
Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

[DOI: 10.2197/ipsjjip.20.366]

Regular Paper

Proposal of Grid Monitoring System
with Fault Tolerance

Abu Elenin Sherihan1,a) Masato Kitakami1,b)

Received: May 18, 2011, Accepted: November 7, 2011

Abstract: A Grid monitoring system is differentiated from a general monitoring system in that it must be scalable
across wide-area networks, include a large number of heterogeneous resources, and be integrated with the other Grid
middleware in terms of naming and security issues. A Grid Monitoring is the act of collecting information concerning
the characteristics and status of resources of interest. The Grid Monitoring Architecture (GMA) specification sets out
the requirements and constraints of any implementation. It is based on simple Consumer/Producer architecture with
an integrated system registry and distinguishes transmission of monitoring data and data discovery logically. There are
many systems that implement GMA but all have some drawbacks such as, difficult installation, single point of failure,
or loss of message control. So we design a simple model after we analyze the requirements of Grid monitoring and
information service. We propose a grid monitoring system based on GMA. The proposed Grid monitoring system
consists of producers, registry, consumers, and failover registry. The registry is used to match the consumer with one
or more producers, so it is the main monitoring tool. The failover registry is used to recover any failure in the main
registry. The structure of a proposed grid monitoring system depends on java Servlet and SQL query language. This
makes the system more flexible and scalable. We try to solve some problems of the previous works in a Grid moni-
toring system such as, lack of data flow and single point of failure in R-GMA, and difficulty of installing in MDS4.
Firstly, we solve the problem of single point of failure by adding failover registry to the system. It can recover any
failure in Registry node. Secondly, we take into consideration the system components to be easy to install/maintain.
The proposed system is combination of few systems and frequency of update is low. Thirdly, load balancing should be
added to the system to overcome the message overloaded. We evaluate the performance of the system by measuring
the response time, utilization, and throughput. The result with load balancing is better than that without load balancing
in all evaluation results. Finally, we make a comparison between the proposed system and the other three monitoring
systems. We also make a comparison between the four types of load balancing algorithms.

Keywords: Grid system, monitoring system, GMA, fault tolerance, load balancing

1. Introduction

The growing popularity of the Internet and the availability of
powerful computers and high-speed networks as low-cost com-
modity components are changing the way we do computing and
use computers today [1]. The interest in coupling geographically
distributed (computational) resources is also growing for solv-
ing large-scale problems, leading to what is popularly known as
Grid computing. In this environment, the security problem is a
hot topic in Grid research due to the dynamics and uncertainty
of Grid system. The Grid security issues can be categorized into
three main categories: architecture issues, infrastructure issues,
and management issues [8].

The Grid management is important as the Grid is heteroge-
neous in nature and may consist of multiple entities, components,
users, domains, policies, and stake holders. The different man-
agement issues that Grid administrators are worried about are cre-
dential management, trust management, and monitoring issues.

The ability to monitor and manage distributed computing com-

1 Graduate School of Advanced Integrarion Science, Chiba University,
Chiba 263–8522, Japan

a) sherihan@graduate.chiba-u.jp
b) kitakami@faculty.chiba-u.jp

ponents is critical for enabling high performance distributed com-
puting. Monitoring data is needed to determine the source of
performance problems and to tune the system for better perfor-
mance [9]. Fault detection and recovery mechanisms need moni-
toring data to determine if a server is down, and whether to restart
the server or redirect service requests elsewhere. A performance
prediction service might use monitoring data as inputs for a pre-
diction model, which would in turn be used by a scheduler to
determine which resources to use.

Monitoring is the act of collecting information concerning the
characteristics and status of resources of interest. Monitoring is
also crucial in a variety of cases such as scheduling, data replica-
tion, accounting, performance analysis and optimization of dis-
tributed systems or individual applications, self-tuning applica-
tions, and many more [8]. The functions of monitoring are cor-
rectness checking, performance enhancement, dependability or
fault tolerance, performance evaluation, debugging and testing,
control or management, and security.

In the Grid, resources are changeful, and the performances of
resources are also fluctuating [2]. Therefore, an efficient man-
agement of resources and applications running on the Grid has
become key, difficulty, and challenge. Moreover, for parallel ap-

c© 2012 Information Processing Society of Japan 366

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

plications on the Grid, an achievement of highly performance is
highly dependent upon the effectively coordination of their com-
ponents. In order to implement robust, available and high perfor-
mance Grid environment, right and effective monitoring on Grid
is a key. A well-designed Grid monitoring system should be able
to measure, record, archive, and then publish the performance of
Grid resources, status information of Grid applications.

Most existing monitoring systems work with network or clus-
ter systems. There are several research systems implementing the
Grid Monitoring Architecture (GMA) [6]: Autopilot, R-GMA,
MDS, etc. Autopilot [11] is a framework for enabling applica-
tions to dynamically adapt for changing environments. It aims
to facilitate end-users in the development of application. R-
GMA [12] combines grid monitoring and information services
based on the relational model. Although R-GMA is robust, it
has three drawbacks: lack of data flow, loss of control message,
and single point of failure. MDS is introduced in the next section
in details. It has many problems such as too difficult to install.

In this paper, we focus on monitoring management in Grid
computing. The proposed Grid monitoring system is also based
on the GMA [6]. GMA is the basis of most monitoring system.
The goal of GMA is to provide a minimal specification that will
support required functionality and allow interoperability.

We design a simple Grid monitoring system. The proposed
system components are producers, registry, consumers, and
failover registry. The goals of this system are to provide a way for
consumers to obtain information about Grid resources as quickly
as possible, and to recover any faults in the system. There is no
direct relationship between producer and consumer. The mon-
itoring tool is registry. It manages and controls the relation-
ship between all producers and consumers existing in the system.
All objects in the system are producers which have the reply of
queries, consumers who need some data, Registry which manages
the queries and replies, and failover registry. Failover registry is
responsible for taking place of main registry in case of failure. In
the proposed Grid monitoring system, we observe that there may
be overloaded in Registry if the number of requests is large, so
load balancing should be added to the proposed Grid monitoring
system in order to get better performance.

Load balancing is not a new concept in the server or network
space. Load balancing is a technique applied in the parallel sys-
tem that is used to reach an optimal system condition, which is
workloads are evenly distributed amongst computers, and as its
implication will decrease the execution time of programs. Load
balancing is dividing the amount of work that a computer has to
do between two or more computers so that more work gets done
in the same amount of time and, in general, all users get served
faster. Load balancing can be implemented with hardware, soft-
ware, or a combination of both.

