
Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

[DOI: 10.2197/ipsjjip.20.686]

Regular Paper

Meta-envy-free Cake-cutting and Pie-cutting Protocols

YoshifumiManabe1,a) Tatsuaki Okamoto2,b)

Received: August 23, 2011, Accepted: March 2, 2012

Abstract: This paper discusses cake-cutting protocols when the cake is a heterogeneous good, represented by an in-
terval on the real line. We propose a new desirable property, the meta-envy-freeness of cake-cutting, which has not
been formally considered before. Meta-envy-free means there is no envy on role assignments, that is, no party wants
to exchange his/her role in the protocol with the one of any other party. If there is an envy on role assignments, the
protocol cannot be actually executed because there is no settlement on which party plays which role in the protocol.
A similar definition, envy-freeness, is widely discussed. Envy-free means that no player wants to exchange his/her
part of the cake with that of any other player’s. Though envy-freeness was considered to be one of the most important
desirable properties, envy-freeness does not prevent envy about role assignment in the protocols. We define meta-
envy-freeness to formalize this kind of envy. We propose that simultaneously achieving meta-envy-free and envy-free
is desirable in cake-cutting. We show that current envy-free cake-cutting protocols do not satisfy meta-envy-freeness.
Formerly proposed properties such as strong envy-free, exact, and equitable do not directly consider this type of envy
and these properties are very difficult to realize. This paper then shows cake-cutting protocols for two and three party
cases that simultaneously achieves envy-free and meta-envy-free. Last, we show meta-envy-free pie-cutting protocols.

Keywords: game theory, cake-cutting, pie-cutting, envy-free, meta-envy-free

1. Introduction

Cake-cutting is an old problem in game theory [9], [16]. It can
be employed for such purposes as dividing territory on a con-
quered island or assigning jobs to members of a group. This pa-
per discusses the cake-cutting problem when the cake is a het-
erogeneous good that is represented by an interval [0, 1] on the
real line. The most famous cake-cutting protocol is ‘divide-and-
choose’ for two players. Player 1 (Divider) cuts the cake into
two equal size pieces. Player 2 (Chooser) takes the piece that
she prefers. The Divider takes the remaining piece. This proto-
col is proved to be envy-free. Envy-freeness is defined as: after
the assignment is finished, no player wants to exchange his/her
part with that of another player’s. The Divider must cut the cake
into two equal size pieces (using the Divider’s utility function),
otherwise the Chooser might take the larger piece and the Di-
vider will obtain less than half. Since the Divider cuts the cake
into equal size pieces, she never envies the Chooser regardless of
which piece the Chooser selects. The Chooser never envies the
Divider because she chooses first.

Although it appears that the ‘divide-and-choose’ protocol is
perfect, actually it is not, because it is not a complete protocol.
When Alice and Bob execute this protocol, they must first decide
who will be the Divider and the Chooser. The Chooser is the
better choice, as mentioned in several papers [5], [13]. If the util-
ity functions of Alice and Bob are the same, the Divider and the
Chooser obtain exactly half of the cake by using their utility func-

1 NTT Communication Science Laboratories, Kyoto 619–0237, Japan
2 NTT Secure Platform Laboratories, Musasino, Tokyo 180–8585, Japan
a) manabe.yoshifumi@lab.ntt.co.jp
b) okamoto.tatsuaki@lab.ntt.co.jp

tion. Next we consider a case where the utility functions of Alice
and Bob differ. Let us assume that Bob is the Divider. Let us also
assume that by using Bob’s utility function, [0, 1/4] and [1/4, 1]
is an exact division, because the cake is chocolate coated near 0
and Bob likes chocolate. Alice does not have such a preference,
thus by choosing [1/4, 1], Alice’s utility is 3/4. If Alice is the Di-
vider, she cuts to [0, 1/2] and [1/2, 1]. Then Bob chooses [0, 1/2]
and obtains more than half by his utility. Therefore, the Chooser
is never worse off than the Divider, and the Chooser is better than
the Divider if their utility functions differ. If both Alice and Bob
know this fact, they both want to be the Chooser. Therefore, they
must employ a method such as coin-flipping to decide who will
be the Divider. If Alice is assigned the role of the Divider, she
definitely envies Bob who is the Chooser. There is an envy on the
assignment of roles in this protocol. Envy-freeness considers the
assignment of cake, thus we need a new definition which deals
the envy of roles in cake-cutting protocols. Although this type
of envy is known, it has not been formally defined. We propose
a new desirable property, the meta-envy-freeness of cake-cutting,
which has not been formally considered before. Meta-envy-free
means there is no envy on role assignments, that is, no party wants
to exchange his/her role in the protocol with the one of any other
party. If there is an envy on role assignments, the protocol can-
not be actually executed because there is no settlement on which
party plays which role in the protocol. Thus, we propose that
simultaneously achieving meta-envy-free and envy-free is desir-
able in cake-cutting. This paper then proposes new protocols that
simultaneously achieve meta-envy-free and envy-free for the two-
party case and the three-party case.

Some readers might think that coin-flipping will result in a fair
role assignment between Alice and Bob, and so it is not a prob-

c© 2012 Information Processing Society of Japan 686

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

lem. If this supposition is accepted, the following protocol must
be accepted as an envy-free protocol: ‘Flip a coin and the winner
takes the whole cake and the loser gets nothing.’ This protocol is
obviously unacceptable if we want to eliminate envy on the ob-
tained portion of the cake. If we want to eliminate envy on role
assignment, we must not accept such an envy role assignment us-
ing fair coin-flipping.

Previous studies defined stronger properties for the obtained
portion such as strong envy-free, super envy-free, exact, and eq-
uitable [9], [16]. These properties, defined in Section 3, are hard
to realize and do not directly consider this type of envy. We
can obtain a three-party meta-envy-free and envy-free protocol
by modifying a three player envy-free protocol.

