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Abstract: We address the problem of improving variable-length-to-fixed-length codes (VF codes). A VF code that we
deal here with is an encoding scheme that parses an input text into variable length substrings and then assigns a fixed
length codeword to each parsed substring. VF codes have favourable properties for fast decoding and fast compressed
pattern matching, but they are worse in compression ratio than the latest compression methods. The compression ratio
of a VF code depends on the parse tree used as a dictionary. To gain a better compression ratio we present several im-
provement methods for constructing parse trees. All of them are heuristical solutions since it is intractable to construct
the optimal parse tree. We compared our methods with the previous VF codes, and showed experimentally that their
compression ratios reach to the level of state-of-the-art compression methods.
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1. Introduction

Data compression is one of the most fundamental operations in
text processing, whose aim is to reduce the storage space usage
and the cost of transfer for massive amounts of data. The com-
pression ratio is usually considered as the most important fac-
tor in this research area. Many compression methods have been
proposed so far (see Refs. [21] and [24]). Among them, the Ziv-
Lempel family [31], [32] is one of the most popular in practice be-
cause of their good compression ratios and fast processing. Since
a significant and global increase in the use of the Internet and e-
mails in recent years has caused the explosion of unformatted text
data, data compression becomes more and more important as the
foundation of textual databases for such enormous text data.

For large-scale textual databases, however, such a state-of-
the-art compression method is unsuitable. Although well-known
compression tools such as gzip and bzip2 can compress text data
extremely, they encode with variable-length codewords and the
encoded texts are highly complicated. It is difficult for users to
search a part of data without decompressing, and thus it is dif-
ficult to reuse the compressed data. Therefore, fast searchable

compression methods are strongly desired.
From the viewpoint of speeding up pattern matching on com-

pressed texts, variable-length-to-fixed-length codes (VF codes for
short) have been reevaluated recently [11], [15]. A VF code is a
coding scheme that parses an input text into a consecutive se-
quence of substrings (called blocks) with a dictionary tree, which
is called a parse tree, and then assigns a fixed length codeword to
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each substring; such a codeword enables us to touch any parsed
block randomly without concerning codeword boundaries.

Several promising VF codes have been proposed so far.
Maruyama et al. [18] proposed an excellent compression method,
which is a variation of grammar-based compressions. They
proposed Σ-sensitive grammar for effective grammar transform.
In their practical implementation, which we call BPEX *1, the
method can also be viewed as a VF code since an encoded text
is represented as a sequence of grammar symbols, which are rep-
resented by fixed length codewords of length 8-bits; this means
the number of grammar symbols is bounded by 256. Although
BPEX achieves a good compression ratio comparable to gzip, its
compression speed is slow.

VF codes based on suffix trees [10] are proposed independently
by Klein et al. [15] and Kida [11]. In their scheme, a frequency-
base-pruned suffix tree is used as a parse tree. An input text is
scanned once at first to construct the suffix tree, and then the
text is scanned again and translated into a sequence of code-
words. Although they are faster than BPEX in compression
speed, their compression ratios are not better than that of BPEX.
A VF code that achieves both fast compression/decompression
and high compression ratio is desired.

The compression ratio of a VF code depends on the parse tree,
namely, the most important issue is which substrings we should
enter into the parse tree. Let Σ be an alphabet and k be a positive
integer. Consider a text T := t1t2 · · · tn to be encoded by k-bit
fixed length codes, where ti ∈ Σ. The aim here is to make an ef-
ficient dictionary D, which consists of different substrings of T ,
such that T can be parsed uniquely into a sequence of entries of
D. Each entry of D is assigned a codeword of length k bits, thus

*1 This name comes from the program implemented by Maruyama.
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the number of entries in D is less than or equal to 2k. If the text
T is parsed with D into a sequence of m blocks, T := c1c2 · · · cm

(ci ∈ D), the size of the encoded text becomes km bits in addition
to the size of D. Therefore, we want to make a dictionary such
that

km +
∑

c∈D

|c|

is minimized under |D| ≤ 2k. However, this problem is quite hard
as Klein and Shapira stated in Ref. [15]:

Choosing an optimal set of substrings might be in-
tractable, since even if the strings are restricted to be
the prefixes or suffixes of words in the text, the problem
of finding the set is NP-complete [8], and other similar
problems of devising a code have also been shown to
be NP-complete in Refs. [6], [7], [14]. A natural ap-
proach is thus to suggest heuristical solutions and com-
pare their efficiencies.

Our concern for this problem is how to construct a parse tree
that approximates the optimal tree well. In most of the VF codes,
a frequency of each substring of T is often used as a clue for
approximation, since it is related to the number of occurrences of
the substring in a sequence of parsed blocks. This gives a chicken
and egg problem as Klein and Shapira also stated in Ref. [15]. To
construct a better parse tree, we need the frequency of each block.
To know the frequency of each block, we must determine the par-
tition of T . However, we need a parse tree before determining the
partition.

In this paper we present several methods to improve the com-
pression ratio of VF codes. First, we use a pruned suffix tree
as the parse tree in order to catch the context in the input text.
We call this method STVF codes. This work has already been
partially presented in Refs. [11] and [12]. The experimental re-
sults show that the STVF code achieves the compression ratio
of about 42% – 50% for natural language texts. Next, we ex-
tend the STVF code so that it can allow to assign codewords to
incomplete internal nodes in the parse tree in order to improve
the compression ratio, while only leaves are assigned the code-
words in the original STVF code. We also employ a method that
chooses nodes one by one from the suffix tree in descending order
of their frequencies. In this method, the encoding process is like
almost instantaneous VF codes (AIVF codes for short) proposed
by Yamamoto et al. [28]. We call this method almost instant-

neous STVF codes (AISTVF codes for short). We show experi-
mentally that the AISTVF code improves the compression ratio
more than 18% for natural language texts in comparison with the
STVF code.