Load balancing can be static or dynamic [14]. The static load
balancing algorithms are Round Robin algorithm, Randomized
algorithm, Central Manager algorithm, and Threshold algorithm.
Dynamic load balancing algorithms are Central Queue algorithm,
and Local Queue algorithm. The type of algorithm to implement
is determined by the type of parallel applications to solve. The
most suitable algorithm to our system is Central Manager algo-

rithm.
We try to solve some problems of the previous works in Grid

monitoring system such as, lack of data flow and a single point
of failure in R-GMA, and difficulty of installing in MDS4. We
solve the problem of a single point of failure by adding failover
registry in the proposed system. Failover registry is responsible
for replacing Registry in case of failure. The second problem that
we solve is a lack of data flow. We integrate load balancing with
the proposed system. Load balancer at Registry divides the load
between Registry and failover registry. The third one is difficult
to install. We take into consideration the system components to
be easy to install/maintain. The proposed system is combination
of few systems and frequency of update is low.

This paper is organized as follows. In Section 2, we show some
previous work in monitoring management. In Section 3, we ex-
plain the details of our monitoring system and how it is work in
Grid system. The performance evaluation and comparison with
previous work are shown in Section 4. In Section 5, there is a
complete comparison between four types of load balancing algo-
rithm. Finally, the conclusions of this paper and the future work
are given in Section 6.

2. Related Work

There are a few tools developed by different research commu-
nities, which feature in monitoring in the Grid. Most of these
monitoring systems are under development. Here we just men-
tion some works of Grid monitoring systems.

The Monitoring and Discovery System (MDS) [3] of the
Globus Toolkit (GT) is a suite of components for monitoring and
discovering Grid resources and services. The latest version of
the MDS system is MDS4. MDS4 builds on query, subscrip-
tion, and notification protocols and interfaces defined by the Web
Service Resource Framework (WSRF) and WS-Notification fam-
ilies of specifications and implemented by the GT4 Web Services
Core. MDS4 provides two higher-level services: an Index ser-
vice, which collects and publishes aggregated information about
information sources by GIIS (Grid Index Information Service),
and a Trigger service, which collects resource information and
performs actions when certain conditions are triggered. These
services are built upon a common Aggregation Framework in-
frastructure that provides common interfaces and mechanisms for
working with data sources. The advantages of MDS4 are flexibil-
ity and scalability. The disadvantages of MDS4 are it can work
only with web service, and it is too difficult to install [10].

Ganglia monitoring system [4] is a scalable distributed moni-
toring system. It provides scalable monitoring of distributed sys-
tems in the architectural design space including large-scale clus-
ters in a machine room, computational Grids consisting of fed-
erations of clusters, and, most recently, has even seen applica-
tion on an open, shared planetary-scale application testbed called
PlanetLab. The system is based on a hierarchical design tar-
geted at federations of clusters. It relies on a multicast-based lis-
ten/announce protocol to monitor state within clusters and uses a
tree of point-to-point connections amongst representative cluster
nodes to federate clusters and aggregate their state. The advan-
tages of Ganglia are new nodes can be added easily, it is portable,

c© 2012 Information Processing Society of Japan 367

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

it has a fine web interface, and it is widely used and can be eas-
ily integrated with other monitoring systems. The disadvantages
of Ganglia [16] are Database is not scalable, and there is heavy
network if there are big numbers of nodes.

Hawkeye monitoring system [5] provides a simple and
lightweight way for system administrators to monitor and man-
age distributed systems. Hawkeye is designed by Condor group
and mainly used for monitoring Condor pools. Hawkeyes ar-
chitecture comprises of four major components: Hawkeye pool,
Hawkeye manager, Hawkeye monitoring agent, and Hawkeye
module. The advantages of Hawkeye are Ref. [16] Multiplatform
system, and possible custom-made sensors. The disadvantages
of Hawkeye are poor front-end, and under development.

3. Proposed Grid Monitoring System

3.1 Overview
Most of Grid monitoring and information service have short-

comings and not easy to use [10]. First, they are too large and too
difficult to install, to configure and to deploy. For example, to use
MDS4 you need configure third party monitoring tools such as
Ganglia or Hawkeye. Second, some functions they provide may
be limited to some specific projects; these functions may be use-
less to another project and may reduce the performance of this
project. Finally, some protocols these tools rely on also have de-
fects.

The requirements of Grid monitoring are performance en-
hancement, dependability, performance evaluation, and manage-
ment. We design a simpler model after we analyze most of the
requirements of Grid monitoring and information service, and im-
plement it. We try to solve some problems of the previous works
in a Grid monitoring system such as, flow of data and single point
of failure in R-GMA, and difficulty of installing in MDS4. We
also have two goals of the proposed system: management and
dependability (failure recovery). The proposed Grid Monitoring
System is based on the Grid Monitoring Architecture (GMA) [6]
as shown in Fig. 1.

In order to satisfy the requirement of Grid monitoring, Global
Grid Forum (GGF) recommend Grid Monitoring Architecture
(GMA) as a Grid monitoring mechanism [6]. The GMA speci-
fication sets out the requirements and constraints of any imple-
mentation. It is based on simple Consumer/Producer architecture
with an integrated system registry and distinguishes transmission
of monitoring data and data discovery logically. In GMA, all of
monitoring data are events which are based on timestamp for stor-

Fig. 1 GMA components.

ing and transferring such as, CPU usages, memory usage, thread
status and error information. The Grid Monitoring Architecture
consists of three types of components: Directory Service (Reg-
istry), Producer and Consumer.

The architecture of the proposed Grid monitoring system and
the Communications between the Producer and the Consumer
is shown in Fig. 2. The proposed Grid monitoring system con-
sists of producers (P), registry, consumers (C), and failover reg-
istry. The main aim of the proposed system is to provide a
way for consumers to obtain information about Grid resources
as quickly as possible. It also provides fault tolerance system
supported by failover registry. In Fig. 2, the solid line is the nor-
mal communication between consumer and registry. The dotted
line is the replacement communication in case of registry fail-
ure. The structure of the proposed Grid monitoring system de-
pends on java Servlet and SQL query language. Java servlets
are more efficient, easier to use, more powerful, more portable,
and cheaper than traditional Common Gateway Interface (CGI).
Structured Query Language (SQL) is a database computer lan-
guage designed for managing data in relational database man-
agement systems (RDBMS), and originally based upon relational
algebra. Users are offered all the flexibility that SQL query lan-
guage brings. So the system’s components are easy to use in any
platform and it can solve the problem of single point of failure
and flow of data.