Note that we do not eliminate every coin-flip. For the above
example of ‘divide-and-choose’, if Alice and Bob’s utility func-
tions are exactly the same, their cutting points are the same. Thus,
both Alice and Bob think that the values of the two pieces are the
same. To complete the protocol, we must assign each party either
piece. Coin-flipping can be used for such a case, but can only be
allowed if its result causes no envy.

As an extension of the cake-cutting problem, a pie-cutting
problem has been considered [12]. When the endpoints of a cake
is connected to form a circle, it becomes a pie. All cuts are made
between the center and a point on the circumference, so that each
cut runs along a radius of the disk. We show a meta-envy-free pie-
cutting protocol exists if a meta-envy-free cake-cutting protocol
exists for any number of parties.

2. Preliminaries

Throughout this paper, the cake is a heterogeneous good that
is represented by an interval [0, 1] on the real line. Each party
Pi has a utility function μi that has the following three proper-
ties, which is the same as the definition of a measure. (1) For
any X ⊆ [0, 1] whose size is non-zero, μi(X) > 0. (2) For any
X1 and X2 such that X1 ∩ X2 = ∅, μi(X1 ∪ X2) = μi(X1) + μi(X2).
(3) μi([0, 1]) = 1. The tuple of Pi(i = 1, . . . , n)’s utility function
is denoted by (μ1, . . . , μn). Utility functions might differ among
parties. No party has knowledge of the other parties’ utility func-
tions.

In this paper, ‘party’ indicates a person such as Alice, Bob, etc.
and is denoted by P. ‘Player’ is a role in a protocol and is denoted
by p. We sometimes state that ‘party X is assigned to player y’ if
a person X executes the role of player y in the protocol.

An n-player cake-cutting protocol f assigns several portions of
[0, 1] to the players such that every portion of [0, 1] is assigned
to one player. We denote fi(μ1, . . . , μn) as the set of portions as-
signed to player pi by f , when party Pi(i = 1, . . . , n) is assigned
to player pi(i = 1, . . . , n) in f . When f is a randomized algo-
rithm, let us denote fi(μ1, . . . , μn; r) as the assignment to pi when
the sequence of random values used in f is r.

All parties are risk averse, namely they avoid gambling. They
try to maximize the worst case utility they can obtain.

A desirable property for cake-cutting protocols is strategy-
proofness (or truthfulness) [9]. A protocol is strategy-proof if
there is no incentive for any player to lie about his utility func-
tion. A protocol defines what to do for each player pi according

to its utility function μi. Since μi is unknown to any other player,
pi can execute some action that differs from the protocol’s defi-
nition (by pretending that pi’s utility function is μ′i (� μi)). If pi

obtains more utility by lying about his utility function, the proto-
col is not strategy-proof. If a protocol is not strategy-proof, each
player has to consider what to do and the result might differ from
the intended result. If a protocol is strategy-proof, the best policy
for each player is to simply observe the rule of the protocol. Thus
strategy-proofness is very important. As for ‘divide-and-choose’,
the protocol requires the Divider to cut the cake in half by using
the Divider’s true utility function. The Divider can cut the cake
other than in half. However, if the Divider does so, the Chooser
might take the larger portion and the Divider might obtain less
than half. Thus a risk averse party honestly executes the protocol,
and ‘divide-and-choose’ is strategy-proof.

3. Meta-envy-freeness

This section provides the definition of meta-envy-freeness. We
offer two definitions and show that they are equivalent.
Definition 1. A cake-cutting protocol f is meta-envy-free if for

any (μ1, . . . , μn), i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μ j, . . . , μn; r))

≥ μi(f j(μ1, . . . , μ j, . . . , μi, . . . , μn; r)) (1)

From the symmetry of Definition 1, the following lemma is
obviously derived.
Lemma 1. If a cake-cutting protocol is meta-envy-free, then for

any (μ1, . . . , μn), i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μ j, . . . , μn; r))

= μi(f j(μ1, . . . , μ j, . . . , μi, . . . , μn; r)) (2)

Proof. Suppose that f satisfies the condition of Definition 1 and
for some (μ1, . . . , μi, . . . , μ j, . . . , μn), i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μ j, . . . , μn; r))

> μi(f j(μ1, . . . , μ j, . . . , μi, . . . , μn; r)) (3)

is satisfied. Then consider another execution of f with
(μ1, . . . , μ j, . . . , μi, . . . , μn), that is, Pi’s utility function is μ j and
Pj’s utility function is μi. Since the condition of Definition 1 is
satisfied, swapping the roles of Pi and Pj does not increase Pj’s
utility, that is,

μi(f j(μ1, . . . , μ j, . . . , μi, . . . , μn; r))

≥ μi(fi(μ1, . . . , μi, . . . , μ j, . . . , μn; r)) (4)

This contradicts Eq. (3). Thus, for any (μ1, . . . , μi, . . . , μ j, . . . , μn),
i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μ j, . . . , μn; r))

= μi(f j(μ1, . . . , μ j, . . . , μi, . . . , μn; r)) (5)

is satisfied. �

This definition considers the following two executions of f .
(A) Party Pi (whose utility function is μi) plays the role of player
pi and party Pj (whose utility function is μ j) plays the role of

c© 2012 Information Processing Society of Japan 687

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

player p j in f and random value r is used. (B) Party Pi plays the
role of player p j and party Pj plays the role of player pi in f with
the same random value r, that is, Pi and Pj swap role assignments.

The intuitive explanation of this definition is as follows. After
f is executed with random value r, Pi thinks that the role of player
p j was better than pi in f with the current random value r (that
is, p j obtained extra benefit from f with current random value r).
Then Pi can execute f again with the same random value r when
Pi plays the role of p j and Pj plays the role of pi. If Pi cannot
obtain more utility with the latter execution, Pi does not want to
exchange the roles of f , that is, Pi has no envy in terms of role
assignment.

For the example of ‘Divide-and-Choose,’ assume that the role
of the Divider/Chooser is decided by coin-flipping and P2 be-
comes the Chooser when the random value is r0. P1 swaps roles
with P2, uses the same r0, and obtains more utility by becoming
the Chooser. Such a protocol is not meta-envy-free according to
the definition.

