signature (ri, yi, Ei) s.t.
yi = (agxi

1 gdi
2 hri)E−1

i mod n. Generate Dt+1 as usual.
Case of i = i∗: As usual, select xi∗ , di∗ , ei∗ , and compute Yi∗ and re-

new Dt+1. Note that, in this case, the CL signature is not obtained,
i.e., CL-SO is not queried for i∗.

C-Join: A that plays Join-U sends (Yi, ci, Wi). Using the extractor of the
SPK Wi, obtain xi, r

′
i. Choose di as usual. Then, send the messages

(xi, di) to CL-SO, which returns the CL signature (ri, yi, Ei) s.t. yi =
(agxi

1 gdi
2 hri)E−1

i mod n. Set r′′i = ri − r′i, and return (yi, Ei, r
′′
i ) to A.

Generate Dt+1 as usual.
Revocation: This is the same as the real algorithm.
Signing: Execute the following, according to i.

Case of i �= i∗: Since we know xi via H-Join together with
(di, ri, yi, ei), execute the real algorithm.

Case of i = i∗: In this case, we does not know usk[i∗], and simulate
the signature of i∗ as follows. Select r ∈R {0, 1}�n/2 and R ∈R

ZQ. Set u = hr mod n, U1 = FR mod P , U2 = GRYi mod P , and
U3 = HR+ei mod P . The SPK V is simulated by the zero-knowledge
simulator.

Corruption: If i∗ is requested, abort. Otherwise, return the requested
secret key usk[i] = (xi, di, ri, yi, ei) produced in H-Join.

Open: This is the same as the real, using XG.
Output: With a non-negligible probability, A outputs a message M∗ and the

signature σ∗ satisfying the winning conditions.
Since σ∗ is a valid signature, by using the extractor of the SPK V , we can
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obtain (e, x, d, r̃) s.t. a = u2�E +eg−x
1 g−d

2 hr̃ mod n. This means the existence of a
CL signature for messages x, d. From the winning condition on Open, x = xi

for i joining by H-Join, or x is different from all xi. In the former, x = xi∗ holds
with a non-negligible probability, since the selection of i∗ is independent from
the view of A. In both cases, no signature for x is requested to CL-SO. This
means that CL signature scheme is broken, which contradicts the strong RSA
assumption. Therefore, the traceability holds under the assumption.

Theorem 2 The basic scheme has the revocability under the strong RSA
assumption in the random oracle model.

Proof sketch.
Assume A for the revocability game, and we will construct the adversary for CL

signature. The used framework is the same as in the case of the traceability. From
the winning conditions of the revocability game, member i joining by C-Join
and corrupted member i are all revoked before the output. Finally, A outputs
M∗ and a valid σ∗ with a non-negligible probability. Then, using the extractor
of the SPK V , we can extract (e, x, d, r̃) s.t. a = u2�E +eg−x

1 g−d
2 hr̃ mod n and

gDt
2 = a−αuβg−γ

1 hζ mod n. From both equations,

gDt
2 = (u2�E +eig−x

1 g−d
2 hr̃)−αuβg−γ

1 hζ mod n,

1 = u−(2�E +ei)α+βgxα−γ
1 gdα−Dt

2 h−r̃α+ζ mod n.

Thus, from the strong RSA assumption, we obtain dα − Dt = 0, i.e., Dt = dα,
in Z. This means that d is a prime factor of Dt or a product of the factors.
Assume that d is a product of the prime factors of Dt. Then, such a d has never
been sent to CL-SO, and thus CL signature scheme is broken. Thus, consider
only the case that d is a prime factor of Dt. This implies that d is for a member
that was honestly joined by H-join or C-join but is not revoked. However,
since members joined by C-join were revoked, the member with d has to be
joined by H-join. By the same discussion as in Theorem 1, with a non-negligible
probability, a CL signature extracted from σ∗ is not requested to CL-SO, and
thus CL signature scheme is broken. Therefore, the revocability holds under the
strong RSA assumption.

Theorem 3 The basic scheme has the anonymity under the DDH assumption

in the random oracle model.
This proof is the same as the underlying scheme 8), since our signature has the

same structure as that of Ref. 8), i.e., a CCA2 secure encryption of the identity
of the signer and the SPK.

Theorem 4 The basic scheme has the non-frameability under the DL as-
sumption in the random oracle model.