Moreover, we present a way of training the parse tree by com-
pressing the input text and modifying the parse tree repeatedly.
We also discuss a method that uses parts of the input text for
training in order to reduce the training time. The training method
improves the compression ratio of VF codes rapidly to the level
of state-of-the-art compression methods. This work has already
been partially presented in Ref. [27].

The rest of this paper is organized as follows. In Section 2, we
give a brief review on related works. In Section 3, we make a

brief sketch of the Tunstall code and suffix trees with some ba-
sic notations. In Section 4, we introduce the original STVF code
and present its improvement by the almost instantaneous coding
strategy [28]. Moreover, we show our experimental results of the
comparison of our methods with the Tunstall code and BPEX. In
Section 5, we present the method of training parse trees and show
several experimental results. Finally, we conclude in Section 6.

2. Related Works

Maruyama et al. [18] presented an excellent compression
method named as BPEX for compressed pattern matching, which
is a variation of Byte-Pair-Encoding [9] (BPE for short) that is a
kind of VF codes. In BPE scheme, the encoding procedure scans
the input text many times and repeats the conversion of a frequent
2-gram (pair of bytes) into an unused bytecode. Moreover, BPEX
employs the technique of switching dictionaries according to the
context.

Larsson et al. [17] conceived RE-PAIR. Nevill-Manning et
al. [20] advocated SEQUITUR. They are kinds of the grammar-
based compressions, which construct a grammar at first that de-
rives uniquely the input text, and then encode the grammar with
an entropy encoding, such as the Huffman codes and the arith-
metic encoding.

Brisaboa et al. [5] proposed End-Tagged Dense Code (ETDC),
and Brisaboa et al. [4] did (S , C)-Dense Code (SCDC). ETDC
and SCDC are word based compressions that encode each word
in the input text into a binary codeword. Brisaboa et al. [4] devel-
oped Dynamic ETDC (DETDC) and Dynamic SCDC (DSCDC),
which are adaptive approaches of ETDC and SCDC, respectively.
Moreover, Brisaboa et al. [2] propounded Dynamic Lightweight
ETDC (DLETDC) and Dynamic Lightweight SCDC (DLSCDC),
which are easily-decodable versions of DETDC and DSCDC, re-
spectively.

Brisaboa et al. [3] recently presented v2vdc. It uses suffix ar-
rays to catch efficiently the context in the input text. Klein et
al. [16] devised a method based on the dense coding using the
Fibonacci codes [1] for text compression.

3. Preliminaries

3.1 Basic Definitions
Let Σ be a finite alphabet. We denote the set of all strings over

Σ by Σ∗. The length of a string T := t1t2 · · · tn ∈ Σ∗ (ti ∈ Σ for
any i) is denoted by |T |. Therefore, we have |T | = n. The string
of length zero, denoted by ε, is called the empty string. The set
of all strings on Σ except the empty string ε is denoted by Σ+. Let
T be a string in Σ∗. Then, strings x, y and z in Σ∗ are called a
prefix, substring, and suffix of T respectively if the input text T is
represented by the concatenation of three strings x, y, and z, that
is, T = xyz.

3.2 Variable-length-to-fixed-length Codes
A VF code is a source coding that parses an input string into a

consecutive sequence of variable length substrings and then as-
signs a fixed length codeword to each substring. We call the
parsed substring a block. There are many variations on how they
parse the input string, what kind of data structures they use as
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Fig. 1 An example of a parse tree. The squares represent leaves, where
codewords are assigned. The circles represent internal nodes.

a dictionary, and how they assign codewords. Among them, the
method that uses a tree structure, called a parse tree, is the most
fundamental and common.

We explain the encoding and the decoding procedure of VF
codes. Consider that we encode an input text T ∈ Σ∗ by a VF
code of length k-bits codewords. Assume that a parse tree T that
has � leaves is given, and that each leaf in T is numbered by a
k-bit integer, that is, we have � ≤ 2k. Then, we can parse and
encode T with T as follows:
( 1 ) Start a traversal at the root of T .
( 2 ) Read a symbol one by one from T , and traverse the parse

tree T by the symbol. If the traversal reaches to a leaf, then
output the codeword assigned at the leaf before getting back
to the root.

( 3 ) Repeat Step 2 till T ends.
For example, given the text T := AAABBACB and the parse tree
of Fig. 1, the encoded sequence is 000/001/101/011. Codeword
011, for the running example, represents block ACB. A decod-
ing process of a VF code is quite simple. First we restore the
parse tree. Then we replace each codeword with the correspond-
ing block as referring to the restored parse tree.