Let us consider another example. There are two pieces of the
cake, X1, X2 that satisfy μ1(X1) = μ2(X1) = μ1(X2) = μ2(X2).
Coin-flipping is used to assign one piece of X1, X2 to each of
p1, p2. Now P1 plays the role of p1 and P2 plays the role of p2.
Assume that X1 is assigned to p1 and X2 is assigned to p2 when
the random value is r0. In this case, swapping roles with P2 and
using the same random value r0 results in assigning X2 to P1, but
this does not change the utility of P1. Thus P1 does not want to
swap roles in this example.

Though it might be natural to consider distribution of obtained
utilities for randomized algorithms, we do not discuss distribution
in our definition. Consideration of the distribution hides the effect
of unfair role assignments. For the above ‘Divide-and-Choose
with the the Divider/Chooser role assignment by coin-flipping’
protocol, each player becomes the Divider with probability 1/2,
thus both players’ distributions are the same. However, the proto-
col has an envy on role assignment for each random value r. Thus
we do not consider the distribution according to the definition of
meta-envy-free.

Note that meta-envy-freeness is independent of envy-freeness.
There can be meta-envy-free protocols that are not envy-free. Let
us consider the following artificial protocol f . Protocol f assigns
the whole cake to the party whose utility of [0, 0.1] is the largest
among the parties. The result does not change even if some par-
ties exchange their roles in the protocol, thus f is meta-envy-
free. The party whose utility of [0, 0.1] is not the largest envies
the party who obtains the whole cake. We propose that simulta-
neously achieving meta-envy-free and envy-free is necessary in
cake-cutting protocols.

Next we show a stronger definition of meta-envy-freeness.
Definition 2. A cake-cutting protocol f is meta-envy-free if for

any (μ1, . . . , μn), permutation π : {1, . . . , n} → {1, . . . , n}, i, and r,

μi(fi(μ1, . . . , μn; r)) = μi(fπ−1(i)(μπ(1), . . . , μπ(n); r)) (6)

This definition allows any permutation of the role assignment,
which includes the case where Pi’s role is unchanged.
Theorem 1. Definition 1 and Definition 2 are equivalent.

Proof. If the condition of Definition 2 is satisfied, the condition
of Definition 1 is obviously satisfied. Thus we prove the opposite
direction.

Any permutation π can be realized by a sequence in which
two elements are swapped. From Lemma 1, Pi’s utility
is unchanged when the swap involves Pi. Thus we dis-
cuss Pi’s utility when there is a swap between the other par-
ties. Consider two utilities μi(fi(. . . , μi, . . . , μ j, . . . , μk, . . . ; r))
and μi(fi(. . . , μi, . . . , μk, . . . , μ j, . . . ; r)).

The roles of Pj and Pk can be swapped by the sequence of (S1)
swapping Pi and Pj, (S2) swapping Pi (current role is p j) and Pk,
and (S3) swapping Pi (current role is pk) and Pj (current role is
pi).

For each swap, Eq. (2) must be satisfied. From these equalities,
we obtain

μi(fi(. . . , μi, . . . , μ j, . . . , μk, . . . ; r))

= μi(f j(. . . , μ j, . . . , μi, . . . , μk, . . . ; r))

μi(f j(. . . , μ j, . . . , μi, . . . , μk, . . . ; r))

= μi(fk(. . . , μ j, . . . , μk, . . . , μi, . . . ; r))

μi(fk(. . . , μ j, . . . , μk, . . . , μi, . . . ; r))

= μi(fi(. . . , μi, . . . , μk, . . . , μ j, . . . ; r)).

From these equalities, we obtain

μi(fi(. . . , μi, . . . , μ j, . . . , μk, . . . ; r))

= μi(fi(. . . , μi, . . . , μk, . . . , μ j, . . . ; r)).

Since this equality holds for any single swap, the equality holds
for any permutation π. �

Several desirable properties have been defined as shown be-
low [9], [16], but these definitions do not take role assignment
into consideration.
Simple fair For any i, μi(fi(μ1, . . . , μn)) ≥ 1/n.
Strong fair For any i, μi(fi(μ1, . . . , μn)) > 1/n.
Envy-free For any i, j(i � j), μi(fi(μ1, . . . , μn)) ≥
μi(f j(μ1, . . . , μn)).

Strong envy-free For any i, j(i � j), μi(fi(μ1, . . . , μn)) >
μi(f j(μ1, . . . , μn)).

Super envy-free For any i, j(i � j), μi(f j(μ1, . . . , μn)) < 1/n.
Exact For any i, j, μi(f j(μ1, . . . , μn)) = 1/n.
Equitable For any i, j, μi(fi(μ1, . . . , μn)) = μ j(f j(μ1, . . . , μn)).
Simple fair division can be achieved for any number of players
by using the moving-knife protocol [11]. Strong fair division
cannot be achieved if every player has an identical utility func-
tion μ. Woodall [18] proposed an algorithm for achieving strong
fair division provided that there is a portion X ⊂ [0, 1] such that
μ1(X) � μ2(X), when n = 2. The algorithm for obtaining such a
portion X is an open problem. Envy-free division can be achieved
for any number of players [8], however the protocol is very com-
plicated.

Regarding strong envy-free cake-cutting, the lower bound of
the number of cuts has already been shown [14]. Super envy-
free division can be achieved if the utility functions μ1, . . . , μn

are linearly independent. However the algorithm for obtaining an

c© 2012 Information Processing Society of Japan 688

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

actual assignment has not been shown [2]. An exact division al-
gorithm has been reported for two players using a moving knife
method [1]. An equitable division algorithm between two players
has been also described [13]. The case where n ≥ 3 remains an
open problem.

As shown above, stronger properties than envy-free such as
strong-envy-free, super-envy-free, exact, and equitable are very
hard to realize.