3.2 Components of Proposed Grid Monitoring System
Producers are the Grid services which register themselves in

registry, describe the type and structure of information by SQL
CREATE TABLE and SQL INSERT TABLE, and reply to the
query of consumer as shown in Fig. 3. So the producers in our
Grid monitoring system are the source of data. Each producer
has an interface and a Servlet. Producer interface communicates
with producer Servlet to build the database. The functions that
are supported by the producer are creating tables, inserting data
into tables, deleting data from tables, and updating data in tables.

Registry acts as a discovery Grid service to find relevant pro-
ducers matching the query of a consumer. Registry schema con-
sists of four layers: register layer, data layer, service layer, and
republish layer. Register layer is responsible for registering all
producers and consumers in the system. Data layer as shown in

Fig. 2 Proposed Grid monitoring system.

c© 2012 Information Processing Society of Japan 368

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Fig. 3 SQL example.

Fig. 4 Data layer in Registry schema.

Fig. 4 contains the description of the database exist in all pro-
ducers. Every Producer enters the index of his tables in Registry
schema, and the consumer can get the reply from these indexes.
As the example in Fig. 4, the Registry index contains the table
name and description of it. For example, if the table “customer”
in Fig. 3 exists in Producer1, then data layer in Registry contains
Producer1 has ‘customer table’ with the description First Name,
Last Name, Address, Country, Age. Service layer and republish
layer take request and get the reply, respectively. The functions
that are supported by the registry are registering both producers
and consumers, adding entry from producers, updating entries
from producers, removing entries from producers, and search-
ing about a suitable producer for consumer. The overall purpose
of the registry is to match the consumer with one or more Pro-
ducers. This is achieved by that Producers publish information
about themselves, and consumers search through the registry un-
til they find the relevant match and the two communicate directly
with each other. The registry is not responsible for the storage of
database, but only the index of it. Registry selects the producer
that has the reply of consumer’s request from Registry schema.
For example, as in Fig. 4, if the consumer requests data that exists
in P1 Table2 and P3 Table6, Registry firstly sends to P1 because
P1 firstly exists in the schema. If it doesn’t reply, then Registry
sends to P3 in order to send the reply, and so on.

Failover registry is a backup version of all layers in registry. It
acts like registry in the situation of failure of registry. It also has
all the functions of registry. The proposed Grid monitoring is the
only system that has failover registry. Other Grid monitoring sys-
tems like R-GMA has a drawback in single point of failure in the
directory server. However, Ganglia, MDS, or Hawkeye haven’t
any solution for failure.

Consumers can be software agents or users who query the Reg-
istry to find out what type of information is available and locate
the producers that provide such information. The function of con-
sumer is sending request to registry to find data by SQL SELECT
statement in browser interface.

3.3 The Overall System
Our Grid system is divided into Grid domains (GDs). GD con-

sists of application domain (AD), resource domain (RD), client
domain (CD), and Trust Manager (TM). TM’s operations consist
of Trust Locating, Trust Computing, and Trust Updating. This
system was proposed and tested in Ref. [7]. We add another oper-
ation to TM. This operation is Registry to manage the relationship
between producers and consumers.

Every domain can have any number of producers and con-
sumers. But it has one TM with Registry; this makes manage-
ment, and one failover registry node; this makes failure recovery.
The domain can have any number of nodes that is an intersection
with other domains or not.

3.4 The Stages of Proposed Grid Monitoring System
(1) Every producer in every domain sends to registry in Trust

Manager (TM) to register itself;
(2) TM registers all producers and makes backup of every regis-

tration in failover registry that exists in every domain;
(3) Producer Servlet of every domain creates tables and sends

the description of the tables (name of columns) to registry in
TM;

(4) TM sends a copy of this description to failover registry;
(5) Every producer inserts data in the tables (rows);
(6) Consumer sends to registry in TM to register itself. If the

consumer finds registry in TM fails, he/she can send the re-
quest to register to failover registry;

(7) Consumer requests registry about some data as SQL
SELECT statement. For example:
SELECT ∗ FROM customer WHERE age > 20;

(8) Registry (R in TM or failover R) looks up in its data layer
indexes and finds the suitable producer who has requested
data;

(9) Registry sends to this producer to reply to this consumer’s
request;

(10) This producer sends the reply to consumer (transfer data).
After analyzing the stages of the proposed Grid monitoring

system, we observe that there may be overloaded in Registry
if the number of requests is large. We find that message over-
loaded is the only drawback of the proposed system. So Load
Balancing (LB) should be added to the proposed Grid monitor-
ing system to get better performance. It is important in order
to get optimal resource utilization, maximize throughput, mini-
mize response time, and avoid the overload. If we add LB in
the proposed system, we will get the third requirements of Grid
monitoring; performance enhancement.

3.5 Central Manager Load Balancing Algorithm
Central manager algorithm is one type of a static load balanc-

ing [14]. In a static load balancing algorithm, performance of pro-

c© 2012 Information Processing Society of Japan 369

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Table 1 Comparison between Grid monitoring systems.

MDS2 R-GMA Hawkeye Proposed System

Information Collector Information Provider Producer Module Producer

Aggregate Informa-
tion Server

GIIS (Grid Index In-
formation Service)

None Manager None

Directory Server GIIS Directory Server Manager Registry

Based on GMA Yes Yes No Yes

Failure Detection No No No Yes

Load Balancer No No No Yes

cessors is measured before program execution. The jobs distribu-
tion in the parallel system is performed by Registry. Producers
then will execute the assigned jobs that are assigned by Registry.

In this algorithm, in each step, central processor will choose a
slave processor to be assigned a job. The chosen slave processor
is the processor having the least load [13]. The central processor
is able to gather all slave processors load information, there of the
choosing based on this algorithm are possible to be performed.

