
Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

[DOI: 10.2197/ipsjjip.20.463]

Regular Paper

A Tag-Based Scheme to Realize Real-Time File
Search in Hierarchical Peer-to-Peer Systems

Ting Ting Qin1,a) Qi Cao1,b) Qi YingWei1,c) Satoshi Fujita1,d)

Received: May 20, 2011, Accepted: January 13, 2012

Abstract: In this paper, we propose a new method to realize quick update of information concerned with shared con-
tents in Peer-to-Peer (P2P) networks. The proposed method is a combination of a hierarchical P2P architecture and a
tag-based file management scheme. The hierarchical architecture consists of three layers: the top layer consisting of
a collection of central servers, the middle layer consisting of a set of sub-servers, and the bottom layer consisting of
a number of user peers. Indexes of files held by each user peer are stored at the sub-servers in the middle layer, and
the correlation between file indexes and sub-servers is maintained by central servers using tags. We implemented a
prototype of the proposed method using Java, and evaluated the performance through simulations using PeerSim 1.0.4.
The results of our experiments indicate that the proposed method is a good candidate for “real-time search engines”
in P2P systems; e.g., it completes an upload of 10,000 file indexes to the relevant sub-servers in a few minutes and
achieves query forwarding to relevant peers within 100 ms.

Keywords: hierarchical P2P architecture, tag-based search algorithm, query forwarding, real-time, sub-server

1. Introduction

Recently, Peer-to-Peer (P2P) systems [23], [25] have attracted
considerable attention as a way of providing scalable network ser-
vices over the Internet. A P2P system consists of a large num-
ber of computers called peers connected with a logical network
called the P2P overlay. Unlike traditional Client/Server (C/S) sys-
tems, each peer participating in a P2P can simultaneously play the
role of a server and a client, and several services such as file shar-
ing and content delivery are provided among peers in a peer-to-
peer manner. A key challenge in P2Ps is how to quickly identify
the location of a target file existing in the network since they do
not rely on a centralized server as in C/S systems. In the litera-
ture, a number of schemes have been proposed to overcome such
a difficulty [1], [3], [7], and among those schemes, the use of the
hierarchical structure is currently the most promising approach
to realizing quick access to such location information with a rea-
sonably low cost. Unfortunately, it has not yet been clarified how
we can realize real-time search of update location information

in hierarchical P2Ps, since they lack a mechanism for reflecting
dynamic change of location information in the search results.

In the field of Web search, the concept of real-time search
emerged around 2007. A typical real-time Web search scheme
does not aggregate data to a centralized server like traditional
crawler-based schemes since this causes an inevitable delay in
reflecting the change of files to the list of collected indexes [24].

1 The authors are with the Department of Information Engineering,
Hiroshima University, Higashi-Hiroshima, Hiroshima 739–8511, Japan

a) tacit@se.hiroshima-u.ac.jp
b) caoqi917@hotmail.com
c) weiqypro@hotmail.com
d) fujita@se.hiroshima-u.ac.jp

Instead, it retrieves data via direct feeds from social websites
such as microblogging ones, including Twitter *1, Jaiku *2, and
more recently Pownce *3. Such microblogging certainly fulfills
the need for an even faster mode of communication. However, it
allows users to represent their status within a very limited num-
ber of characters [10], and it can not avoid the return of irrelevant
and/or repetitive entries in the search results [6]. As another di-
rection for the study on Web search, tag-based page recommen-
dations such as Social Bookmark Services (SBS) [4], [18], [19]
have recently emerged as an attractive way to improve the qual-
ity of the Web search (as will be described later, a tag is a key-
word or a key phrase whose “meaning” is intuitively understood
by the users and could be automatically processed by computer
programs). In contrast to full-text search used in crawler-based
schemes, tag-based schemes could recommend a Web page rel-
evant to each user by referring to tags attached to each page. It
is also pointed out by many researchers that by combining the
notion of tags with conventional search engines, we could attain
personalization of the search results [20], and achieve semantic
(or similarity) search with the notions of ontology and the se-
mantic web [26], [28].

In this paper, we propose a tag-based scheme to realize quick
search of update location information in hierarchical P2Ps. The
hierarchical architecture consists of three layers; i.e., the corre-
lation between files (held by user peers in the bottom layer) and
peers in the middle layer is maintained by the peers in the top
layer (in this architecture, a peer in the top layer is referred to as
a central server and a peer in the middle layer is referred to as

*1 http://www.twitter.com
*2 http://www.jaiku.com
*3 http://www.pownce.com

c© 2012 Information Processing Society of Japan 463

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

a sub-server). The search algorithm consists of two parts. The
first part determines a way of associating files held by each user
peer to sub-servers, where each sub-server has the responsibility
to return the search result by referring to the index table as in
conventional search engines. The second part provides an effi-
cient way of forwarding a query received by a central server to
an appropriate sub-server relevant to the query. We implemented
a prototype of the proposed method using Java, and conducted
several experiments with one central server, 100 sub-servers and
1,000 user peers. The results of our experiments indicate that it
completes an upload of 10,000 file indexes to relevant sub-servers
in a few minutes and query forwarding to a relevant peer within
100 ms.