A definition, similar to ours, called ‘anonymous,’ is provided
in Ref. [15]. A cake-cutting protocol is anonymous if for any
(μ1, . . . , μi, . . . , μ j, . . . , μn), i, and j,

fi(μ1, . . . , μi, . . . , μ j, . . . , μn) = f j(μ1, . . . , μ j, . . . , μi, . . . , μn)

holds. This is a severe definition that requires the assigned portion
to be identical for any role swapping. For n = 2, an anonymous
single-cut cake-cutting is obtained [15]. In meta-envy-freeness,
the assigned portions need not be identical but their utilities must
be identical for any role swapping. In addition, randomization is
not explicitly considered in the definition of anonymity.

Equitability does not imply meta-envy-freeness. There can be
an (artificial) protocol that is equitable but not meta-envy-free.
Party P1’s utility μ1 satisfies μ1([0, 1/4]) = 0.3, μ1([1/4, 1/2]) =
0.3, μ1([1/2, 3/4]) = 0.2, and μ1([3/4, 1]) = 0.2. Party P2’s
utility μ2 satisfies μ2([0, 1/4]) = 0.2, μ2([1/4, 1/2]) = 0.2,
μ2([1/2, 3/4]) = 0.3, and μ2([3/4, 1]) = 0.3. A protocol f ini-
tially assigns [0, 1/4] to the first player and [3/4, 1] to the sec-
ond player. The result of f (μ1, μ2) is f1(μ1, μ2) = [0, 1/2] and
f2(μ1, μ2) = [1/2, 1] and the utilities are 0.6 for both parties. On
the other hand, f (μ2, μ1) might result in f1(μ2, μ1) = ([0, 1/4],
[1/2, 3/4]) and f2(μ2, μ1) = ([3/4, 1], [1/4, 1/2]), thus the utili-
ties are 0.5 for both parties. Therefore this (artificial) protocol is
equitable, but not meta-envy-free, since P1 prefers the first player.
On the other hand, the meta-envy-free protocols shown in the next
section are not equitable.

As shown in the introduction, the following holds.
Observation 1. The ‘divide-and-choose’ protocol is not meta-

envy-free.

Next, we consider the envy-free cake-cutting protocol for three
players, found independently by Selfridge and Conway (intro-
duced in Ref. [9]), and shown in Fig. 1.

Note that without loss of envy-freeness, we assume that when
a player cuts L from X1 = [x1, x2], L must be cut as [x1, x3] for
some x3.

Instead of showing that the protocol in Fig. 1 is not meta-envy-
free, we show a stronger statement that any party prefers the role
of player p3 to that of p2 in this protocol. The statement shows
that this protocol has a serious envy on role assignment.
Theorem 2. Any party prefers the role of player p3 to that of p2

in the protocol of Fig. 1.

Proof. Let there be three parties Px, Py, and Pz whose utility
functions are μx, μy, and μz, respectively. We show that Py prefers
the role of p3 to that of p2.

Let us consider the following two executions:
(Ex1) (p1, p2, p3) = (Pz, Py, Px),
(Ex2) (p1, p2, p3) = (Pz, Px, Py).

1: begin

2: p1 cuts into three pieces (so that p1 considers their sizes are the same)

3: Let X1, X2, X3 be the pieces where X1 is the largest and X3 is the smallest

for p2.

4: if X1 is strictly larger than X2 for p2 then

5: p2 cuts L from X1 so that X′1 = X1 − L is the same as X2 for p2.

6: else

7: /* Do nothing. Let L be empty and X′1 = X1. */

8: p3 selects the largest (for p3) among X′1, X2, and X3.

9: if X′1 remains then

10: begin

11: p2 must select X′1.

12: Let (pa, pb) be (p3, p2).

13: end

14: else

15: begin

16: p2 selects X2 (the largest for p2 among X2 and X3).

17: Let (pa, pb) be (p2, p3).

18: end

19: p1 obtains the remaining piece among X2 and X3.

20: if L is not empty then

21: pa cuts L into three pieces (such that pa considers their sizes are the

same) and pb, p1, and pa selects one piece in this order.

22: end.

Fig. 1 Three-player envy-free protocol.

The result of the initial cut by Pz at line 2 is the same in (Ex1)
and (Ex2). Let the three pieces be Z1, Z2, and Z3. Without loss of
generality, the Z’s are ordered from the largest to the smallest for
Py. All possible cases are categorized as follows.
(Case 1) Py does not cut L in (Ex1).

(Case 1-1) Px cuts L′ from some piece Z in (Ex2).
(Case 1-2) Px does not cut L in (Ex2).

(Case 2) Py cuts L from Z1 in (Ex1).
(Case 2-1) Px also cuts L′ from Z1 in (Ex2).
(Case 2-1-1) L′ is larger *1 than L.
(Case 2-1-2) L′ is smaller than L.
(Case 2-1-3) L′ = L.

(Case 2-2) Px cuts L′ from another piece Z in (Ex2).
(Case 2-3) Px does not cut L′ in (Ex2).

(Case 1-1) Let the largest piece for Px be Z′1. Px selects Z′1 at line 8
during (Ex1) and obtains utility μx(Z′1). In contrast, at lines 9–18
during (Ex2), Px obtains a piece whose utility equals μx(Z′1 − L′),
because there are two pieces with utility μx(Z′1 − L′) after cutting
L′. At line 21 during (Ex2), Px obtains a cut of L′ whose utility
is smaller than μx(L′). Thus, the total utility of Px is smaller than
μx(Z′1). Therefore, (Ex1) is better for Px.

(Case 1-2) There are at least two largest pieces for Px among
Z1,Z2, and Z3. Px selects the largest piece at line 8 during (Ex1).
In contrast, after Py has selected Z1 at line 8 during (Ex2), Px can
select one of the largest pieces at lines 9–18. Thus Px obtains the
same utility in (Ex1) and (Ex2).