Proof sketch.
We will construct an adversary for the DL assumption, using the adversary A

for the non-frameability game.
The input for the DL assumption is (P, Q, G, Ga) for G with order Q ∈ Z

∗
P

and a ∈ ZQ. Choose i∗ ∈R [1, N ] as the above proofs. Then, run the real
KeyGen except that the given P, Q, G are used and F = G1/XG mod P . Provide
A with gpk, msk and md[0], and run A. In the run, the queries for i �= i∗

are replied by the real algorithms. In case of i = i∗, define xi∗ = a that is
unknown for the challenger, and the other parameters are the same as in the real
algorithms. Then, we need the simulations of Yi∗ , ci∗ , Wi∗ in H-Join and u, U2, V

in Signing without the knowledge of xi∗ = a. Since ci∗ , u are commitments, they
are simulated by randoms. Since Wi∗ , V are the SPK, they are simulated by the
zero-knowledge simulators. Yi∗ = Gxi∗ mod P can be simulated by the given Ga,
and U2 is similar. Thus, by the similar discussion to the proof in the traceability,
with a non-negligible probability, A outputs a signature σ∗ of the target i∗. Then,
we can extract xi∗ from the SPK V by the extractor. Since xi∗ = a, this means
that the DL assumption is broken. Therefore, the non-frameability holds under
the DL assumption.

5. Extended Scheme for Middle-Scale Groups

5.1 Idea
In the basic scheme, as the group grows, the signing/verification becomes in-

efficient, since the product D of all valid primes becomes huge. Generally, the
number of revoked members R is much less than the number of valid members.
Here, we extend the basic scheme to a one where D is the product of all primes for
only revoked members. This scheme is expected to be suitable for middle-scale
groups.
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The construction of this scheme is similar to that of the basic scheme. The
joining member is issued a CL signature S = Sign(x, d) for a unique prime d.
On the other hand, the manager publishes the product D of d of all revoked
members. Then, the group signature consists of E and the following SPK.

SPK{(x, d, S, k1, k2) : S = Sign(x, d) ∧ E = Enc(f(x))
∧k1D + k2d = 1}(M).

k1D + k2d = 1 means that d is coprime to D, i.e., the member with d is not
revoked.

5.2 Proposed Algorithms
Algorithms KeyGen and Open are the same as those in the basic scheme.
Join:
This is the same as that in the basic scheme, except that D is not changed,

i.e., Dt+1 = Dt, in Step 2.
Revoke:
Compute Dt+1 = Dtdi. Output md[t + 1] = Dt+1.
Sign, Verify:
From the basic scheme, the SPK is modified as follows.

V = SPK{(ξ, δ, ρ, ε, α, β, γ, ζ, η, τ) : a = u2�E+ε

g−ξ
1 g−δ

2 hρ mod n

∧g2 = a−αuβg−γ
1 (gDt

2 )ηhζ mod n

∧U1 = F τ ∧ U2 = Gτ+ξ ∧ U3 = Hτ+ε

∧ε ∈ {−2�e+�c+�s , 2�e+�c+�s} ∧ ξ ∈ {−2�Q+�c+�s , 2�Q+�c+�s}
∧δ ∈ {−2�d+�c+�s , 2�d+�c+�s}}(M).

5.3 Security
The security proof is similar to that of the basic scheme. In addition, in the

proof of Theorem 2, we need to prove that the SPK proves the knowledge of
α, η s.t. dα + Dtη = 1 for the knowledge d extracted in the proof of Theorem 2
and md[t] = Dt.

The relation is obtained as follows. From the above SPK, we can extract
values s.t.

a = u2�E+ε

g−ξ
1 g−δ

2 hρ mod n, g2 = a−αuβg−γ
1 (gDt

2 )ηhζ mod n

Thus, we obtain

g2 = (u2�E+ε

g−ξ
1 g−δ

2 hρ)−αuβg−γ
1 (gDt

2 )ηhζ mod n

= u−2�E+εα+βgξα−γ
1 gδα+Dtη

2 h−ρα+ζ mod n.

Thus, we can obtain the relation δα + Dtη = 1, for δ = d in the proof.

6. Extended Scheme for Large Groups

For larger groups, the previous extended scheme also suffers from the increase
of R (and N due to the size of di). Here, we show an extended scheme from the
basic scheme by the approach in Ref. 20). As the details on the approach are
available in Ref. 20), we provide only the informal description here.

In the approach, the large group of members is partitioned into subgroups. In
each subgroup, our revocation mechanism is used. Namely, the manager com-
putes the product D

(j)
t of valid members’ primes for each subgroup j. Then, we

can limit the size of D
(j)
t to a constant. On the other hand, if D

(j)
t is public in

the group signature, the verifier can identify the subgroup that the signer belongs
to. Thus, the manager publishes a CL signature for D

(j)
t at the current time t to

ensure the correctness, and the group signature proves only the knowledge of the
signature and D

(j)
t . This allows the verifier to be convinced of the correctness of

used D
(j)
t while D

(j)
t is kept secret.