The characteristics of Central Manager algorithm are: it has a
fault tolerant, it has more forecasting accuracy, there is no over-
load rejection, it has largely stability, it depends on centralized
mode, it is cooperative, there is no process migration, and it has
less of resource utilization. Most of these characteristics are suit-
able with the proposed Grid monitoring system such as, fault
tolerant, large stability, centralized, cooperative, and less of the
resource utilization. We should make some updates to this al-
gorithm to be suitable to the proposed system. First, there is
overloaded at Registry, so we add one condition to the algorithm.
If TM finds that number of requests at Registry is more than or
equal to 7, then all requests that exceed 7 will be transformed to
failover registry. The amount of work will be divided to Registry
and failover registry. We choose the number of requests =7, be-
cause we have two domains; one with 8 nodes and the other with
7 nodes. So we decide the smallest number of nodes in domain 2
to be suitable with the system. This number is a system example,
so if you work with different number of nodes, you should choose
the smallest number of nodes in all domains. Second, from the
definition of Central Manager algorithm, we don’t have master or
slaves. To execute the algorithm, the proposed system doesn’t de-
pend on master/slaves but it depends on producer/consumer and
main monitoring tool Registry. So the algorithm will be executed
at producers and Registry not at the master and some slaves as
shown in Fig. 5. This flowchart can be executed at Registry or
failover registry. So load balancing will split the loads at Reg-
istry; or failover registry and producers, and make redundancy
in the system. This means the overloaded will be split twice at
Registry and failover Registry. In Fig. 5, TM decides the load of
every producer. If it finds the producer has smallest load, it will
send the request to it. But if it finds the producer hasn’t small
load, the registry will find another producer. Here the codes of
Load balancing (LB) of the system:
Registry LB code:

IF (Number of requests >7) Then goto Failover

Registry.

Failover Registry LB code:

IF(Number of requests >7) Then goto Registry.

Fig. 5 The flowchart of modified central manager algorithm.

Producers LB code:

IF (producer’s load == smallest load)

Then Get request Else goto the next producer

3.6 Comparison between Grid Monitoring Systems
We compare the three types of Grid monitoring systems that

work in the same manner the proposed system works as shown in
Table 1. Firstly, MDS and R-GMA share many similarities since
both of them provide solutions for Grid information system and
driven by basic properties of the Grid environment. They also
based on GMA. A Grid information system should enable a large
number of users to request the information services and share the
information of large-scaled, distributed resources concurrently
and efficiently. MDS addressed this requirement by construct-
ing a hierarchical architecture. R-GMA tackles this problem by
storing the information about the information producers and the
information consumers in a central (can be distributed) repository
and making them visible to each other.

MDS and R-GMA are, however, also quite different from each
other in many aspects. The differences stem from their design pat-
terns, their architectures, and their underlying technologies. MDS
contains an aggregated service component (GIIS) that makes the
construction of a hierarchical architecture much easier. On the
other hand, R-GMA follows a simple, but flat, architecture de-
sign. Although Registry used in R-GMA as the Directory Ser-
vice can be distributed, there are no concrete protocols to spec-
ify how to distribute multiple Registries and what kind of inter-
architecture should be built in these Registries to guarantee con-
sistency [15]. Hence, in most cases there is only one Registry,

c© 2012 Information Processing Society of Japan 370

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

which indicates the R-GMA system is highly centralized at the
point of the Registry. So, Registry can be a central point of fail-
ure in R-GMA systems. The components of R-GMA are easy to
install. Because the number of nodes in the Grid system always
is very large, the administrations need the system to be an easy
to install and an easy to maintain. If it isn’t easy to install, it will
take a long time to build and also a long time to maintain. How-
ever, MDS is difficult to install. For example, MDS4 needs to
configure the third party monitoring tools.

Secondly, the proposed Grid monitoring system and R-GMA
share many similarities since both of them are based on GMA
with Java Servlet. The Producer in both systems communicates
with a Servlet called Producer Servlet, which registers the table
name and the identity and values of any fixed attributes to the
RDBMS in the Registry. The Registry’s RDBMS holds the in-
formation about the Producers. The differences between them
are that R-GMA has a single point of failure (Directory service).
The proposed Grid monitoring system doesn’t have this problem
because of the existence of failover registry. Secondly, R-GMA
has overloaded at Directory service as described above. The pro-
posed Grid monitoring system doesn’t have this problem because
it integrates with load balancing system. Thirdly, it also is easy
to install the components of the system. To build the system, you
need only four steps as described in Section 4.1.

Thirdly, the architecture of Hawkeye is completely different.
The architecture of Hawkeye comprises four major components:
Pool, Manager, Monitoring Agent, and Module. The components
are organized in a four-level hierarchical structure (Pool, Man-
ager, Monitoring Agent, and Module). The main use case that
Hawkeye was built to address is that of being able to offer warn-
ings (e.g., high CPU load, low disk space, or resource failure).
It also allows for easier software maintenance within a Pool. It
has a Manager as an aggregate information server like MDS. The
components of Hawkeye are easy to install unlike MDS.

4. Evaluation Results

When we work with Grid monitoring system, we found many
problems in the previous work such as difficult to install, database
is not scalable, lack of data flow, loss of control message, or a
single point of failure. We solve most of these problems in the
proposed Grid monitoring system. The first problem is a single
point of failure. This problem is solved by adding failover reg-
istry to recover any failure in Registry. The second problem is
difficult to install. We make the system platform is easy as possi-
ble as discuss in the following subsections. This is an advantage
for the administrations and the developers not for the users. The
third problem is overloaded. This problem is solved by adding
load balancer at Registry to divide the load between Registry and
failover registry. To evaluate the performance of the proposed
Grid monitoring system, we pay more attention to the following
parameters: response time, utilization, and throughput. In the
end, we make a complete comparison between the proposed Grid
monitoring system and the conventional systems.

4.1 Experimental Platform
Our Grid platform consists of as shown in Fig. 6: 1) Hard-

Fig. 6 Experimental platform.

ware Components: Nodes: 5 PCs (Intel Pentium4 2.2 GHz pro-
cessor, Intel RAM 256 MB) and 10 PCs (Intel Atom 1.66 GHz
processor, Intel RAM 2 GB), and Interconnection Network: Gi-
gabit Ethernet 1,000 Mbps. 2) Grid Middleware: Globus Toolkit
4.2.1 (GT4). 3) Software Components: Operating System in all
nodes: Linux Fedora 10, and Tools: Programs written in Java,
Apache Ant for Java- based build tool, and Microsoft SQL server
2008.

The proposed system uses hundreds of databases that exist in
Chiba University. Every producer has tens of databases about
students, staffs, published papers, laboratory contents. The con-
sumer can send any query after entering the system by his user-
name and password. This system depends on trust management
besides monitoring management. Trust management is built for
security and published in Ref. [7]. Grid monitoring management
helps the system for enhancing the performance and recovering
failure. There is transparency in the system. Consumers don’t
know from where the data exist. There is also scalability. Any
node can be added or shrunk from the system.