(Case 2-1-1) At line 8 during (Ex1), the largest piece for Px is
Z1 − L, since L′ is larger than L. At line 21, Px obtains at least
μx(L)/3. Thus, Px obtains at least μx(Z1) − 2μx(L)/3 in total. In
contrast, Py selects Z2, which is larger than Z1 − L′, at line 8 dur-

*1 To compare the sizes of L and L′, they must be cut in a canonical way.
Thus the additional rule for cutting L is necessary.

c© 2012 Information Processing Society of Japan 689

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

ing (Ex2). Thus Px selects Z1 − L′ at line 11. In addition, Px

obtains at least μx(L′)/3. Px obtains at least μx(Z1)− 2μx(L′)/3 in
total. Thus, (Ex1) is better for risk averse party Px.

(Case 2-1-2) At line 8 during (Ex1), Px does not select Z1 − L,
since it is not greater than the second largest piece, whose utility
is μx(Z1−L′), for Px. Px chooses the piece and obtains μx(Z1−L′).
In addition, at line 21, Px obtains μx(L)/3 because Px cuts L.
Px obtains μx(Z1) − μx(L′) + μx(L)/3 in total. In contrast, at
line 8 during (Ex2), Py selects Z1 − L′, which is the largest for
Py. Thus Px selects Z2 or Z3 whose utility is μx(Z1 − L′). Px

then obtains μx(L′)/3 at line 21 because Px cuts L′. Px obtains
μx(Z1) − 2μx(L′)/3 in total, which is smaller than that in (Ex1),
since L′ is smaller than L.

(Case 2-1-3) In both (Ex1) and (Ex2), Px obtains a piece whose
utility is μx(Z1 − L). The only difference is who cuts L. As shown
in the proof of ‘divide-and-choose’, being the Chooser is the bet-
ter than being the Divider at line 21. In (Ex1), Px can select Z1−L

and become the Chooser. In (Ex2), if Py selects Z1 − L, Px must
become the Divider. Thus (Ex1) is better than (Ex2).

(Case 2-2) In (Ex1), Px selects the largest piece, which is not
Z1 − L, at line 8 and obtains μx(Z). At line 21, Px obtains at least
μx(L)/3. In (Ex2), Py selects Z1 not Z − L′ at line 8. Thus Px

obtains μx(Z) − μx(L′) at line 11. At line 21, Px obtains less than
μx(L′). Px obtains less than μx(Z) in total, which is worse than in
(Ex1).

(Case 2-3) There are at least two largest pieces among Z1, Z2,

and Z3 for Px. Let μx(Z) be the utility of the largest piece. In
(Ex1), Px can obtain μx(Z) at line 8. In addition, Px obtains
μx(L)/3 at line 21. In contrast, in (Ex2), Px obtains μx(Z). Thus
(Ex1) is better than (Ex2) for Px. �

Envy-free protocol for any number of players is shown in
Ref. [8]. The outline of their protocol is shown in Fig. 2. We
denote that “pi has IA (irrevocable advantage) over p j” when pi

1: begin

2: L← [0, 1].

3: Let N be the least common multiple of {2, 3, . . . , n}.
4: p1 cuts L into N pieces of the same size.

5: The players are divided into two groups A and D.

6: A: The player feels that the values of all N pieces are the same.

7: D: The player feels some of the values are not the same.

8: if a pair(pi, p j) exists such that pi ∈ A, p j ∈ D and p j does not have IA

over pi then

9: begin

10: Execute IA-Subgame(L, pi, p j).

11: L← L′

12: Goto line 4

13: end

14: else /* D = ∅ or every p j ∈ D has IA over every pi ∈ A. */

15: N pieces are divided by the members of A (Each member of A gets

the same number of pieces).

16: end.

17:

18: Procedure IA-Subgame(L, pi, p j)

19: /* Assign some part of L envy-free among all players. */

20: /* L′ ← the remaining cake after the assignment. */

21: /* After the assignment, pi has IA over p j and p j has IA over pi. */

Fig. 2 Envy-free protocol for any number of players.

thinks pi gets a larger piece than p j even if p j obtains all of the
rest of the cake L.

Since the protocol is very complicated and the detail of the pro-
tocol is unnecessary to show meta-envy, we do not state the detail
of subroutine “IA-Subgame.” IA-Subgame increases the pair of
players that have IA over each other. Thus, after a finite number
of rounds, any player has IA over any other player. Thus eventu-
ally, the “else” condition at line 14 is satisfied and the algorithm
terminates.
Theorem 3. The protocol in Fig. 2 is not meta-envy-free.

Proof. Let us consider the case n = 4. The cases when n > 4
can be similarly considered. In this case, N = 12. Let us assume
Pi’s utility function μi is as follows. Utility μi(i = 1, 2, 3) are
uniform, that is, for any [a, b], μi([a, b]) = b − a. Utility μ4 sat-
isfies the following. μ4([j/12, (j + 1)/12]) = 1/12(j = 0, . . . , 9),
μ4([10/12, 21/24]) = 1/24 − ε, μ4([21/24, 11/12]) = 1/24 + ε,
μ4([11/12, 23/24]) = 1/24 − ε, and μ4([23/24, 1]) = 1/24 + ε
(thus, μ4([10/12, 11/12]) = μ4([11/12, 1]) = 1/12).

Consider the following two executions, (A) (P1, P2, P3, P4) =
(p1, p2, p3, p4) and (B) (P1, P2, P3, P4) = (p2, p1, p3, p4).

The execution of (A) is as follows. Party P1 can arbitrarily cut
the cake into N = 12 pieces of the same size (for P1). P1 cuts the
cake into ([j/12, (j + 1)/12])(j = 0, . . . , 11). A = {p1, p2, p3, p4}.
Thus, the procedure ends with the division of the pieces among
all players.

The execution of (B) is as follows. Party P2 can arbitrarily
cut the cake into N pieces of the same size (for P2). P2 cuts
the cake into ([j/12, (j + 1)/12])(j = 0, . . . , 9), ([10/12, 21/24],
[11/12, 23/24]), and ([21/24, 11/12], [23/24, 1]). Since the util-
ities of the last two pieces are not 1/12 for P4, A = {p1, p2, p3}
and D = {p4}.

Player p4 does not have irrevocable advantage over p1 thus IA-
Subgame is executed. In the second round, P2 cuts the rest of the
cake L′ and the protocol terminates after some number of rounds.