The construction is informally as follows. In a join, the joining member is issued
a CL signature Sign(xi, di, j), where j means the j-th subgroup that the member
joins. The manager publishes D

(j)
t+1 = D

(j)
t di for the subgroup j (D(ĵ)

t+1 = D
(ĵ)
t

for others ĵ), and the CL signatures Sign(D(ĵ)
t+1, ĵ, t+1) for all subgroups ĵ at the

current time t + 1. In the revocation of member i in subgroup j, the manager
publishes D

(j)
t+1 = D

(j)
t /di for the subgroup j (D(ĵ)

t+1 = D
(ĵ)
t for others ĵ), and

Sign(D(ĵ)
t+1, ĵ, t + 1) for all ĵ.

The group signature consists of E and the following SPK.

SPK{(xi, di, j, Si, k, D
(j)
t , S̃j) : Si = Sign(xi, di, j) ∧ E = Enc(f(xi))

∧D
(j)
t = kdi ∧ S̃j = Sign(D(j)

t , j, t)}(M),

where the current time t is public. This SPK ensures the correctness of D
(j)
t

via the CL signature while j is kept secret, in addition to the SPK of the basic
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Table 1 Implementation environment.

CPU Intel Core2 Duo 2.13GHz
Memory 2GB

OS Linux (kernel 2.6.16)
Language C (GMP 4.1.4)

Fig. 1 Comparison of signing times.

scheme.
Since the size of D

(j)
t is limited, the computational costs of the SPK, and thus

the signing/verification are constant. The compensation is the overhead cost of
the manager’s generating Sign(D(ĵ)

t+1, ĵ, t + 1) for all ĵ, which is evaluated later.

7. Performance Measurements

To show the effectiveness of the proposed schemes, we implemented the schemes
by using the GMP library 17), and measured the performances on a PC in the
environment of Table 1. In the measurements, we use the setting of �n =
2,048, �P = 1,600, �Q = 282, �c = 160, �e = �s = 60 and we changed �d, �E

depending on N or R.
We show the signing times in the proposed basic scheme (Our scheme 1), the

extended scheme for middle-scale groups (Our scheme 2), and the scheme of
Ref. 21) (NS scheme) in Fig. 1, and the verification times in Fig. 2. In our
scheme 2, we assume that 10% of all members are revoked. NS scheme is ad-
justed by using the most efficient scheme of Ref. 8) as the base component, since
we desire to compare the efficiency of the revocation mechanism. Since the com-

Fig. 2 Comparison of verification times.

bination of Refs. 21) and 8) limits the total number of members to about 800, we
measured the time for at most 800 members for NS scheme. The figures show
that our scheme 1 is more efficient than NS scheme for small groups (less than
500 members). The figures also show that our scheme 2 is much more efficient
than scheme 1 in the likely situation that 10% of members are revoked, and effi-
cient even for middle-scale groups (thousands members). However, this scheme
becomes inefficient for larger groups or in the situation that the greater part of
members are revoked.

Furthermore, we measured the times in the extended scheme for large groups
in Section 6, where we set the size of the subgroups as 100. The signing time is
0.41 seconds with no dependency on N or R, and the verification time is 0.36
seconds. Note that the manager has an overhead cost for generating CL signa-
ture Sign(D(j)

t , j, t) for all subgroups in each join and revocation. For example,
in case of N = 10,000, the overhead cost is 100 generations. However, this can
be treated by powerful servers, and thus this is not a severe problem. One prob-
lem for large or huge groups is the massive amount of public data, D

(j)
t and

Sign(D(j)
t , j, t) for all j. In case that the subgroup size is 100, each D

(j)
t requires

730 bits (since the product of the first 100 primes 2, 3, . . . , 541 is 730 bits), and
Sign(D(j)

t , j, t) requires 4156 bits (since e, r, y are 60, 2,048, 2,048 bits respec-
tively in the CL signature). Thus, in case of N = 100,000, since the number of
subgroups is 1,000, the public data run up to about 600 KB. Therefore, although
our scheme becomes impractical for such huge groups, it is sufficiently applicable
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for large groups (up to about 10,000 members), due to the good performance of
the signing/verification.

8. Conclusion

We proposed efficient group signature schemes with revocation using prime
relations. From the measurements in the implementation, the signing/verification
of the basic scheme is more efficient than the previous scheme 21) for small groups.
Furthermore, we have shown that the extended schemes have practical efficiency
for middle-scale and large groups.