The remainder of this paper is organized as follows. Section 2
gives an overview of related work. Section 3 describes the pro-
posed method. Section 4 discusses about the maintenance of the
data structures used in the proposed method. The results of our
performance evaluation are given in Section 5. Finally, Section 6
concludes the paper with future works.

2. Related Work

Existing P2P systems can be classified into two types: unstruc-

tured and structured type. Furthermore, structured P2Ps are di-
vided into three types; i.e., centralized, decentralized and hierar-
chical.

An advantage of unstructured P2Ps is its high flexibility in re-
alizing a complex file search such as similarity search, semantic
search, and context search, although it is generally less efficient
than structured P2Ps if we restrict our attention to exact match-
ing [11]. Blind search is a basic file search scheme adopted in
the original Gnutella [22]. Although it is simple and easily re-
alizable, it causes a number of redundant message transmissions
which consume a large amount of network resources. Modified-
BFS [14] tries to reduce the number of transmitted messages by
bounding the number of receivers for each transmission, which
was further restricted to one (except for the transmission from
the originator) by using k-random walks [15]. Adaptive Proba-
bilistic Search [27] tries to improve the hit rate of flooding-based
schemes by using additional information about the location of
target peers. All of the above approaches could certainly improve
the performance of the simple blind search used in the original
Gnutella. However, they are still insufficient in many P2P appli-
cations which require real-time responses.

The file search in structured P2Ps is conducted in a more sys-
tematic manner than unstructured P2Ps by using novel data struc-
tures such as Distributed Hash Tables (DHTs) and Skip Graphs.
Chord is a typical DHT-based P2P [25]. Data allocation in Chord
is attained by associating a key with each data item, and by as-
signing such key/value pairs to the peers through an appropriate
hash function applied to the keys. Pastry [23] provides a key-
based message routing scheme such that a given message with a
designated key is routed to a peer with a unique identifier which
is numerically closest to the key. Tapestry provides location-
independent message routing to close-by endpoints using only lo-
calized resources [29]. An apparent drawback of such hash-based
schemes is that two given objects with a high content-similarity

will be mapped to random peers. Such a drawback makes it diffi-
cult to apply the schemes to a wide class of information retrieval
tasks such as similarity and semantic search.

In hierarchical P2Ps such as KaZaa [13] and Morpheus [17],
which are both based on the FastTrack protocol [5], peers are au-
tomatically selected as superpeers by considering the bandwidth
availability and the CPU power. Another self-organizing super-
peer system is SOSPNET [8], which is built on top of an un-
structured architecture with semantic correlation between peers
and files. In this system, superpeers maintain semantic caches of
pointers to files, which are dynamically requested by client peers
that have similar attributes. It should be noted here that each of
the above existing search schemes tightly controls message rout-
ing in order to facilitate the search of requested files. Although
it would certainly improve the efficiency of the file search pro-
cess, such a tight control significantly increases the dependency
on superpeers, which impacts the fault tolerance and increases
the overall cost required for data allocation and topology mainte-
nance.

3. Proposed System

3.1 Underlying P2P Architecture
As mentioned previously, in the proposed system, we adopt a

three-tier P2P architecture consisting of top, middle, and bottom
layers, where the top layer consists of central servers, the middle
layer consists of sub-servers, and the bottom layer consists of a
number of user peers (UPs, for short). Let S = {S 1, S 2, . . . , S m}
denote a set of sub-servers. Considering that each central server
plays the same role in the proposed system, in the following, we
will focus on a central server C as the representative peer. Fig-
ure 1 illustrates an overview of the P2P architecture.

In this system, C takes the responsibility of keeping the cor-
relation between sub-servers and files held by the UPs, and for-
warding queries received from UPs to sub-servers relevant to the
queries. Each sub-server S i takes the responsibility of storing file
indexes uploaded by UPs; in the following, we say that those UPs
are associated with sub-server S i. S i is also responsible for pro-

Fig. 1 An overview of 3-tier P2P architecture.

c© 2012 Information Processing Society of Japan 464

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

cessing queries received from other peers. Several UPs could be
grouped according to the similarity of users’ interests behind the
peers, and/or the proximity of their geographical locations.

In the following, we describe the details of the proposed
scheme. After introducing two basic tools used in the proposed
scheme (Section 3.2), we describe a way for the associated sub-
servers of gathering file indexes, and a way of quickly identifying
sub-servers relevant to a given query (Section 3.3). At last, sev-
eral issues concerned with those two processes will be discussed
in Section 3.4.