In execution (A), P3 obtains 1/4. In execution (B), P3 might
obtain more than 1/4 by P3’s utility, because the protocol is envy-
free.

P3’s obtained utility depends on the role assignment, thus the
protocol is not meta-envy-free. �

4. Meta-envy-free Protocols for Two and
Three Parties

This section shows meta-envy-free and envy-free cake-cutting
protocols for two and three parties. Note that the word ‘party’ is
used in the descriptions in this section because every player’s role
is identical. When there are two parties, the protocol proposed in
Ref. [6], shown in Fig. 3, is meta-envy-free.

The simultaneous declaration of values by multiple parties can
be realized in several ways, (1) Trusted third party (TTP): Pi

sends ci to the TTP. After the TTP receives all the values, he
broadcasts them to all parties. (2) Commitment scheme [10]: Pi

first sends comi(ci), which is a commitment of ci. The other par-
ties cannot obtain the value ci from comi(ci). After Pi has ob-
tained the other parties’ committed values, Pi opens its commit-
ment (that is, sends ci and a proof that comi(ci) is really made

c© 2012 Information Processing Society of Japan 690

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

1: begin

2: Pi(i = 1, 2) simultaneously declare ci that satisfies μi([0, ci]) = 1/2.

3: if c1 = c2 then

4: Cut at c1, coin-flip and decide which party obtains [0, c1] or [c1, 1].

5: else

6: Cut as [0, (c1 + c2)/2], [(c1 + c2)/2, 1]. Pi obtains the piece which

contains ci.

7: end.

Fig. 3 Two-party meta-envy-free protocol.

by ci). Pi cannot provide a false proof that comi(ci) is made by
c′i (� ci).
Theorem 4. The protocol in Fig. 3 is meta-envy-free, envy-free,

and strategy-proof.

Proof. The cut point depends only on the parties’ declared val-
ues. The result is independent of the role assignment or the order
of declaration. Thus the protocol is meta-envy-free. The protocol
is envy-free because both parties obtain at least half evaluated by
their respective utility functions. The protocol is strategy-proof
since if P1 declares a false cut point c′1, P2’s true cut point c2

might satisfy c2 = c′1 and P1 might obtain less than half by coin-
flipping. Thus, risk adverse parties obey the rule and declare their
true cut points. �

There is another method for assigning portions when the de-
clared values differ. Without loss of generality, assume that
c1 < c2. Assign [0, c1] to P1, [c2, 1] to P2, and execute the
same protocol again for the remaining piece [c1, c2]. Although
this method might need an infinite number of declaration rounds
and each party might obtain multiple fragments of the cake, the
assignment guarantees μ1(f1(μ1, μ2)) = μ2(f2(μ1, μ2)).

Avoiding multiple declaration is possible if Pi simultaneously
declares the utility density function ui. Utility density function ui

satisfies ui(z) > 0 for [0, 1] and
∫ 1

0
ui(z)dz = 1.

When the remaining piece is [l(j), r(j)] at round j (l(1) = 0 and
r(1) = 1), the cut point declaration at round j is the point c(j)

i that
satisfies

∫ c(j)
i

l(j)
ui(z)dz =

∫ r(j)

c(j)
i

ui(z)dz. (7)

If c(j)
1 � c(j)

2 , let l(j+1) = min(c(j)
1 , c

(j)
2), r(j+1) = max(c(j)

1 , c
(j)
2), and

execute the next round.
A protocol that uses a utility density function is also proposed

in Ref. [5]. Here the cake is cut into two pieces. However, the
protocol has the disadvantage that it is not strategic-proof, that is,
a party can obtain more utility by declaring a false utility density
function.

Next we show a protocol for a three-party case in Fig. 4.
The protocol is outlined as follows. First, each party Pi simul-

taneously declares the cut point li such that [0, li] is 1/3 for Pi.
Cases are switched according to how many of l1, l2, and l3 are the
same. If at least two of them are the same, the parties with the
same value simultaneously declare cut point ri such that [ri, 1] is
1/3 for Pi. Envy-free assignment can be easily obtained using
the declared values when at least two of l1, l2, and l3 are the same.
The remaining case is when l1, l2, and l3 are all different (without
loss of generality, assume that l1 < l2 < l3). Here, we execute the

1: Each party Pi simultaneously declares li such that [0, li] is 1/3 for Pi.

2: if l1 = l2 = l3 then

3: begin

4: Each party Pi simultaneously declares ri such that [ri, 1] is 1/3 for Pi.

5: if r1 = r2 = r3 then

6: begin

7: Cut at l1 and r1.

8: Coin-flip and assign [0, l1], [l1, r1], [r1, 1] to the parties.

9: end

10: else

11: if two of r1, r2, r3 are the same then

12: begin /* Without loss of generality, let r1 = r2. */

13: Cut at l1 and r1.

14: if r3 > r1 then Assign [r1, 1] to P3.

15: else /* r3 < r1 */

16: Assign [l1, r1] to P3.

17: Coin-flip and assign the remaining two pieces to P1 and P2.

18: end

19: else /* Without loss of generality, let r1 < r2 < r3. */

20: begin

21: Cut at l1 and r2.

22: Assign [0, l1] to P2, [l1, r2] to P1, and [r2, 1] to P3.

23: end

24: end /* end of case l1 = l2 = l3. */

25: else

26: if two among l1, l2, and l3 are the same then

27: begin /* Without loss of generality, let l1 = l2. */

28: P1 and P2 simultaneously declare ri such that [ri, 1] is 1/3 for Pi.

29: if r1 = r2 then
30: begin

31: Cut at l1 and r1.

32: P3 selects one piece among [0, l1], [l1, r1], and [r1, 1].

33: Coin-flip and assign the remaining two pieces to P1 and P2.

34: end

35: else /* r1 � r2. */

36: begin /* Without loss of generality, let r1 < r2. */

37: Cut at l1, r1, r2. L← [r1, r2].

38: P3 selects one piece among [0, l1], [l1, r1], [r2, 1].