The Tunstall code [26] is known to be an optimal VF code (see
also Ref. [23]) for a memory-less information source. Its average
code length per symbol comes asymptotically close to the entropy
of the input source when the codeword length goes to infinity. It
uses a parse tree called the Tunstall tree, which is the optimal tree
in the sense of maximizing the average block length. The Tun-
stall tree is an ordered complete |Σ|-ary tree in which each edge
from the same node is labeled with a distinct symbol in the alpha-
bet Σ. Let Pr(a) be an occurrence probability for source symbol
a ∈ Σ. The probability of string xμ ∈ Σ+, which is represented
by the path from the root to leaf μ, is Pr(xμ) =

∏
η∈ξ Pr(η) for the

memoryless information source, where ξ is the label sequence on
the path from the root to μ (hereafter, we identify a node in T and
a string represented by the node if no confusion occurs). Then,
the Tunstall tree T ∗ is constructed as follows:
( 1 ) Initialize T ∗ as the ordered |Σ|-ary tree whose depth is 1,

which consists of |Σ| + 1 nodes.
( 2 ) Repeat the following while the number of leaves inT ∗ is less

than or equal to 2k

( a ) Select a leaf v that has the maximum probability among
all leaves in T ∗.

( b ) Make v be an internal node by adding |Σ| children onto
v.

Let m be the number of internal nodes in T ∗. Since the number
of leaves in T ∗ equals to m(|Σ|−1)+1, which is less than or equal
to 2k. The above method creates the largest tree which satisfies

Fig. 2 Suffix tree for BABCABABBABCBAC$. The squares represent
leaves. The circles represent internal nodes and the numbers in the
circles are their frequencies.

the condition. Hence, m = �(2k − 1)/(|Σ| − 1)� holds. For an in-
formation source with memory, there have been proposed several
coding methods that are based on the Tunstall code [22], [25].

3.3 Suffix Trees
The suffix tree of a given text T is a compacted trie which repre-

sents all the suffixes of T . Formally, ST(T$) is defined as follows:
( 1 ) Each internal node, except the root of ST(T$), has at least

two children.
( 2 ) Each edge is labeled by a non-empty substring of T . For

a node v, we denote the label of the incoming edge of v by
label(v).

( 3 ) For any internal node u, any labels of outgoing edges start
with different characters each other.

( 4 ) Let the representing string str(v) of a node v in ST(T$) be
the string obtained by concatenating the labels of the edges
in the path from the root to v *2. Then, each leaf of S T (T$)
corresponds one-to-one with each suffix of T , where $ is a
special symbol not in Σ.

For example, the suffix tree of a string BABCABABBABCBAC$
is shown in Fig. 2. For a node v in ST(T$) and a symbol c ∈ Σ,
the function child(v, c) and f (v) return the child of v whose label
of the incoming edge starts with c and the number of occurrences
of str(v) in T , the frequency of a node v, respectively. An internal
node u in the parse tree is said to be complete if the parse tree
contains all the children of u in ST(T ), otherwise u is said to be
incomplete. Since the frequency of node v is equal to the number
of leaves in the subtree rooted at v, the computation of the fre-
quencies of all nodes is done in a post-order traversal. Note that
the suffix tree for T is constructed in linear time in the length of
T .

For more details, please refer to Ref. [10].

*2 The representing string of the root node is the empty string, that is,
str(root) = ε.
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4. STVF Codes

4.1 VF Code by Pruned Suffix Tree
In this section we introduce a VF coding that uses a pruned

suffix tree for a parse tree, which is named as the STVF code and
firstly (partially) presented in Ref. [11].

The Tunstall code does not achieve a good compression ratio
for an information source with memory because it assumes that
the information source is memoryless. As stated in the previous
section, a suffix tree stores all substrings of the given text; more-
over the frequency of any substring can be easily obtained. This
suggests that the suffix tree can be a good base of the parse tree
for the given text. For a given text T , the deepest leaf, which is
the leaf v such that str(v) is the longest among all leaves, repre-
sents T itself. Therefore the whole ST(T ) can not be used as a
parse tree. The idea of our new VF code is to prune deeper nodes
in ST(T ) and make it a compact parse tree.

We denote by STL(T ) a pruned suffix tree such that the num-
ber of leaves equal to L by pruning. Note that a pruned suffix
tree includes all nodes whose depth is 1 that are also included in
the original ST(T ), and that it includes any symbols which occur
in T . Now consider to encode T by codewords of length �. As
the same as the Tunstall code, the formula L ≤ 2� must be sat-
isfied. The procedure to parse and encode T with STL(T ) is also
the same way as the Tunstall code.

The simplest strategy of pruning is to search ST(T ) by breadth-
first-search from the root, and select the shallowest nodes till the
number of leaves in a pruned suffix tree is up to L. A more so-
phisticated way is to select the nodes so that the frequencies of
the leaves in STL(T ) become nearly uniform. Namely, select the
nodes in the order of their frequencies from the root. Our pruning
procedure is as follows:
( 1 ) Construct a suffix tree S T (T ).
( 2 ) Let a tree S Tk+1(T ) which consists of the root of S T (T ) and

its direct children, be the first parse tree candidate T1.
( 3 ) Select a node v such that the number of children of v in

the sense of S T (T ) is the largest among all leaves in Ti =

S TLi (T ) where Li is the number of leaves in Ti. Here let Cv
be the number of direct children of v.

( 4 ) Add all children of v to Ti as leaves if Li + Cv − 1 ≤ 2�, and
let it be Ti+1 for a new candidate of a parse tree. If a child u

of v is a leaf in S T (T ), delete the label on the edge from v to
u except for the first character of the label.