4.2 Installation Evaluation
The proposed Grid monitoring system is easy to install and to

maintain. This is important for the administrations and the de-
velopers of the system for two cases. Firstly, the recovery time
should be reduced in the case of node failure. Secondly, when
new nodes should be added to the system, they should be easy to
install. The steps to build our Grid system are:
Step 1: Installing Fedora 10
Step 2: Installing Java
Step 3: Installing Apache Ant
Step 4: Installing GT4

Step 4.1: Checking the system
Step 4.2: Building the Toolkit
Step 4.3: Setting up security
Step 4.4: Creating a MyProxy server
Step 4.5: Setting up GridFTP (File Transfer Protocol)
Step 4.6: Starting the web services container
Step 4.7: Configuring RFT (Reliable File Transfer)
Step 4.8: Setting up GRAM4 (Grid Resource Allocation &

Management)
This platform is heterogeneous because it has different hardware.
But the software is homogeneous in all nodes. Every node has
Linux Fedora 10 and Globus Toolkit 4 and programming inter-
face (Java, Ant, and SQL). This platform is easy to install and to

c© 2012 Information Processing Society of Japan 371

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

use. The interface is web based and the user can use it easily.
MDS4 also installs Globus Toolkit 4 but with additional ser-

vices and with configuring third party monitoring tools. For ex-
ample, MDS4 needs to Visualize Index Service with WebMDS. It
also deploys the Trigger Service to notify interested parties about
certain configured changes in the status of the resources that an
Index Service is monitoring. After Registering a WSRF service
to an Index Service, MDS4 registers any Grid resource via Infor-
mation Providers. Therefore, MDS4 is not easy to install. It has
many components to install. It needs strong administration skills
to install/maintain. The steps to build MDS4 [3] are:
Step 1: Installing Linux
Step 2: Installing Java
Step 3: Installing Apache Ant
Step 4: Install SSLeay
Step 5: Install OpenLDAP
Step 6: Installing the Network Time Protocol (NTP)
Step 7: Installing GT4 (Using globus-setup for MDS)

Step 7.1: Checking the system
Step 7.2: Building the Toolkit
Step 7.3: Managing the Configuration Files
Step 7.4: Setting up security
Step 7.5: Creating a MyProxy server
Step 7.6: Setting up GridFTP (File Transfer Protocol)
Step 7.7: Starting the webservices container
Step 7.8: Configuring RFT (Reliable File Transfer)
Step 7.9: Syntax of the interface

Step 7.9.1: Configuring the Aggregator Sources
Step 7.9.2: Configuring the Aggregator Sink

Step 7.10: Development Logging in Java WS Core
Step 7.10.1: Configuring server side developer logs
Step 7.10.2: Configuring client side developer logs

Step 8: Setting up the sources of information about:
- Hawkeye
- Ganglia
- WS GRAM
- Reliable File Transfer Service (RFT)
- Community Authorization Service (CAS)

4.3 Domains Structure in the Experimental
The system consists of two domains (Domain1 and Domain2).

Domain1 consists of 8 nodes: G1, G2, G3, G4, G5, G6, G7, and
G8. Domain2 consists of 7 nodes: G1, G2, G3, G4, G5, G6 and
G7. Trust Manager (TM) with registry (R1) of Domain1 is ex-
isted in G1 and there is back up version called failover registry
existed in G8. In Domain2, Trust Manger (TM) with registry
(R2) is existed in G1 and there is back up version called failover
registry existed in G6. We have two nodes that exist in the two
domains; G5 and G7. In the system, always every node is called
with its domain name such as G5: Domain2 or G5:Domain1.

Failover registry is an important tool to recover the failure. For
example in Domain2, if G1:Domain2 failed, the request will go
to G6:Domain2 (failover Registry), and it works all functions of
Registry. The algorithm will be:

IF (G1:Domain2 == Fail) THEN Goto (G6:Domain2) ELSE
Get the request from consumer.

Fig. 7 Response time of proposed Grid monitoring system.

Finally, failover registry has two functions. One is failure re-
covery of main Registry in every domain. The other is distribut-
ing the query load when Registry has more queries in the same
time as discussed in Section 4.

4.4 Response Time (RT)
Response time is the average amount of time from the point

a consumer sends out a request until the consumer gets the re-
sponse. We measure response time depending on message size
with the fixed number of requests; 15 requests. We measure re-
sponse time twice; one without load balancing (i.e., there may be
overloaded) and one with load balancing. The result is shown in
Fig. 7.

In case of no load balancing in the system, the result means
that when the message size is less than or equal 512 KB, response
time is small and increases very simply. But when the message
size is more than 512 KB, response time is big and increases very
largely. So the performance is always good when the message
size is less than or equal 512 KB. Low response time is consid-
ered better than high response time. In case of load balancing
system, we note that the results are less than of no loading bal-
ancing system. This is because the loads of tasks on Registry are
divided and the queries are served by Registry and failover reg-
istry. So in the same time, many consumers can get the replies
and the response time is reduced.

All results that are less than or equal to 512 KB are slightly less
than the results of no load balancing. But when the message size
is more than 512 KB, response time is largely less than of that
without load balancing. So the result of using load balancing is
better than that of no load balancing; especially when message
size is more than 512 KB.

4.5 Utilization
Utilization is the ratio of time a system is busy (i.e., working for

us); divided by the time it is available. Utilization is a useful mea-
sure in evaluating performance. To get the optimal resource uti-
lization, all the system needs to be always busy; 100% run. Some
nodes shouldn’t be busy and the other nodes are idle. For all

c© 2012 Information Processing Society of Japan 372

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Fig. 8 Utilization of proposed Grid monitoring system.

the results discussed here, the number of requests is 15 requests.
The utilization of producers is measured over time slice; every 60
seconds as shown in Fig. 8. We measure utilization twice; one
without load balancing (i.e., there may be overloaded) and one
with load balancing.

In case of no load balancing in the system, the utilization is
an interval from 10 to 31%. In the beginning of executing con-
sumers’ requests, Registry only works as monitoring tool. So the
system becomes busy slightly. Registry takes one request, finds
the suitable producer, and sends to it to transfer data to consumer
and so on. So the utilization is increased when the number of
requests is increased.