39: if P3 selects [0, l1] then

40: begin

41: Assign [l1, r1] and [r2, 1] to P1 and P2, respectively.

42: P3 cuts L into three pieces.

43: P1, P2, P3 selects one piece in this order.

44: end

45: else

46: if P3 selects [l1, r1] then

47: begin

48: Assign [0, l1] and [r2, 1] to P1 and P2, respectively.

49: P3 cuts L into three pieces.

50: P2, P1, P3 selects one piece in this order.

51: end

52: else /* P3 selects [r2, 1]. */

53: begin

54: Assign [l1, r1] and [0, l1] to P1 and P2, respectively.

55: P3 cuts L into three pieces.

56: P1, P2, P3 selects one piece in this order.

57: end

58: end /* end of the case r1 � r2. */

59: end /* end of the case when two among l1, l2, and l3 are the same */

60: else /* li are different. Without loss of generality, let l1 < l2 < l3. */

61: Execute the algorithm in Fig. 1 with (p1, p2, p3)=(P3, P2, P1) and

l3 is used as a cut.

Fig. 4 Three party meta-envy-free protocol.

c© 2012 Information Processing Society of Japan 691

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

three-player envy-free protocol in Fig. 1 with the role assignment
(p1, p2, p3) = (P3, P2, P1), that is, P3 plays the role of p1 in the
protocol, and so on, with the restriction that P3 must use l3 as a
cut. Note that this role assignment is executed by the declared
value li, thus the protocol is meta-envy-free.

Although (p1, p2, p3) = (P3, P2, P1) is not a unique accept-
able role assignment, there are unacceptable role assignments.
Let us consider the following role assignment: (p1, p2, p3) =
(P2, P1, P3), namely, the cake is cut at l2, r2 and P1 cuts L from
the largest piece. Suppose that [0, l2] is the largest for P1. P1 cuts
L from [0, l2]. In this case, [0, l2] is less than 1/3 for P3 because
l3 > l2. After P1 cuts L from [0, l2], P3 will never select [0, l2]−L

as the largest piece for P3. P1 knows this fact from l3 > l2, thus
P1 will not cut L honestly from [0, l2]. In this case, P3 will select
some piece other than [0, l2]. P1 then selects [0, l2] and obtains
more utility than when honestly cutting L. Thus, the protocol is
not strategy-proof.
Theorem 5. The protocol in Fig. 4 is meta-envy-free, envy-free,

and strategy-proof.

Proof. The protocol is meta-envy-free because the role is de-
cided solely by the declared values. Next, let us consider envy-
freeness. All possible cases are categorized as follows.
(Case 1) l1 = l2 = l3 and r1 = r2 = r3.
(Case 2) l1 = l2 = l3, r1 = r2, and r3 > r1.
(Case 3) l1 = l2 = l3, r1 = r2, and r1 > r3.
(Case 4) l1 = l2 = l3 and r1 < r2 < r3.
(Case 5) l1 = l2(� l3) and r1 = r2.
(Case 6) l1 = l2(� l3) and r1 < r2.
(Case 7) l1 < l2 < l3.

(Case 1) Since the utilities of [0, l1], [l1, r1], and [r1, 1] are 1/3
for all parties, no assignment causes envy.

(Case 2) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same
for P1 and P2. [r1, 1] is the largest for P3 since r3 > r1 and l3 = l1.
Thus assigning [r1, 1] does not cause any party envy. Assigning
the remaining pieces to P1 and P2 can be arbitrary.

(Case 3) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same
for P1 and P2. [l1, r1] is the largest for P3 since r3 < r1 and l3 = l1.
Thus assigning [l1, r1] does not cause any party envy. Assigning
the remaining pieces to P1 and P2 can be arbitrary.

(Case 4) Among [0, l1], [l1, r2], and [r2, 1], [l1, r2] is the largest
for P1 since r1 < r2. [r2, 1] is the largest for P3 since r2 < r3 and
l1 = l3. P2 feels the three pieces are the same size, thus assigning
[0, l1] to P2 does not cause envy.

(Case 5) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same
for P1 and P2. Thus, P3’s selection from these pieces does not
cause envy.

(Case 6) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same
for P1. The utilities of [0, l1], [l1, r2], and [r2, 1] are the same for
P2. Cutting the cake into four pieces, [0, l1], [l1, r1], [r2, 1], and
L = [r1, r2] is exactly the same situation as three-player envy-free
cutting (Case 6-1) P1 executes the initial cut ([0, l1], [l1, r1], and
[r1, 1]) and P2 cuts L from the largest piece [r1, 1] so that its size
becomes that of the second largest piece [0, l1] and (Case 6-2) P2

executes the initial cut ([0, l1], [l1, r2], and [r2, 1]) and P1 cuts L

from the largest piece [l1, r2] so that its size becomes that of the

second largest piece [0, l1].
When P3 selects [0, l1] from the three pieces, we can regard

this as (Case 6-2) being executed. With the three-player envy-free
protocol, P1 next must select [l1, r1] and P2 selects the remaining
piece [r2, 1]. P3 cuts L into three pieces. P1, P2, and P3 each
select one piece in this order. Because of the envy-freeness of the
three-player protocol, the result is envy-free.

When P3 selects [l1, r1] from the three pieces, we can regard
this as (Case 6-1) being executed. With the three-player envy-free
protocol, P2 next must select [r2, 1] and P1 selects the remaining
piece [0, l1]. P3 cuts L into three pieces. P2, P1, and P3 each
select one piece in this order. Because of the envy-freeness of the
three-player protocol, the result is envy-free.

Lastly, when P3 selects [r2, 1] from the three pieces, we can
regard this as (Case 6-2) being executed. With the three-player
envy-free protocol, P1 next must select [l1, r1] and P2 selects the
remaining piece [0, l1]. P3 cuts L into three pieces. P1, P2, and P3

each select one piece in this order. Because of the envy-freeness
of the three-player protocol, the result is envy-free.

(Case 7) Since the players execute the three-player envy-free
protocol, the result is envy-free.