3.2 Preliminaries
3.2.1 Tag-Based Sieving of Files

The correlation between sub-servers and file indexes is main-
tained using the notion of tags. Each tag is a keyword or a key
phrase representing the meaning of objects in the real world;
e.g., “china” represents several meanings in various contexts in-
cluding the name of a country and a type of tableware. Let
T = {t1, t2, . . . , tn} denote the set of all tags.

T plays two roles in the proposed system. On the one hand,
it serves as an index in the file search process and on the other
hand, it defines an association of files to the sub-servers. Basi-
cally our scheme is proposed for any selection of T . Particularly,
to enhance the role of these tags, when determining the set of
tags T , we should take into account the popularity of tags, as
follows. Zipf’s first law, which is a family of related discrete
power law probability distributions, states that given a corpus of
natural language utterances, the frequency of a word is inversely
proportional to its rank in the frequency table [21]. This indi-
cates that we should avoid a selection of high frequency words
as a member of T , since it could not attain an efficient sieving of
files associated with the tags. Moreover, a tag will not be useful
if it is highly unpopular (i.e., if the number of files attached to
the tag is quite small), since such an unpopular tag could not re-
flect the true meaning of the file content. Thus, tags contained in
set T must be a low-frequency but a representative word in some
sense. In addition, it is well known that in many applications of
social tagging systems, users are allowed to add tags for shared
information. However, this autonomous modification of tags by
participating users does not work well in our proposed scheme.
It is because that, in most user-based tagging systems, there is no
controlled vocabulary and one authoritative term does not exist to
describe a concept or entity. Therefore, it is considered a short-
coming when different users describe objects using many differ-
ent tags to presumably describe the same thing; e.g., cats, kittens,
felines, etc. Because of the characteristic lack of control, there is
also no way to regulate the use of singular and plural, which can
contribute to navigation difficulties if the system does not include
tag stemming when searching. In contrast, expert-added tags can
guarantee the precision of representation when describing assets.
In this paper, we assume that T is predetermined firstly by sev-
eral experts or administrators; the proposal of an efficient way
of inserting, deleting, and modifying tags in T is left as a future
work. One option for maintenance of set T to satisfy the above
conditions is to conduct an automatic tag recommendation proce-
dure [2]. With this method, tag sets can be automatically selected

Table 1 An example of inclusion relation.

subset
priority

sequence
prefix

T1 = {t2, t6, t3} t2, t3, t6

(1) ∅
(2) t2
(3) t2, t3
(4) t2, t3, t6

T2 = {t2, t3} t2, t3
(1) ∅
(2) t2
(3) t2, t3

T3 = {t5, t3, t9} t3, t5, t9

(1) ∅
(2) t3
(3) t3, t5
(4) t3, t5, t9

from files distributed over the system, and the set of tags can also
be periodically updated when updating the files.
3.2.2 Priority Sequence of Tags

Let σ be a bijection from T to {1, 2, . . . , |T |}. In the following,
σ(t) is called the priority of tag t, and we say that tag t1 is given
a higher priority than tag t2 under σ if σ(t1) < σ(t2). Function
σ naturally defines the following sequence of tags, which will be
referred to as a priority sequence of tags in what follows:

σ−1(1), σ−1(2), . . . , σ−1(|T |),

where σ−1 denotes an inverse of function σ.
We now introduce the notion of the inclusion relation between

two tag sets, which plays an important role in the proposed
scheme.

Definition 1 Let T1, T2 ⊆ T be two subsets of tags. T1 is said
to be included by T2 under σ, denoted by T1 �σ T2, if the priority
sequence of T2 is a prefix of the priority sequence of T1, where
we assume that any T1 is included by the empty set.

Example 1 Let T = {t1, t2, . . . , t9}, and assume σ(ti) <
σ(ti+1) for 1 ≤ i ≤ 8. T1 = {t2, t6, t3} is included by T2 = {t2, t3}
under σ, since the priority sequence of T2 is a prefix of the prior-
ity sequence of T1, whereas T3 = {t5, t3, t9} is not included by T2

under σ. See Table 1 for an illustration.
Definition 2 Two tag sets T1 and T2 (⊆ T) are said to be in-

comparable under σ, if neither T1 �σ T2 nor T2 �σ T1.
Function INCLUSION to check the inclusion of T1 by T2 is

shown in Fig. 2.

3.3 Search Algorithm
The proposed method adopts an event-driven approach in the

following manner. When a UP joins the system or updates its
files, such an event is locally captured by the UP and is notified
to the corresponding sub-servers to start collecting the latest up-
dates. Each query which is received by central server C is for-
warded to the target sub-server using a similar mechanism, and
after receiving the query, the sub-server processes the query, sim-
ilar to search engines. Namely, it executes a matching process
based on its index table which keeps the correspondence between
file indexes and UPs, and then directly returns the search result to
the requester.

The correlation between files and sub-servers is determined by
using the notion of tags as follows. Suppose that each sub-server
is associated with a subset of tags, and each file held by a UP
is attached to at least one tag by a user. An upload of file in-

c© 2012 Information Processing Society of Japan 465

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

function INCLUSION(T1,T2)

Step 1: If |T1 | < |T2 |, then return false and stop, where |T | denotes the

cardinality of set T .