In case of load balancing system, the utilization is an inter-
val from 10 to 50%. In the beginning of executing consumers’
requests, Registry and failover registry work as monitoring tools.
The requests will be executed faster so the utilization is increased.
High utilization is considered better than low utilization.

In the summary, when the system works with LB, all requests
will be worked in the same time; in parallelism, so the system
will be always busy through time and utilization is increased.
When the system works without LB, there may be overloaded
and through the time, all these requests can’t be replied.

4.6 Throughput
Throughput is the amount of data transferred in one direction

over a link divided by the time taken to transfer it, usually ex-
pressed in bits or bytes per second. People are often concerned
about measuring the maximum data throughput rate of a commu-
nications link. A typical method of performing a measurement is
to transfer a large file and measure the time taken to do so. The
throughput is then calculated by dividing the file size by the time
to get the throughput in megabits, kilobits, or bits per second. We
measure the throughput as a function of data (message size) in
Mega Bytes Per Second (MBPS) as shown in Fig. 9.

In case of no load balancing in the system, the total informa-
tion that flows over a given time is not high. When message size is
less than or equal 512 KB, the throughput is increased. But when
message size is more than 512 KB, the throughput is decreased,
so it is bad.

In case of load balancing system, we note that the results are
higher than of no loading balancing system, and it is good. High

Fig. 9 Throughput of proposed Grid monitoring system.

throughput means highly data flow. This is because the loaded
on Registry is split into Registry and failover registry. So in the
same time, many consumers can get the replies. For example, one
consumer can send many requests and all served by Registry and
failover registry. So the transferred data will be high more than
of no load balancing. When message size is less than or equal
512 KB, the throughput is also increased. But when message size
is more than 512 KB, the throughput is also decreased. So we
recommended using message size with less than 512 KB when
working with the proposed Grid monitoring system to get high
performance.

In the summary, when the system works with LB, all requests
will be worked in the same time; in parallelism, so the transfer
of data will be increased. When the system works without LB,
there may be overloaded and not all requests are reserved so the
transfer of data will be decreased.

4.7 Comparison with Previous Work of Grid Monitoring
Besides the performance study of MDS, R-GMA, and Hawk-

eye that exist in Ref. [15], we also make a comparison between
them and the proposed Grid monitoring system. The comparison
is based on their architectures, technologies, and performance.
The comparison depends on the scalability of Directory Server
with respect to the number of concurrent users. In particular, we
compare the performance of the MDS GIIS, the R-GMA Direc-
tory server, Hawkeye Manager, and Proposed system Registry.

Since we could employ at most fifteen machines, it was too
impossible for us to actually implement hundreds of users. In-
stead, we used multiple user processes running on each machine.
For example, to simulate the traffic generated by 300 users in the
real world, we ran 20 traffic-generating processes on each of the
fifteen machines. Figures 10, 11, and 12 show the performance
results of the four systems.

The response time of MDS2, R-GMA, Hawkeye, and proposed
Grid monitoring system are shown in Fig. 10. The response times
of four systems are the same when the number of the users is 1
and 10. This causes because the number of users is less than the
number of nodes in the system. The response time of Hawkeye
and proposed system is the same until 300 users. The results show
that R-GMA introduces the highest response time. The highly in
response time may be due to the flow of data at the directory
server. The results also show that MDS2 introduces the smallest

c© 2012 Information Processing Society of Japan 373

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Fig. 10 Response time of four Grid monitoring systems.

Fig. 11 Utilization of four Grid monitoring systems.

response time. The response time remains relatively small (less
than 6 seconds) even as the number of users increases (up to 600).
So, MDS2 is the best in the response time.

Our analysis shows that the response time of MDS2, R-GMA,
Hawkeye, and proposed system is increased when the number of
users is increased. Low response time is considered better than
highly response time. So, MDS2 is the best, and the proposed
Grid monitoring system follows it. In the proposed Grid mon-
itoring system, the response time remains small (less than 11.5
seconds) even as the number of users increases (up to 600). R-
GMA is the worst in the response time (65 sec at 600 users).

The utilization of MDS2, R-GMA, Hawkeye, and proposed
Grid monitoring system are shown in Fig. 11. After 10 users, the
utilization on R-GMA rapidly increases, reaching the maximum
average of 58% at about 50 users and 100 users. At 200, 300, 400,
and 500 users, the utilization of R-GMA becomes stable (56%).
At 500 users, the utilization begins to decrease gradually. We be-
lieve this occurs because the flow of queries between consumers
(users) and producers becomes high after 15 users.

The utilization of the proposed Grid monitoring system equals
the utilization of MDS2 at 1 user, 10 users, 300 users, and 400
users. The utilization on the proposed Grid monitoring system
rapidly increases, reaching the maximum average of 48% at about
400 users. At 500 and 600 users, the utilization begins to decrease
gradually. This occurs because the load balancing disturbs the re-
quests from consumers twice; one at Registry and the other at

Fig. 12 Throughput of four Grid monitoring systems.

producers. When the number of users is increased, the utiliza-
tion is increased until it reaches 400 users. This is the capacity of
load balancing system. So if the number of users is exceeded 400
users, the utilization will be decreased.

The utilization of MDS2 is increased as the number of users
is also increased. The utilization of Hawkeye is increased until
the number of users is 300. At 300, and 400 users, the utilization
of Hawkeye becomes stable (48%). At 500 users, the utilization
begins to decrease gradually as the proposed Grid monitoring sys-
tem.

The throughput of MDS2, R-GMA, Hawkeye, and proposed
Grid monitoring system are shown in Fig. 12. For MDS, the
throughput goes up until the number of users is 500 users. After
this, the throughput becomes stable. The throughput of R-GMA
is increased until the number of users is 100. And it becomes
stable after 200 users. For Hawkeye, the throughput is increased
until 200 users. At 300 users, the throughput begins to decrease
gradually. The throughput of the proposed Grid monitoring sys-
tem is increased until 300 users. After this, the throughput be-
comes stable. This may be due to the fact that the proposed sys-
tem is based on Java, so must spawn additional threads to handle
the user queries. The R-GMA presents the lowest throughput and
MDS2 presents the highest throughput.