( 5 ) Repeat Steps 2 and 3 till we can not select any node.
Figure 3 is the parse tree construction algorithm of the

STVF code, and Fig. 4 shows the parse tree ST8(T ) for T :=
BABCABABBABCBAC constructed by the algorithm. The al-
gorithm first constructs the suffix tree ST(T ) for an input text T .
Next, for each step of the outer loop (from Lines 4 to 13), the
most frequent node v among the leaves in the temporal parse tree
Ti is selected, and then all the children of v in ST(T ) are added
to Ti. The algorithm removes the label of an incoming edge of
a child of v except for the first character of the label if the child
is a leaf in ST(T ). After the above pruning steps, the algorithm
assigns codewords to all the leaves in a left-to-right manner. The
first four iterations of the constructing process for the running ex-

Algorithm STVF(T, k):
Input: A text T and the codeword length k.
Output: The parse tree STL′ (T ).

1: Construct the suffix tree S T (T ) of T ;
2: Construct the initial tree T which only contains the root of

ST(T );
3: U ← {root}; //set of nodes that will be assigned codewords
4: while |U | < 2k do
5: v← argmaxv∈U f (v);
6: U ← U \ {v};
7: for each child w of v do
8: U ← U ∪ {w};
9: if w is a leaf of ST(T ) then

10: remove lavel(w) except for the first character of it;
11: add w to T ;
12: end for
13: end while
14: assign codewords to the elements in U;
15: return T as ST |U |(T );

Fig. 3 Algorithm of constructing a parse tree of STVF code.

Fig. 4 Parse tree of the STVF code for BABCABABBABCBAC. The
squares and the circles indicate leaves and internal nodes, respec-
tively. The numbers in squares are assigned codewords.

Fig. 5 The first four iterations of the construction process of the parse tree.
The black circles indicate internal nodes. Only leaves are assigned
codewords.

ample is shown in Fig. 5. This construction strategy is similar to
that of the Tunstall code.

For the parse tree STL′ (T )(L′ ≤ L) obtained by the algorithm,
we have the following lemma.
Lemma 1. For a given text T , we can uniquely parse T by using

the pruned suffix tree STL′ (T ).

Proof. Let D be a set of strings which is entered into the pruned
suffix tree STL′ (T ), and call D as a dictionary. From the pruning
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procedure each leaf in STL′ (T ) corresponds one-to-one to each
string entered in D. Therefore, all the strings in D satisfy the pre-
fix condition since only leaves are assigned the codewords, that
is, for any string s ∈ D, there exists no string t ∈ D such that t � s

and s is a prefix of t. Hence, we can uniquely parse the input text
T . �

Once the parse tree is constructed, the encoding and decoding
procedures are simple: they are shown in Fig. 6 and Fig. 7, re-
spectively. For the running example in Fig. 4, the text is parsed
into seven substrings as BA/BC/ABA/BB/ABC/BA/C, and en-
coded to 100/110/000/101/010/100/111. We must store the
parse tree together with the sequence of encoded blocks. We di-
vide the parse tree into two components: the tree structure and
the labels on it. The tree structure is encoded by balanced paren-
theses [19]. Thus the encoded size for the tree of M nodes is 2 M

bits. For the labels, we store them by a simple way: enumerate
pairs of the label length and the label string and then attach to the
encoded tree structure. Assuming that each label length is smaller
than 256, which can be represented by one byte, the set of labels
can be stored by

∑
l∈L(|l| + 1) bytes, where L is the set of labels.

The following lemma and theorem suggest the performance of
the STVF code.
Lemma 2. The parse tree constructed by the Algorithm STVF

of Fig. 3 is equivalent to the Tunstall tree for a sufficiently long

string of arbitrary memoryless information sources.

Proof. For a node p in the suffix tree and a character c, f (p) ·
Pr(c) = f (p · c) holds with a sufficiently long string because we
assume that the information source is memoryless. Therefore,
we obtain the occurrence probability of the representing string of
each node by dividing the frequency of each node by that of the
root node. Both of the parse tree construction algorithms of the

Algorithm encode(T,T ):

Input: A text T and a parse tree T .

Output: An encoded sequence of codewords.

1: i← 0;

2: while i < |T |
3: v← root;

4: while v is a internal node of T do

5: v← the node that represents str(v) · T [i];

6: i← i + 1;

7: end while

8: output the codeword assigned to v;

9: end while

Fig. 6 Encoding algorithm of the STVF code.

Algorithm decode(T ,C):

Input: A parse tree T and a sequence C of codewords.

Output: Decoded text T .

1: for each i ∈ {0, . . . , |C| − 1} do

2: v← the node such that code(v) = C[i];

3: output str(v);

4: end for

Fig. 7 Decoding algorithm of the STVF code.

STVF code and the Tunstall code select the leaf that has the max-
imum probability to add all its children. Therefore, both of the
algorithms select the same node. Hence, the STVF tree and the
Tunstall tree are equivalent for arbitrary memoryless information
sources. �

Theorem 1. The number of codewords output by the STVF code

is the same as the one output by the Tunstall code for arbitrary

memoryless information source.

Proof. The parse tree of the STVF code is equivalent to the Tun-
stall tree for memoryless information sources from Lemma 2.
Therefore, the number of codewords output by the STVF code
and the one output by the Tunstall code are the same for arbitrary
memoryless information sources. �

4.2 Improving the Compression Ratio by Almost Instanta-
neous Coding

Next we present an improved version of the STVF code stated
in the above. In the STVF code, unused codewords of length k ex-
ist if there does not exist an integer m satisfying m(|Σ|−1)+1 = 2k.
This suggests that we can encode the input text with fewer code-
words by assigning such unused codewords to some strings. If we
add a leaf to a complete k-ary tree, an incomplete internal node
is made. That is, this also suggests that we can acquire much
better compression ratios if we remove low-frequency leaves and
extend useful edges.