Step 2: If T2 = ∅, then return true and stop.

Step 3: Let t1 be the highest priority tag in T1, and t2 be the highest priority

tag in T2. Let T1 := T1 \ {t1} and T2 := T2 \ {t2}.
Step 4: If t1 � t2, then return false and stop. Otherwise, go to Step 2.

procedure FILE UPLOAD

Step 1: Let T̂ be the set of tags attached to the file index to be uploaded.

Step 2: Find a sub-server S i which is associated with a tag set T ∗ such that

INCLUSION(T̂ ,T ∗) is true.

Step 3: Connect to sub-server S i and upload the file index to S i.

procedure QUERY FORWARD

Step 1: Let T̃ be the set of tags corresponding to a query q received by the

central server C.

Step 2: C identifies a sub-server S i which is associated to a tag set T ∗ such

that INCLUSION(T̃ ,T ∗) is true.

Step 3: C connects to S i and forwards q to S i.

Step 4: After receiving q, S i conducts a file search similar to conventional

search engines, and directly notifies the result to the requesting UP. The

number of matching results is notified to C.

Step 5: If the number of matching results is smaller than some predeter-

mined NR, C tries to find another sub-server S j such that the associated

tag set T j contains at least one of the same tags in T̃ , then go to step 3.

Otherwise, it stops.

Fig. 2 Procedures used in the proposed algorithm.

dexes to a particular sub-server is conducted by calling procedure
FILE UPLOAD described in Fig. 2, which is based on the check
of inclusion relation between two given tag sets. This procedure
is invoked by a UP when a file is newly created and/or the content
of a file is modified by the UP, and a request of uploading indexes
is handled by central server C to determine a sub-server to which
the given file index should be transferred.

On the other hand, after receiving a query from a peer, C for-
wards the query to a sub-server relevant to the query by calling
procedure QUERY FORWARD, described in Fig. 2. The main
difference between our three-tier P2P and conventional search en-
gines is that C plays the role of a controller to balance the network
traffic in the whole system. In fact, in this procedure, a system
variable NR indicating the total number of files discovered so far,
plays a similar role to the TTL in flooding-based schemes; i.e.,
every time a new file is discovered, NR is incremented by one,
and the search process stops when NR reaches a predefined value.

3.4 Discrimination Tree and Clusters
In the proposed scheme, each sub-server is associated with a

subset of tags in such a way that for any T ′ ⊆ T , there exists
a sub-server which is associated with a set of tags including T ′

under σ considering INCLUSION function. Such an assignment
of tags can be graphically represented by a discrimination tree
in the following manner (note that in the following construction,
each tag set is included by exactly one tag set in the resultant
tree; we could modify the tree structure in such a way that each
tag set is included by several tag sets if we want to increase the
robustness of the overall scheme).

Definition 3 (Discrimination Tree) A discrimination tree is
defined as follows:

Fig. 3 An example of a discrimination tree.

• Each vertex in the tree is associated with a set of tags, where
the root is associated with an empty set of tags. In the fol-
lowing, let T (u) denote a set of tags associated with a vertex
u in the tree.

• Let u be a vertex in the tree, and t′ be the lowest priority
tag in T (u). Let i′ = σ−1(t′) for brevity. Then, in the tree
structure, vertex u has no children or it has n− i′ children as-
sociated with a tag set T (u) ∪ {σ(j)} for each i′ + 1 ≤ j ≤ n.

• Each leaf in the tree corresponds to a tag set associated with
a sub-server, and a sub-server associated to a leaf plays the
role of its parent if it is the left-most child of the parent (such
a copy of the “role of parent” is recursively conducted until
it reaches the root vertex).

An example of discrimination tree for T (u) = {t1, t2, t3, t4} with
σ(ti) < σ(ti+1) for 1 ≤ i ≤ 3, is illustrated in Fig. 3. Observe that
a collection of resultant tag sets certainly satisfies the requirement
described above. Such a tree structure can be used for the “dis-
crimination” of a given query, in a sense that a query received
from a peer is placed at the root vertex, and moves toward a leaf
vertex associated with a tag set including the query. Thus the
time required for determining the relevant sub-server is (almost)
proportional to the depth of a leaf vertex relevant to the query.