4.8 Summary of the Evaluation Comparison
After the evaluation of the four Grid monitoring systems, we

should make a complete comparison between them. A complete
evaluation comparison is shown in Table 2. MDS2 consists of
information provider as information collector, GIIS as directory
server, and GRIS as information server. It is based on Grid Moni-
toring Architecture (GMA). It has some problems such as, single
point of failure, and the system organization. MDS is combina-
tion of many systems, difficult to install, and frequency of update
is high. The results for MDS2 have a good performance when
compared with the other systems. It presents a good scalability
with respect to the number of users. It has the lowest response
time and the highest throughput. Because MDS2 has a hierarchi-
cal structure, it supports the dynamic cleaning of dead resources
by using a soft-state protocol. In the response time evaluation,
it introduces the smallest response time over all the numbers of
users. This means that MDS2 can work with large number of
users with small response time. In the utilization evaluation, the

c© 2012 Information Processing Society of Japan 374

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Table 2 Evaluation results of the four Grid monitoring systems.

MDS2 R-GMA Hawkeye Proposed System

Installation easiness Difficult Easy Easy Easy

The ratio of Response
Time to MDS2

1 9.5 2.4 1.8

The ratio of Utilization
to MDS2

1 1.4 1 0.9

The ratio of Through-
put to MDS2

1 10.4 2.2 3.1

utilization is increased when the number of users is increased. It
can work with more than 600 users with high utilization. In the
throughput evaluation, the throughput is highly increased until the
number of users is 300. After 300 users, it is slightly increased.

Hawkeye consists of module as information collector, manager
as directory server, and agent as information server. It has some
problems such as, single point of failure, and loss of control mes-
sage. In general, the Hawkeye Agent scaled well with increasing
numbers of users. The main cost was communication, when a
client connects to the Agent, a new connection must be estab-
lished because Hawkeye does not allow socket caching from pre-
vious queries. Hawkeye has stable load due to the fact that the
Agent is single threaded, so no matter how many concurrent users
query the Agent, only one can successfully connect to the Agent
at a time. In the response time evaluation, it introduces small
response time until number of users is 400. After 400 users, it
largely increased and the difference between it and MDS2 became
high. In the utilization evaluation, the utilization is increased until
the number of users is 400. After 400 users, the utilization is de-
creased. In the throughput evaluation, the throughput is increased
until the number of users is 200. After 200 users, the throughput
is decreased. From all the evaluation results, the number of users
that is suitable to Hawkeye is 200 users. The ratio of Hawkeye to
MDS2 in the response time, utilization, and throughput are 2.4,
1, and 2.2 times, respectively.

R-GMA consists of producer as information collector, direc-
tory server, producer servlet as information server, and consumer.
It has some problems such as, flow of data, loss of control mes-
sage, and single point of failure. The results for R-GMA have
poor performance when compared with the other systems. In all
evaluation results, it presents a bad scalability with respect to the
number of users. It has the highest response time, the highest uti-
lization and the lowest throughput. The main cause is the query
preparation and sending. To retrieve data from each Producer,
the client-side sends a new connection request to the Producer,
which then builds a new database connection to query the data
from that Producer. Creating a new database connection to query
each Producer is an expensive operation, especially when a large
number of connections exist. The ratio of R-GMA to MDS2 in
the response time, utilization, and throughput are 9.5, 1.4, and
10.4 times, respectively.

In summary, the proposed Grid monitoring system introduces a
good performance. It is closed to MDS2 in the performance eval-
uations, such as system utilization and response time. It has a low
response time, and a high utilization. Only MDS2 is better than
it. The difference of response time between it and MDS2 is very
small until 400 users. After 400 users, the difference becomes

slightly big but still small. The difference of utilization between
it and MDS2 is tiny small until 400 users. After 400 users, the
utilization of it is decreased and that of MDS2 is increased. The
throughput is increased until 400 users, and after 400 users, it is
constant. This may be due to the fact that the proposed system is
based on Java, so must spawn additional threads to handle the user
queries. To get high performance, the number of users should be
less than 400. Of course if the number of nodes in the system
increased, the system can serve more than 400 users. The ratio of
the proposed system to MDS2 in the response time, utilization,
and throughput are 1.8, 0.9, and 3.1 times, respectively.

5. Comparison with Previous Work of Load
Balancing

We compare the four types of load balancing algorithms which
are integrated with the proposed Grid monitoring system. These
four algorithms are: Round Robin algorithm, Randomized algo-
rithm, Modified Central Manager algorithm, and Threshold algo-
rithm. The performance of them evaluate by measuring response
time and throughput as shown in Figs. 13 and 14.

Firstly, we measure response time as a function of the number
of users as shown in Fig. 13. When the number of users is one,
all algorithms show the same response time. This is because the
system is not worked in parallel. When the number of users is 10,
the difference between response times from the four algorithms is
slightly small. This is because the number of users is less than the
number of nodes in the system. In the remaining results, Random-
ized algorithm introduces the biggest response time and Central
Manager algorithm gives the smallest response time. So Cen-
tral Manager algorithm is also the best algorithm. Threshold and
Round Robin algorithms give mediate results. We observe that
the response time in all four algorithms until 300 users is small.
When the number of users is more than 300, the response time, in
all algorithms, is largely increased; especially in Randomized and
Round Robin algorithms. If the number of nodes in the system is
increased, the system can serve many numbers of users. So we
recommended working in this proposed system with the number
of users less than 300.

Secondly, we measure the throughput as a function of the num-
ber of users as shown in Fig. 14. When the number of users is
one, all algorithms show the same throughput. This is because
the system is not worked in parallel. When the number of users
is 10, Central Manager and Threshold algorithms give the same
result, and Randomized and Round Robin give the same through-
put. In Central Manager algorithm, throughput is increased with
the number of users until 300 users. It is constant after 300 users.
In Threshold algorithm, throughput is increased with the num-

c© 2012 Information Processing Society of Japan 375

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Fig. 13 Response Time for 4 load balancing algorithms.

Fig. 14 Throughput for 4 load balancing algorithms.

ber of users until 400 users. It is decreased after 400 users. In
Round Robin algorithm, throughput is increased with the number
of users until 400 users. It is decreased after 400 users. In Ran-
domized algorithm, throughput is increased with number of users
until 300 users. It is decreased after 400 users. These show the
capacity of each algorithm in the number of users. In the sum-
mary, Random and Round Robin algorithms have some proper-
ties such as, forecasting accuracy, stability, decentralized system,
less resource utilization, and static algorithm. Threshold algo-
rithm is different from them in that it has cooperative system.
The modified Central Manager algorithm is the best in the eval-
uation. The most characteristic is that it has fault tolerance. It
also has other characteristics such as, no overload rejection, more
forecasting accuracy, etc. The performance of the four types of
static load balancing is evaluated by measuring the response time,
and throughput. Modified Central Manager algorithm is the best.
It has introduced good performance. Randomized algorithm has
introduced bad results.