We introduce the algorithm for constructing a parse tree as in
Fig. 8. The basic idea of the algorithm is to choose the most fre-

Algorithm ImprovedSTVF(T, k):

Input: A text T and the length k of codewords.

Output: A parse tree T for T .

1: Construct the suffix tree S T (T ) of T ;

2: Construct the parse tree T which only contains the root of S T (T );

3: U ← ∅,V ← {v | v is a child of the root of S T (T )};
4: for each child v of the root of S T (T ) do

5: add v to T ;

6: if v corresponds to a leaf in S T (T )then

7: remove label(v) except for the first character of it;

8: end if

9: U ← U ∪ {v};
10: V ← (V \ {v}) ∪ {w | w is a child of v};
11: end for

12: while |U | < 2k do

13: v← argmaxv∈V f (v);

14: add v to T ;

15: U ← U ∪ {v};
16: V ← (V \ {v}) ∪ {w | w is a child of v};
17: p← v’s parent;

18: if #{w ∈ V | w is a child of p} = 1 then

19: w← p’s just one child remaining in V;

20: U ← (U \ {p}) ∪ {w};
21: V ← (V \ {w}) ∪ {x | x is a child of w};
22: end if

23: end while

24: assign codewords to the elements in U;

25: return T ;

Fig. 8 Improved construction algorithm for parse trees.
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Fig. 10 Proposed algorithm for constructing a parse tree. The black circles represent complete internal
nodes, which are not assigned codewords.

Fig. 9 Parse tree of our method for BABCABABBABCBAC. The squares
represent the nodes assigned codewords, corresponding to the num-
bers in them. The circles represent the complete internal nodes.

quent node from the suffix tree, which has not been included into
the parse tree. The algorithm extends the parse tree on a node-by-
node basis in contrast to the original STVF algorithm that extends
all the children of the chosen node at once. Figure 9 is an exam-
ple of the parse tree constructed by the algorithm of Fig. 8 for
T := BABCABABBABCBAC. Now we explain the move of the
algorithm. For a given text T , we first construct the suffix tree
ST(T ) and remove the labels of the leaves in ST(T ) except for
the first characters of them. Let U be the set of nodes which will
be assigned codewords and V be the set of “candidate” nodes for
blocks which are in ST(T ) but not in the parse tree. Note that
each node in V is a child of a node in U. Initially, U is the empty
set and V is the children of the root of ST(T ). Next, to ensure
the algorithm encodes the text correctly, we add all the children
of the root to U. Then, we repeat the following procedure while
|U | < 2k: we select the node v whose frequency is maximal in
V . Then, we add it to U and delete it from V . If there remains
just one node w ∈ V that is a sibling of v, we add w to U and
delete its parent from U. It is not necessary to assign a codeword
to a complete node because the traversals in the encoding process
never fail at any complete nodes. The node p is now complete
and thus it will not be assigned a codeword. Finally, we assign
unique codewords to the elements in U in a left-to-right manner.

Figure 10 shows the construction process of the parse
tree for the running example by the algorithm. The in-
put string is parsed into five substrings by using the parse
tree in Fig. 9, as BABC/AB/AB/BABC/BAC, and encoded to
101/000/000/101/110. In this case, the encoded length is shorter
than that of the STVF code in the previous section.

We discuss the time and space complexities of the algorithm
in Fig. 8. Constructing the suffix tree ST(T ) needs O(|T |) time
and space. It is obvious that both Line 2 takes O(1) time. Since
we can manage both the set U and the tree T just by marking
nodes in ST(T ), adding or deleting an element for them is done
in O(1) time. To process Line 13 efficiently, we assume that
the set V is realized by a priority queue based on a max-heap.
That is, we need O(log |V |) time for adding or deleting an ele-
ment for V , while answering the maximum element among V

is done in O(1) time. Then, Line 3 needs O(|Σ|) time. For the
loop from Lines 4 to 11, the number of iterations is O(|Σ|). Thus,
the time complexity of the loop is O(|Σ| log |Σ|) since the size of
V can increase to O(|Σ|2). For the while loop from Lines 12 to
23, the number of iterations is restricted to the size of U, but
the size of V is a dominant factor for the time complexity. We
can calculate in O(1) time for each line within the loop except
for Lines 16 and 21 *3. The number of nodes added to V is |T |
at most, and the number of nodes deleted from V too. Thus,
Lines 16 and 21 take O(|T | log |T |) time totally. Finally, Line
24 takes O(|T |) time. Therefore, we can calculate the algorithm
in O(|Σ| log |Σ| + |T | log |T |) time totally. The complexity will be
O(|T | log |T |) when |Σ| ≤ |T |. For the space consumption, we need
only O(|T |) space since both U and T can be managed by adding
O(1) size information on each node of ST(T ), in addition to the
priority queue whose maximal size is restricted to |V |, namely,
O(|T |).