Given a set of files attached to a set of tags, the above tree struc-
ture induces a partition of the set of files such that each subset is
associated with a vertex in the tree. More concretely, by associat-
ing each vertex to a sub-server (in the hierarchical P2P), we could
obtain a clustering of files and peers such that: 1) each cluster is
identified by a set of tags, 2) each cluster contains exactly one
sub-server, and 3) each file is classified into exactly one cluster
(note that we could increase the robustness by associating sev-
eral sub-servers to a vertex, but such a dependability issue is left
as future work). In the implementation, the process of assigning
each leaf node in a discrimination tree with a sub-server is exe-
cuted as follows: 1) We can sort leaves according to the heaviness
of the load which is determined by the popularity and frequency
of queries associated with the leaves. 2) We could assign leaves
to sub-servers so that the (estimated) load of sub-servers is as
even as possible. 3) Although the complexity of the problem of
distributing given loads to sub-servers so as to minimize the devi-
ation is NP-hard (because it includs partition problem as a special
case), experimentally, several heuristic schemes such as a greedy

c© 2012 Information Processing Society of Japan 466

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

one is known to exhibit reasonable performance [9]. A key ob-
servation we need to notice here is that the size of the clusters
severely affects the workload of sub-servers. In the next section,
we describe a way of controlling the size of each cluster, as well
as a way of realizing dynamic join/leave of participating peers in
the proposed scheme.

4. Maintenance Schemes

4.1 Dynamic Join and Leave
In conventional P2Ps such as unstructured P2Ps and P2P DHT,

join and leave of peers are realized by refreshing the pointer table
maintained by each peer participating in the network. In con-
trast, the procedure for join/leave is very simple in our proposed
method.

To join the system, a new UP first connects to the central server
C with its local information such as the attribute and the feature
status represented by a collection of tags. C assigns the UP with a
sub-server with the highest similarity to the UP, and then the UP
establishes a connection to the assigned sub-server (if the num-
ber of connections of the sub-server exceeds a predefined value,
C should try to find another sub-server). On the other hand, as
for the leaving of UPs, we should distinguish the following two
cases; i.e., normal leaving and unexpected leaving. In the case of
normal leaving, a leaving UP simply sends a request to the sub-
server to disconnect it from the network. Meanwhile, the sub-
server updates the index information in its index table so that file
indexes provided by the leaving peer are completely eliminated.
An unexpected leaving of UPs is detected by the corresponding
sub-server by periodically transmitting “hello” packets. Upon de-
tecting an unexpected leaving of a UP, it updates the index table
as in the case of normal leaving.

Join and leave of sub-servers requires a significant cost com-
pared with the case of UPs. Although it could be achieved by us-
ing a similar technique to conventional structured P2Ps, we leave
the problem of efficient realization of such a maintenance opera-
tion as a future work.

4.2 Cluster Management
In the proposed method, we use the following simple

split/merge operations to keep the size of each cluster within an
appropriate range. Here the size of a cluster is defined as the num-
ber of peers in the cluster. It should be noticed that a user peer
can belong to several clusters whereas a sub-server can belong to
only one cluster since files owned by the same user peer could be
uploaded to different sub-servers by the notion of tags. It should
also be clarified that in such a situation when a user peer belongs
to several clusters, the amount of duplication of information of
the user peer is equals to the number of associated clusters.
Rule 1: Split a cluster into two halves if the size of the cluster

exceeds 3x − 1, where x is an appropriate parameter.
Rule 2: Merge two clusters if the size of each cluster becomes

smaller than x.
When the size of a cluster becomes 3x, it is divided into two

subclusters of size 3x/2 each, and the resultant clusters will not be
split or merged, until the cluster size increases to 3x or decreases
to x − 1. On the other hand, when the size of a cluster becomes

x−1, it is merged with another cluster whose size is at most x−1.
The size of the resultant cluster is at least x and at most 2x − 2;
i.e., it is (re)merged when the size of the cluster becomes x − 1
again, and it is split into two subclusters when the size increases
to 3x.

5. Performance Evaluation

5.1 Prototype System
To evaluate the performance of the proposed method, we im-

plemented a prototype of the proposed system. The prototype
system is written in Java, and is developed under the follow-
ing environment: open-SUSE/10.1, Intel CoreTM 2 Duo CPU
3.00 GHz, Memory 2 GB, Eclipse/3.4, and JDK/1.6. We used
TCP/IP as the underlying communication protocol, and all data
including queries and query responses are encapsulated into a
message with a header of two bytes in length.

The prototype system uses the following three data structures;
i.e., Global Indexer in the top layer which keeps the correspon-
dence between tags and sub-servers, Group Indexer in the mid-
dle layer which keeps the correspondence between files and UPs,
as well as the correspondence between keywords and files, and
Local Indexer in the bottom layer which collects the file con-
tents stored in a UP and generates the index items prepared for
Group Indexer.

Concrete software architecture between peers is shown in
Fig. 4 and Fig. 5. Figure 4 represents modules used in the pro-
totype system, and Fig. 5 represents the procedure of message
transmitting in each peer. More concretely, as shown in Fig. 4,
messages are sequentially exchanged among modules in the three
layers, and as shown in Fig. 5, each peer has a listener to handle
received messages. Each message is received through a message
pipe, and pushed into a message queue (arrows (1) and (2)). Then
the listener handles those messages one by one (arrow (3)), parses
them (arrows (4) and (5)), and sends a new message to other lis-
teners (arrow (6)).