One of our future work is to apply the proposed schemes to the user authenti-
cation such as SSL/TLS.
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Appendix

A.1 Details of SPKs
We review the detail of the primitive SPKs. Let H be a collision-resistant

hash function such that H : {0, 1}∗ → {0, 1}�c , for a security parameter �c. We
also use a parameter �s. Hereafter, we use the notations: Let [a, a + d] be the
integer interval of all integers int such that a ≤ int ≤ a + d, for an integer a

and a positive integer d. Let [a, a + d) be the integer interval of all int such
that a ≤ int < a + d, and let (a, a + d) be the interval for all int such that
a < int < a + d. S1‖S2 indicates the concatenation of S1 and S2 as bit strings.

A.1.1 SPK of Representation
Here, we introduce a version in the paper due to Lysyanskaya 19). Hereafter,

though the case of two bases g, h ∈ QR(n) is described for all the SPKs, it is
easy to generalize to the case of more bases.

Let C = gxhy for x ∈ (−2�x , 2�x) and y ∈ (−2�y , 2�y). Then, SPK{(α, β) :
C = gαhβ}(m) is computed as follows: Choose rx ∈R [0, 2�x+�c+�s) and ry ∈R

[0, 2�y+�c+�s), and compute C̃ = grxhry . Then, set challenge c0 = H(m‖g‖C‖C̃),
and compute responses sx = rx + c0x and sy = ry + c0y (both in Z). The
signature is (c0, sx, sy). On the other hand, the verification is to check if c0 =
H(m‖g‖C‖C−c0gsxhsy). The following lemma is derived from Ref. 19).

Lemma 1 Under the strong RSA assumption, the interactive version of the
above construction is an honest-verifier zero-knowledge proof of knowledge of
α, β.

A.1.2 SPK of Representations with Equal Parts
It is easy to obtain this SPK by adopting the same randomness rx or ry for

the same knowledge in the SPKs for representations.
Let C = gxhy and C ′ = gxhz for x ∈ (−2�x , 2�x), y ∈ (−2�y , 2�y), and

z ∈ (−2�z , 2�z). Then, SPK{(α, β, γ) : C = gαhβ ∧ C ′ = gαhγ}(m) is
computed as follows: Choose rx ∈R [0, 2�x+�c+�s), ry ∈R [0, 2�y+�c+�s), and
rz ∈R [0, 2�z+�c+�s), and compute C̃ = grxhry and C̃ ′ = grxhrz . Then, set
c0 = H(m‖g‖C‖C ′‖C̃‖C̃ ′), and compute sx = rx + c0x, sy = ry + c0y, and
sz = rz + c0z (in Z). The signature is (c0, sx, sy, sz). On the other hand, the
verification is to check if c0 = H(m‖g‖C‖C ′‖C−c0gsxhsy‖C ′−c0gsxhsz). The se-

curity can be proved in the similar way to the normal SPK for a representation.
Furthermore, This SPK can be applied to one between representations on

QR(n) and a group with a known prime order, such as the group generated by
F (an element with order Q in Z

∗
P ) in the proposed scheme 11).

A.1.3 SPK of Representation with Parts in Intervals
The SPK of a representation with parts that lie in expanded intervals, i.e.,

the proved interval is expanded from the interval in which the part lies in fact,
is obtained from the normal SPK of a representation by adding the verification
of the domain of the response sx or sy.

Let C = gxhy for x ∈ [a, a + d] and y ∈ (−2�y , 2�y), where a is an in-
teger and d is a positive integer. Then, SPK{(α, β) : C = gαhβ ∧ α ∈
[a − 2�c+�sd, a + 2�c+�sd]}(m) is computed as follows: Choose rx ∈R [0, 2�c+�sd)
and ry ∈R [0, 2�y+�c+�s), and compute C̃ = grxhry . Then, set c0 = H(m‖g‖C‖C̃),
and compute sx = rx + c0(x − a) and sy = ry + c0y (both in Z). But, if
sx /∈ [c0d, 2�c+�sd), start again. The signature is (c0, sx, sy). On the other
hand, the verification is to check if c0 = H(m‖g‖C‖C−c0gsx+c0ahsy) and
sx ∈ [c0d, 2�c+�sd). This convinces the verifier that α ∈ [a− 2�c+�sd, a + 2�c+�sd]
that is expanded from the real interval [a, a + d].

The security can be proved in the similar way to the normal SPK for a repre-
sentation, except that the knowledge extracted by the knowledge extractor surely
lies in the interval [a − 2�c+�sd, a + 2�c+�sd]. Note that the cost of this SPK is
comparable with the normal SPK of a representation.
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