Next, we show the encoding and the decoding algorithms. We
need to modify the encoding algorithm because codewords are
assigned to internal nodes. It is shown in Fig. 11. The algorithm
traverses the parse tree while it can move by the character read

*3 For Line 19, we need an auxiliary data structure on each node to do so.
For example, it is realized by a doubly linked list between siblings.
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Table 1 Outline of the text files used for our experiments.

Texts size (byte) |Σ| Content
bible.txt 4047392 63 The King James version of the bible
world192.txt 2473400 94 The CIA world fact book
E.coli 4638690 4 Complete genome of the E.Coli bacterium

Algorithm new-encode(T,T ):

Input: A text T and a parse tree T .

Output: An encoded sequence of codewords.

1: i← 0;

2: while i < |T |
3: v← root;

4: while str(v) · T [i] is represented by T do

5: v← the node that represents str(v) · T [i];

6: i← i + 1;

7: end while

8: output the codeword assigned to v;

9: end while

Fig. 11 Modified encoding algorithm.

from the input text. If the traversal cannot be made, the algorithm
suspends to consume the current character and outputs the code-
word of the current node, and then resumes the traversal from the
root. This encoding process is not instantaneous. Reading-ahead
of just one character is needed. Therefore, we call it the almost

instantaneous encoding. The algorithms of decoding and storing
the parse tree are common to the STVF code except for storing
incomplete nodes. We add an extra bit indicating whether the
node is complete or not for each node. Then the tree structures of
a parse tree of M nodes are encoded to 3 M bits.

The following lemma is important for the correctness of the
encoding algorithm using the parse trees constructed by the algo-
rithm in Fig. 8.
Lemma 3. Let T be a given text and T be the parse tree of T
constructed by the algorithm in Fig. 8. For any suffix s of T , there

exist at least one node in T which represents a nonempty prefix

of s, and there exists one node which represents the longest prefix

of s in T and which is also assigned a codeword.

Proof. The former is clear because all the children of the root
are contained in T . We next prove the latter by a reduction to ab-
surdity. Assume that the node v in T which represents the longest
prefix of s is not assigned a codeword. Then, v is a complete inter-
nal node because all the leaves and all the incomplete nodes are
assigned codewords. However, since all the children of any com-
plete nodes exists in T , it contradicts our assumption that there
exists a descendant of v which represents a longer prefix of s than
str(v). �

4.3 Experimental Results
We have implemented the Tunstall code, the STVF code, and

the almost instantaneous STVF code. We abbreviate them to Tun-
stall, STVF, and AISTVF respectively. All the programs are writ-
ten in C++ and compiled by g++ of GNU, version 4.3. The out-
put files of STVF and AISTVF include parse trees. We ran our
experiments on an Intel Pentium 4(R) processor of 3.00 GHz and
2 GB of RAM, runnning Debian GNU/Linux 5.0. The texts to

Fig. 12 Compression ratio against codeword length.

Fig. 13 Compression time against codeword length.

be used are selected from “the Canterbury corpus *4.” For each
detail, please refer to Table 1.

In order to decide the best length of codewords, we first ex-
perimented on compression ratios, compression times, and de-
compression times against the codeword length k. In this exper-
iment, we used only bible.txt. Figure 12 shows the compression
ratios that is defined as (compressed file size)/(original file size).
AISTVF achieved a better performance than the others, especially
when the codeword length is short. Figure 13 compares the com-
pression times. We measured the CPU times by the time com-
mand of Linux. As shown in this figure, Tunstall is the fastest.
The results in Fig. 14 of decompression times are opposite to the
results of compression times. Tunstall required much time for de-
compression. All the algorithms achieved their best compression
ratio when k = 16. Thus, we set the codeword length to 16 in the
following experiment.

Next, we have compared five compression algorithms: Tun-
stall, STVF, AISTVF, BPEX, and bzip2. Since bzip2 is widely
used and is one of the state-of-the-art compression tools, we
include bzip2 as a reference. We used the three texts in Ta-

*4 http://corpus.canterbury.ac.nz/descriptions/
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Fig. 14 Decompression time against codeword length.

Table 2 Compression ratios.

method bible.txt world192.txt E.coli
Tunstall 61.16% 69.97% 25.00%
STVF 42.13% 49.93% 28.90%
AISTVF 34.67% 43.97% 28.89%
BPEX 28.05% 26.58% 28.72%
bzip2 20.89% 19.79% 26.97%

Table 3 Compression times (msec).

method bible.txt world192.txt E.coli
Tunstall 965 651 7718
STVF 14185 9398 9028
AISTVF 14942 8196 18994
BPEX 25957 18611 15914
bzip2 1310 851 1505

Table 4 Decompression times (msec).

method bible.txt world192.txt E.coli
Tunstall 944 623 7845
STVF 279 206 268
AISTVF 291 223 320
BPEX 335 209 361
bzip2 537 361 794

ble 1 as test data. The compression ratios are shown in Table 2.
AISTVF improves the compression ratio approximately by 18%
on bible.txt, and by 12% on world192.txt in comparison with
STVF. Tunstall compresses most effectively on E.coli. BPEX
totally achieves high compression ratios among VF codes. The
compression times are shown in Table 3. STVF and AISTVF are
two times faster than BPEX. However, compared with Tunstall,
STVF and AISTVF take much time, because they take much time
to construct the suffix tree. The decompression times are shown
in Table 4. STVF and BPEX take less time in comparison with
the others. AISTVF and STVF take less time than the others in
almost all the cases.