5.2 Setup
We conducted the following two experiments over the proto-

type system using PeerSim 1.0.4 [12]. In the first experiment, we
evaluated the average time required for file upload and query for-
warding, as well as the impact of such an update frequency and
the scalability with respect to the number of UPs. In addition,
we also evaluated the searching efficiency of the prototype sys-

Fig. 4 Modules in three layers.

c© 2012 Information Processing Society of Japan 467

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

Fig. 5 Message transmitting in each peer.

tem compared with a centralized type P2P which has only one
centralized server to control the traffic in the whole network. In
the second experiment, we compared the performance of the pro-
totype system with KaZaa [16], in terms of: 1) the success rate
of queries, 2) the average search hops of those queries, and 3)
its average response time, where the search hop is the number
of query forwardings during the query processing (recall that the
number of query forwardings is controlled by parameter NR in
the proposed system).

It is well-known that the KaZaa overlay is organized in a two-
tier hierarchy consisting of superpeers and ordinary peers. KaZaa
maintains a file index that maps file identifiers to the IP addresses,
which is uploaded from peer to its parent superpeer including the
file name, the file size, and the file descriptors. Notice that the
file descriptors are used for keyword matches during querying.
This file index is distributed across the superpeers. When a user
starts a searching activity to locate files, the user’s peer sends a
query with keywords to its parent superpeer. Then the superpeer
returns searching results corresponding to the query. Each su-
perpeer maintains connections with other superpeers, creating an
overlay network among the superpeers. Moreover, when a super-
peer receives a query, it may forward the query to one or more
of the superpeers to which it is connected. In particular, each
superpeer also maintains a local index for all of its child peers.

In the simulation of our proposed method, we considered a
three-tier P2P system consisting of one central server, 100 sub-
servers and 1,000 UPs. Note that in order to make the perfor-
mance comparison executable, such a selection of the number of
sub-servers as well as UPs must be consistent with the setting
adopted in KaZaa such that the ordinary peer-to-superpeer ratio
is set around 10:1. PeerSim is composed of two simulation en-
gines, i.e., a simplified cycle-based one and an event-based one.
We adopt the cycle-based engine in which the cycle time is fixed
to 20 s. Each simulation is composed of a number of cycles. Dur-
ing each cycle, each UP independently accesses its protocol such
as the file update and the query issue, and such an activity will be

Fig. 6 Average uploading time.

Fig. 7 Uploading time of file index under practical situation.

repeated until the simulation is finished. Meanwhile, the delay of
links in the network is classified into four orders of magnitude,
i.e., 10 ms, 100 ms, 1 s, or∞, where∞ represents the timeout of a
connection, and the actual delay of each link is randomly selected
from such values. Each UP independently repeats join and leave
in a random manner with the average interval time of 20 s, and
the update rate of the network state information is fixed to 15 s.

In the simulation, we used T consisting of 100 tags. Each UP
has 10 files, and each file is attached to at least one tag accord-
ing to the Zipf’s first law *4. Each sub-server is associated with a
single tag in T for simplicity. During a simulation, each UP repet-
itively issues queries associated to at least one tag in T , where the
time interval between two successive query processings is fixed
to a few seconds. The processing of a query is said to be success-
ful if it identifies the location of the target file. Finally, the value
of parameter NR is set to 10.

5.3 Results
Figure 6 shows the average upload time of file indexes, where

the horizontal axis is the number of indexes uploaded during a
cycle time of PeerSim which is fixed to 20 s as mentioned pre-
viously. We could observe that: 1) the average upload time is
bounded by 40 ms, while 2) it slightly increases with the number
of uploaded indexes per cycle time. This is due to the fact that the
process of file uploading is executed completely in parallel. Fig-
ure 7 shows the result under a more practical setting; i.e., 10%

*4 Under the Zipf’s first law, the probability that the ith popular tag ti is
selected as an attachment to a file is proportional to (1/(i+ 1))ε for some
constant ε, where the parameter ε is generally referred to as Zipf’s pa-
rameter, and fixed to 1.6 in the current experiment.

c© 2012 Information Processing Society of Japan 468

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

Fig. 8 Average time required for the query forwarding.

Fig. 9 Search response time.

of file indexes held by each UP are updated per minute (it almost
corresponds to a situation in which 1,000 files are updated per
minute). The horizontal axis is the time interval of the monitor-
ing of shared files by each UP, which is a function of the prototype
system and the time interval is varied from 2 min to 20 min in this
experiment. It is worth noting that the prototype system exhibits
very nice performance under such a practical situation; i.e., each
updating process could be accomplished around one minute, and
each file index could be uploaded to a sub-server relevant to the
index in around 30 ms.