6. Conclusions and Future Work

The monitoring system in a distributed system is a new topic.
Previous works over monitoring system are interested in cluster
computing, network, or P2P systems. In Grid systems, most the
monitoring system is under development and isn’t executed in
real projects. In the proposed Grid monitoring system, we fo-
cus in the system management by controlling the relationship be-
tween the producers, consumers, and registry, and its fault tol-
erance by adding failover registry in every domain. The over-

loaded is a big problem in the system, so load balancing should
be added. The performance of the proposed Grid monitoring sys-
tem is evaluated twice by measuring the response time, utiliza-
tion, and throughput depending on message size of query. The
proposed system with load balancing is better than that of with-
out load balancing in all results. We have made a comparison
between the proposed Grid monitoring system and other three
monitoring systems depending on the number of users; MDS2,
R-GMA, and Hawkeye. MDS2 is the best in the performance
evaluation, and the proposed system is the second best. Hawk-
eye introduces mediated results, and R-GMA is the worst in the
most results. We also compare the four types of load balancing
algorithms. The modified Central Manager algorithm successes
in reducing response time and increasing throughput.

The proposed Grid monitoring system solved three problems
of the previous Grid monitoring systems. For future work, we
should solve the remaining problems of the previous monitoring
systems such as loss of control message, heavy network if there
are big numbers of nodes, and poor front-end.

Acknowledgments The authors are grateful to Prof. Hideo
Ito for discussions and advice.

Reference

[1] Buyya, R., Chapin, S. and DiNucci, D.: Architectural Models for Re-
source Management in the Grid, GRID 2000 1st IEEE/ACM Interna-
tional Workshop, Bangalore, India (2000).

[2] Yao, Y., Fang, B., Zhang, H. and Wang, W.: PGMS: A P2P-Based
Grid Monitoring System, 3rd International Conference of Grid and
Cooperative Computing (GCC 2004) China (2004).

[3] Globus Toolkit, available from 〈http://www.globus.org/〉.
[4] Massie, M.L., Chun, B.N. and Culler, D.E.: The ganglia distributed

monitoring system: Design, implementation, and experience, Parallel
Computing, Vol.30, pp.817–840 (Aug. 2004).

[5] Hawkeye, available from 〈http://www.cs.wisc.edu/condor/hawkeye/〉.
[6] Tierney, B., Aydt, R., Gunter, D., et al.: A Grid Monitoring Archi-

tecture (2004), available from 〈http://www-didc.lbl.gov/GGF-PERF/
GMAWG/papers/GWD-GP-16-2.pdf〉.

[7] Elenin, S.A. and Kitakami, M.: Trust Management of Grid System
Embedded with Resource Management System, IEICE Trans. Inf.
Syst., Vol.E94-D, No.1, pp.42–50 (2011).

[8] Chakrabarti, A.: Grid Computing Security, 1 edition, pp.33–45,
Springer (2007).

[9] Tierney, B., Crowley, B., Gunter, D., Holding, M., Lee, J. and
Thompson, M.: A Monitoring Sensor Management System for Grid
Environments, Cluster Computing, Vol.4, No.1, pp.19–28 (Mar.
2001).

[10] Pei, W., Chen, Z., Feng, C. and Wang, Z.: Design and Implementation
of a Plain Grid Monitoring and Information Service, 5th IEEE Interna-
tional Symposium on Network Computing and Applications (NCA’06),
pp.277–284 (2006).

[11] Ribler, R.L., Vetter, J.S., Simitci, H. and Reed, D.A.: Autopilot, adap-
tive control of distributed applications, Proc. 7th IEEE Symposium on
High-Performance Distributed Computing, pp.172–179 (1998).

[12] Bhatti, P., Duncan, A., Fisher, S.M., Jiang, M., Kuseju, A.O.,
Paventhan, A. and Wilson, A.J.: Building a robust distributed system:
Some lessons from R-GMA, International Conference on Computing
in High Energy and Nuclear Physics (CHEP ’07), Victoria, Canada
(Sep. 2007).

[13] Rahmawan, H. and Gondokaryono, Y.S.: The Simulation of Static
Load Balancing Algorithms, International Conference on Electrical
Engineering and Informatics, Malaysia (2009).

[14] Sharma, S., Singh, S. and Sharma, M.: Performance Analysis of Load
Balancing Algorithms, Academy of Science, Engineering and Tech-
nology, No.38, pp.269–272 (Feb. 2008).

[15] Zhang, X., Freschl, J.L. and Schopf, J.M.: Scalability Analysis of
Three Monitoring and Information Systems: MDS2, R-GMA, and
Hawkeye, Journal of Parallel and Distributed Computing, Vol.67,
pp.883–902 (2007).

[16] Škiljan, Z. and Radić, B.: Monitoring Systems: Concepts and Tools,
The Six CARNET Users Conference (2004).

c© 2012 Information Processing Society of Japan 376

Journal of Information Processing Vol.20 No.2 366–377 (Apr. 2012)

Sherihan Abu Elenin received her B.Sc.
from the faculty of computers and infor-
mation, Mansoura University, Egypt in
2002. She is currently pursuing a doc-
toral degree at Chiba University, Chiba,
Japan. Her scientific interests include
parallel processing, distributed comput-
ers, cluster systems, and grid computing.

She is a student member of IEEE.

Masato Kitakami received his B.E. de-
gree in electrical and electronic engineer-
ing, M.E. degree in computer science, and
Dr. Eng. degree all from Tokyo Institute of
Technology, Tokyo, Japan in 1991, 1993,
and 1996, respectively. He joined Depart-
ment of Electrical and Electronic Engi-
neering, Tokyo Institute of Technology in

April 1996 and moved to Department of Information and Image
Sciences, Chiba University in December 1999. From April 2001
to March 2003, he is with VLSI Design and Education Canter, the
University of Tokyo. He has been with Graduate School of Ad-
vanced Integration Science, Chiba University since April 2007
and is now associate professor. Dr. Kitakami received the Young
Engineer Award from an IEICE in 1999. His research interests
include error control coding, dependable paralell/distributed sys-
tems, error control in data compression. He is a member of IEICE
and IEEE.

c© 2012 Information Processing Society of Japan 377