5. Training Parse Trees

5.1 Reconstruction Algorithm
In this section, we present an algorithm of reconstructing a

parse tree to improve the compression ratio. The basic idea is
to exchange useless strings in the current parse tree for the other
strings not in the parse tree which are expected to be frequently
used. Although we must evaluate each string by some measures
for doing that, it is quite hard to evaluate precisely in advance as
we stated in Section 1. Therefore, we employ a greedy approach;

Fig. 15 An example of computing accept counts and failure counts.

Algorithm ReconstructingParseTree(T,D):

Input: A text T := T [1..n] and a set D of strings in the parse tree.

Output: A new set of strings.

1: i← 1, E ← ∅;
2: while i < n
3: p ← the longest prefix T [i.. j] of T [i..n] which is also included

in D;
4: A(p)← A(p) + 1;
5: if j < |T | then
6: q← p · T [ j + 1];
7: E ← E ∪ {q};
8: F(q)← F(q) + 1;
9: end if

10: i← j + 1;
11: end while
12: N ← ∅;
13: while D � ∅ and E � ∅
14: s← argmins∈DA(s);
15: t ← argmaxt∈E F(t);
16: if A(s) < F(t) then
17: N ← N ∪ {t};
18: D← D \ {s};
19: else
20: break;
21: end if
22: E ← E \ {t};
23: end while
24: return D ∪ N;

Fig. 16 Reconstruction algorithm for parse trees.

we reconstruct the parse tree with two empirical measures: the
accept count and the failure count. For any string s in the parse
tree, the accept count of s, denoted by A(s), is defined as the num-
ber of the occurrences of string s in the encoding. For any string t

that is not assigned a codeword, the failure count of t, denoted by
F(t), is defined as the number of times that the prefix t[1..|t| − 1]
of t was in the parse tree and the codeword traversal failed at the
last character of t. If F(t) is sufficiently large, it is expected that
we can make the average block length longer by including t in the
parse tree. The computations of A(s) and F(t) are embeded in the
encoding procedure. When p := T [i.. j] is parsed in the encoding,
A(p) and F(p · T [ j + 1]) are incremented by one simultaneously.
Figure 15 shows an example of computing these measures.

The reconstruction algorithm is shown in Fig. 16. Comparing
the minimum of A(s) and the maximum of F(t), the reconstruc-
tion algorithm repeats exchanging s for t if the former is less than
the latter, that is, it removes s from the parse tree and enter t in-
stead. Note that a reconstructed parse tree is not a complete tree
any longer, even if the origin is a complete tree like the Tunstall
trees. Several internal nodes might be assigned codewords; thus
a coding with such a tree becomes an AIVF coding. To train a
parse tree we apply the algorithm many times. For each iteration,
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it first encodes the input data with the current parse tree. Next,
it evaluates the contribution of each string in the parse tree, and
then exchanges some infrequent strings for the other promising
strings.

Next we discuss the time and space complexities of the al-
gorithm in Fig. 16. We assume that the sets D and E are real-
ized by priority queues to calculate Lines 14 and 15 efficiently.
For the loop from Line 2 to 11, Line 3 takes O(|T |) time to-
tally, and all Lines except Lines 3 and 7 are done in O(1) time
for each. Let E′ be the number of parsed blocks, namely, it is
equal to |E| after processing the loop. Then, the number of iter-
ations of the loop is O(E′), and Line 7 takes O(E′ log E′) time
totally. For the while loop from Line 13 to 23, Line 18 and Line
22 take O(log |D|) and O(log E′), respectively. For each itera-
tion, |E| decreases exactly 1 while |D| decreases 1 at most. If
|E| < |D| then the number of iterations is just |E|, otherwise it
is also restricted to O(|E|). Thus, the number of iterations of the
while loop is O(E′). Therefore, the time complexity of the algo-
rithm is O(E′ log |D|E′ + E′ log E′ + |T |). Roughly speaking, it
is O(|T | log |T |) since both E′ and |D| are O(|T |). For the space
consumption, we can prove that it is O(|T |) space from the same
discussion on the algorithm in Fig. 8.

5.2 Speeding-up by Sampling
The reconstruction of parse trees discussed above takes much

time if the input text is large, since the algorithm scans the whole
text many times. If we train with small parts of the text, we can
save the training time. Note that we must scan the whole text
once to construct the initial parse tree.

We consider training with a string that consists of several
pieces randomly selected from the text. Using only one part of the
input text T , namely a substring of T , does not work well even if
we select a substring randomly for each reconstruction, since the
parse tree reconstructed by the above algorithm fits too much on
the last selection. Using a set of pieces randomly selected from
the whole text works well. Let m be the number of pieces, and B

be the length of a piece. For given m ≥ 1 and B ≥ 1, we generate
a sample text S from T at every reconstruction as follows:

S := s1 · · · sm (sk := T [ik..ik + B − 1] for 1 ≤ k ≤ m),

where ik is a start position of a piece satisfying 1 ≤ ik ≤ |T |−B+1.
We select the pieces in a uniform random manner for each k.
Then, |S | = mB holds. Note that the compression ratios and
speeds depend on |S | and m in addition to the number of train-
ing iterations.

5.3 Experimental Results
We have implemented the Tunstall codes and the STVF codes

with the training approach stated in Section 5, and compared
them with BPEX [18], ETDC [5], SCDC [4], gzip, and bzip2. Al-
though ETDC/SCDC are variable-to-variable-length codes, their
codewords are byte-oriented and designed for compressed pattern
matching. Therefore, we added them in our experiments. We
chose 16 as the codeword length of both the STVF codes and the
Tunstall codes. Our programs are written in C++ and compiled
by g++ of GNU, version 3.4. We ran our experiments on an Intel

Table 5 Outline of the text files used for our experiments.