Next, we evaluate the time required for the query forwarding.
Figure 8 summarizes the result. The horizontal axis of the fig-
ure is the number of queries issued by each UP, and each curve is
associated to a given number of UPs; i.e., 100, 200, 400 or 800.
According to the figure, the average response time is less than
100 ms for all cases, while it becomes worse as the number of
issued queries and the number of participating UPs increase; i.e.,
although the central server becomes a bottleneck for large num-
ber of queries, the performance degradation could be bounded
by a reasonable value which is fixed to 100 ms in this situation.
Another important point we observed from the experiment is that
every query is forwarded successfully to its relevant sub-server as
long as we neglected the network connection delay or peer unex-
pected leaves. Next step we will consider multi-match when the
sub-server is associated with multiple tags.

Figure 9 shows the result of the response time of searching
for the prototype system compared with a centralized type P2P
system. In the centralized type P2P system, there is only one cen-
tral server to take charge of the traffic in the whole network. I is
obvious to see that the searching response time increases sharply

Fig. 10 Search success rate comparison with KaZaa.

Fig. 11 Search hops comparison with KaZaa.

Fig. 12 Search response time comparison with KaZaa.

when compared with the prototype system. This is caused by the
sub-servers in the middle layer which share the load from the cen-
tral server. However, the central server in a centralized type P2P,
in contrast, becomes the bottleneck of the whole network traffic.

Finally, we compare the performance of the proposed system
with KaZaa with respect to the three metrics described above.
The results are summarized in Fig. 10, Fig. 11 and Fig. 12. The
horizontal axis of the figures is the elapsed time from the start
time of the simulation, and the three figures correspond to the
three metrics, respectively. Although there is a fluctuation for
both schemes in an early stage of the simulation, our system grad-
ually outperforms KaZaa in all metrics, which is the effect of new
techniques introduced in the proposed method; i.e., similar file in-
dexes are uploaded to the same sub-server by using the notion of
tags, and a given query is immediately forwarded to its relevant
sub-servers.

c© 2012 Information Processing Society of Japan 469

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

6. Concluding Remarks

In this paper, we proposed a tag-based scheme to achieve quick
file searching in P2P environments. To demonstrate the perfor-
mance of the proposed scheme, we implemented a prototype sys-
tem and conducted several experiments. The results of our exper-
iments indicate that it could certainly be used as a basic frame-
work for a real-time search in P2P networks in a sense that a
query issued by a user will be delivered to its relevant sub-server
within 100 ms, an update of files could immediately be reflected
the search result, and the workload of sub-servers is bounded by
a small value so as to attain high scalability.

Our future work is as follows. First, we should enhance the de-
pendability of the proposed scheme by improving the way tags
are associated to files and sub-servers. How to efficiently re-
alize task migration is another important issue. Although the
split/merge of clusters could improve the performance of the
scheme by bounding the workload of sub-servers within an ap-
propriate range, a migration of clusters (i.e., tasks) causes addi-
tional costs which should be reduced by introducing other tech-
niques such as pre-fetching and cache. The development of a way
of (automatically) attaching tags to files is also important future
work.

Reference

[1] Aspnes, J. and Shah, G.: Skip graphs, ACM Trans. Algorithms
(TALG), Vol.3, No.4 (Nov. 2007).

[2] Ang, H.H., Gopalkrishnan, V., Ag, W.K. and Hoi, S.C.H.:
P2PDocTagger: Content management through automated P2P collab-
orative tagging, Proc. 36th International Conference on VLDB, Vol.3
(Sep. 2010).

[3] Broder, A. and Mitzenmacher, M.: Network applications of bloom fil-
ters: A survey, Internet Mathematics, Vol.1, No.4, pp.485–509 (2004).

[4] available from 〈http://delicious.com/〉 (2010).
[5] available from 〈http://www.fasttrack.nu/〉 (2009).
[6] Geer, D.: Is it really time for real-time search? Computer, Vol.43,

No.3, pp.16–19 (Mar. 2010).
[7] Gribble, S., Brewer, E., Hellerstein, J. and Culler, D.: Scalable, dis-

tributed data structures for internet service construction, Proc. 4th
Conference on Symposium on Operating System Design and Imple-
mentation (OSDI), Vol.4, p.22 (Oct. 2000).

[8] Garbacki, P., Epema, D.H.J. and van Steen, M.: The design and eval-
uation of a self-organizing superpeer network, IEEE Trans. Comput.,
Vol.59, No.3, pp.317–331 (Mar. 2010).

[9] Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R. and Stoica,
I.: Load Balancing in Dynamic Structured P2P Systems, Proc. IEEE
INFOCOM, Vol.4, pp.2253–2262 (Mar. 2004).

[10] Huberman, B.A., Romero, D.M. and Wu, F.: Social networks that mat-
ter: Twitter under the microscope, First Monday, Vol.14, No.1-5 (Jan.
2009).

[11] Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S.
and Stoica, I.: Complex queries in DHT-based peer-to-peer networks,
Proc. 1st International Workshop on Peer-to-Peer Systems (IPTPS)
(Mar. 2002).

[12] Jelasity, M., Montresor, A., Jesi, G.P. and Voulgaris, S.: The PeerSim
simulator, available from 〈http://peersim.sf.net/〉 (2009).

[13] available from 〈http://www.kazaa.com/〉 (2009).
[14] Kalogeraki, V., Gunopulos, D. and Zeinalipour-Yazti, D.: A local

search mechanism for peer-to-peer networks, Proc. 11th International
Conference on Information and Knowledge Management (CIKM),
pp.300–307 (2002).

[15] Lv, Q., Cao, P., Cohen, E., Li, K. and Shenker, S.: Search and replica-
tion in unstructured peer-to-peer Networks, Proc. 16th International
Conference on Supercomputing, pp.84–95 (2002).

[16] Liang, J., Kumar, R. and Ross, K.: The Kazaa overlay: A mea-
surement study, Proc. 19th IEEE Annual Computer Communications
Workshop (2004).

[17] available from 〈http://www.morpheussoftware.net/〉 (2010).
[18] Mathes, A.: Folksonomies-cooperative classification and communica-

tion through shared metadata, available from
〈http://www.adammathes.com/academic/computer-media-ted-
communication/folksonomies.html〉 (Dec. 2004).

[19] available from 〈http://myweb2.search.yahoo.com/〉 (2010).
[20] Noll, M.G. and Meinel, C.: Web search personalization via social

bookmarking and tagging, Proc. 6th International Semantic Web Con-
ference and 2nd Asian Semantic Web Conference (ISWC/ASWC2007),
pp.365–378 (Nov. 2007).

[21] Newman, M.: Power laws, pareto distributions and Zipf’s law, Con-
temporary Physics, Vol.46, pp.323–351 (2005).

[22] Ripeanu, M.: Peer-to-Peer architecture case study: Gnutella net-
work, Proc. 1st International Conference on Peer-to-Peer Computing
(P2P’01) (Aug. 2001).

[23] Rowstron, A.I.T. and Druschel, P.: Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems, Proc.
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pp.329–350 (Nov. 2001).

[24] Spark, D.: Real-Time search and discovery of the social web Spark
Media Solution (Dec. 2009).

[25] Sotica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan,
H.: Chord: A scalable peer-to-peer lookup protocol for internet appli-
cations, IEEE/ACM Trans. Net., Vol.11, No.1, pp.17–32 (Feb. 2003).

[26] Tran, T., Cimiano, P., Rudolph, S. and Studer, R.: Ontology-based in-
terpretation of keywords for semantic search, Proc. 6th International
Semantic Web Conference and the 2nd Asian Semantic Web Confer-
ence (ISWC/ASWC2007), pp.523–536 (Nov. 2007).

[27] Tsoumakos, D. and Roussopoulos, N.: Adaptive probabilistic search
for peer-to-peer Networks, Proc. 3rd International Conference on
Peer-to-Peer Computing (P2P’03) (Sep. 2003).

[28] Zezula, P., Amato, G., Dohnal, V. and Batko, M.: Similarity search:
The metric space approach, Advances in Database Systems, Vol.32,
Springer-Verlag (2006).

[29] Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D. and
Kubiatowicz, J.D.: Tapestry: A resilient global-scale overlay for ser-
vice deployment, IEEE Journal on Selected Areas in Communications,
Vol.22, No.1, pp.41–53 (Jan. 2004).

Ting Ting Qin received her B.E. degree
and M.E. degrees in computer science
from Jilin University, China, in 2005 and
2008 respectively. She is currently a Ph.D.
student at the Graduate School of Engi-
neering, Hiroshima University. Her re-
search interests include the design, im-
plementation and performance analysis of

peer-to-peer systems. She is a graduate student member of IEEE,
IEEE Computer Society, and IEEE Women in Engineering.

Qi Cao received his B.E. degree from
Tianjin University of Science and Tech-
nology, China, in 2007 and his M.E. de-
gree from Hiroshima University, Japan,
in 2010. He is a Ph.D. student at the
Department of Information Engineering,
Hiroshima University. His research inter-
ests include modeling, analysis and per-

formance evaluation of peer-to-peer systems.

c© 2012 Information Processing Society of Japan 470

Journal of Information Processing Vol.20 No.2 463–471 (Apr. 2012)

Qi Ying Wei received his B.E. degree
in software engineering from Chongqing
University, China, in 2008 and M.E. de-
gree from Hiroshima University in 2011.
His research interests include P2P net-
works and information retrieval.

Satoshi Fujita received his B.E. degree
in electrical engineering, M.E. degree in
systems engineering, and Dr.E. degree in
information engineering from Hiroshima
University in 1985, 1987, and 1990, re-
spectively. He is a Professor at the Fac-
ulty of Engineering, Hiroshima Univer-
sity. His research interests include com-

munication algorithms on interconnection networks, parallel al-
gorithms, graph algorithms, and parallel and distributed computer
systems. He is a member of IEICE, SIAM Japan, IEEE, and
SIAM.

c© 2012 Information Processing Society of Japan 471