Texts size (byte) |Σ| Contents
GBHTG119 87,173,787 4 DNA sequences
DBLP2003 90,510,236 97 XML data
Reuters-21578 18,805,335 103 English texts
Mainichi1991 78,911,178 256 Japanese texts (encoded by UTF-16)

Fig. 17 Compression ratios.

Xeon (R) 3 GHz and 12 GB of RAM, running Red Hat Enterprise
Linux ES Release 4.

We used DNA data, XML data, English texts, and Japanese
texts to be compressed (see Table 5). GBHTG119 is a collec-
tion of DNA sequences from GenBank *5, where we eliminated
all meta data, spaces, and newline characters. DBLP2003 con-
sists of all the data in the year 2003 from dblp20040213.xml *6.
Reuters-21578 (distribution 1.0) *7 is a test collection of English
texts. Mainichi1991 *8 is from Japanese news paper, Mainichi-

Shinbun, in 1991.

5.4 Compression Ratios and Speeds
The methods in our experiments are the following nine: Tun-

stall (the Tunstall codes without training), STVF (the STVF codes
without training), Tunstall-100 (the Tunstall codes with 100 times
training), STVF-100 (the STVF codes with 100 times training),
BPEX, ETDC, SCDC, gzip, and bzip2.

Figure 17 shows the results of compression ratios, where ev-
ery compressed data include the dictionary information. We indi-
cate the compression ratios of the averages of ten executions for
Tunstall-100 and STVF-100. STVF, Tunstall-100, and STVF-
100 were the best in the compression ratio comparisons for GB-
HTG119. Since ETDC and SCDC are word based compression
methods, they did not work well for the data that are hard to
divide into words, such as DNA sequences and Japanese texts.
Note that, while Tunstall had no advantage to STVF, Tunstall-
100 gave almost the same performance with STVF-100. More-
over, those were better than gzip. Figure 18 shows the results
of compression times. STVF was much slower than Tunstall and
ETDC/SCDC since it takes much time for constructing a suffix
tree. As Tunstall-100 and STVF-100 took extra time for training,
they were the slowest among all for any dataset. Figure 19 shows
the results of decompression times. The decompression times of
ETDC, SCDC, and gzip are the shortest, and those of bzip2 and
BPEX are the longest. The results of Tunstall and STVF were
between those of BPEX and ETDC/SCDC in all the data. The

*5 http://www.ncbi.nlm.nih.gov/genbank/
*6 http://www.informatik.uni-trier.de/˜ley/db/
*7 http://www.daviddlewis.com/resources/testcollections/reuters21578/
*8 http://www.nichigai.co.jp/sales/corpus.html
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Fig. 18 Compression times.

Fig. 19 Decoding times.

Fig. 20 The effects of training.

decompression procedures of Tunstall-100 and STVF-100 take
more time than that of Tunstall and STVF.

5.5 Effects of Training
We examined how many times we should apply the reconstruc-

tion algorithm for sufficient training. We chose Reuters-21578 as
the test data in the experiments. Figure 20 shows the result of the
effect of training for STVF and Tunstall. The compression ratios
of both algorithms were improved rapidly as the number k of re-
construction increases. They seem to come close asymptotically
to the same limit, which is about 32%.

We also examined how the sampling technique stated in Sec-
tion 5.2 effects on compression ratios and speeds. Figures 21 and
22 show the results for the Tunstall codes with 20 times training.
The left side is for compression ratios and the right side is for
compression speeds. We measured the average of 100 executions
for each result. We observed that the compression ratio achieves
almost the same as that of the training method without sampling
when the sample size |S | is 25% of the entire text and the number
m of pieces is 100. The Tunstall code with training is superior to
BPEX in compression ratios when |S | is 20% and m = 40. The
average compression time of the Tunstall codes at that point was

Fig. 21 Training with sampling.

Fig. 22 Training with sampling.

30.97 seconds, while BPEX takes 58.77 seconds.
Although STVF codes are better than the Tunstall codes in

compression ratios, it is revealed that the Tunstall codes with
training are also useful from the viewpoint of the compression
time.

6. Conclusions

We presented several methods of improving VF codes and
carried out some experiments for evaluating them: using a
frequency-based pruned suffix tree, improving by almost instan-
taneous coding, and training the parse trees. The experimental
results showed that our methods improve in compression ratio
in comparison with the traditional VF codes. The compression
speed of our methods is faster than that of BPEX and the de-
compression speed is faster than that of bzip2 and comparative to
BPEX in general.

Moreover, we showed experimentally that training the parse
trees improves compression ratios of VF codes to the level of
state-of-the-art compression methods, such as gzip and BPEX.
The Tunstall codes with training are about twice faster than that of
BPEX in compression speed when we gain almost the same com-
pression ratios. VF codes with training are stable and are widely
applicable to various data: not only English language texts, but
also Japanese texts, DNA data, and so on.

Pattern matching algorithms are systematically derived from
collage system [13] since a VF coded text is represented as a reg-
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ular collage system. However, such algorithms are slower than
that on gzipped texts [29], [30] in practice. Speeding up the pat-
tern matching on VF codes is our future work.
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