Lastly, let us discuss strategy-proofness. When Pi declares a
cut point li (or ri) simultaneously with some other process Pj,
declaring a false value l′i (or r′i) might result in a worse utility,
since Pj’s true value l j (or r j) might satisfy l j = l′i (or r j = r′i) and
Pi might obtain a smaller piece by coin-flipping.

When P3 selects one piece at line 38 of the protocol, a false
selection results in a worse utility for P3. Note that this selection
does not affect who will be the divider of L.

Next, consider the execution of the three-player envy-free pro-
tocol with extra information l1 < l2 < l3. Note that when li are all
different, declaration of ri is not executed, thus the extra apparent
information in the three-player envy-free protocol is l1 and l2.

When P3 cuts as [0, l3], [l3, r3], and [r3, 1], a false cut r′3 might
result in P3 obtaining less than 1/3. When P2 cuts L from the
largest piece, information of l1 does not help P2 to obtain greater
utility with a false cut L′ even if P2 cuts L from [0, l3]. The rea-
son is as follows. For any true cut L, either of the two cases
can happen according to P1’s utility (that is unknown to P2): (1)
[l3, r3] or [r3, 1] is the largest for P1 or (2) [0, l3]− L is the largest
for P1. Thus, if P2 cuts L′ that is smaller than L, P1 might se-
lect [0, l3] − L′ and P2’s utility might become worse. If P2 cuts
L′′ that is larger than L, P1 might select [l3, r3] and P2’s utility
might become worse. With respect to cutting L into three pieces,
the strategy-proofness is exactly the same as that of the origi-
nal three-player envy-free protocol. Therefore, the protocol is
strategy-proof. �

5. Pie-cutting Problem

When the endpoints of a cake is connected to form a circle,
it becomes a pie. In pie-cutting, all cuts are made between
the center and a point on the circumference, so that each cut
runs along a radius of the disk. Several results were shown
about pie-cutting protocols that differ from cake-cutting proto-
cols [3], [4], [7], [12], [17]. Pie-cutting is more difficult than

c© 2012 Information Processing Society of Japan 692

Journal of Information Processing Vol.20 No.3 686–693 (July 2012)

1: begin

2: Decide an initial diameter (northward, for example).

3: Pi(1 ≤ i ≤ n) randomly selects degree di from [0, 360) and simultane-

ously declares di.

4: Calculate D =
∑n

i=1 di mod 360.

5: Cut the pie at degree D from the initial diameter.

6: /* Consider [D,D + 360◦] as [0,1] of a cake */

7: Execute meta-envy-free cake-cutting protocol for the pie [D,D + 360◦].
8: end.

Fig. 5 Meta-envy-free pie-cutting protocol.

cake-cutting because there is more flexibility in cutting than cake-
cutting.

One example of the difference is about the domination of as-
signments. An assignment is undominated if no other assignment
gives each player at least as much value according to his or her
measure as he or she had in the original assignment, and no single
player has strictly more value. There is a tuple of utility functions
(μ1, μ2, μ3) for a pie such that there is no assignment that satisfies
envy-free and undominated and each player obtains one piece. On
the other hand, for any tuple of utility functions, there is an envy-
free and undominated assignment for three-player cake-cutting
such that each player obtains one piece [4].

For meta-envy-free pie-cutting, the following theorem shows
the existence of protocols.
Theorem 6. For any number of parties, there is a meta-envy-

free pie-cutting protocol if there is a meta-envy-free cake-cutting

protocol.

Figure 5 shows a meta-envy-free pie-cutting protocol using
any meta-envy-free cake-cutting protocol. When a cut is made
between the center and a point on the circumference, the pie be-
comes a cake. The cut must be made randomly.

Proof. Consider the case when party Pi wants to set the cut di-
ameter to some specific point C (or any point in some specific set
of points). Since the honest party Pj randomly selects d j, there is
no way for Pi to select his value di to set D = C. Even if Pj does
not observe the rule and select some specific value d′j by Pj’s util-
ity function, d′j is just the same as a random value for Pi since Pj’s
utility function is unknown to Pi. Thus, D is random for all par-
ties. The procedure of setting D is obviously meta-envy-free. �

6. Conclusion

This paper proposed meta-envy-free cake-cutting and pie-
cutting protocols. The remaining problem involves obtaining a
meta-envy-free cake-cutting protocol for n ≥ 4.

Acknowledgments We thank Dr. Hiro Ito and anonymous
referees for their valuable comments.

References

[1] Austin, A.: Sharing a Cake, The Mathematical Gazette, Vol.66,
No.437, pp.212–215 (online), DOI: 10.2307/3616548 (1982).

[2] Barbanel, J.B.: Super Envy-Free Cake Division and Indepen-
dence of Measures, Journal of Mathematical Analysis and Appli-
cations, Vol.197, No.1, pp.54–60 (online), DOI: 10.1006/S0022-
247X(96)90006-2 (1996).

[3] Barbanel, J.B. and Brams, S.J.: Two-person Pie-Cutting: The Fairest
Cuts, The College Mathematics Journal, Vol.42, No.1, pp.25–32
(2011).

[4] Barbanel, J.B., Brams, S.J. and Stromquist, W.: Cutting a Pie is not

a Piece of Cake, American Mathematical Monthly, Vol.116, No.6,
pp.496–514 (online), DOI: 10.4169/193009709X470407 (2009).

[5] Brams, S.J., Jones, M.A. and Klamler, C.: Better Ways to Cut a Cake,
Notices of the AMS, Vol.53, No.11, pp.1314–1321 (2006).

[6] Brams, S.J., Jones, M.A. and Klamler, C.: Divide-and-Conquer: A
Proportional, Minimal-Envy Cake-Cutting Procedure, Dagstuhl Sem-
inars (2007).

[7] Brams, S.J., Jones, M.A. and Klamler, C.: Proportional Pie-Cutting,
International Journal of Game Theory, Vol.36, pp.353–367 (online),
DOI: 10.1007/s00182-007-0108-z (2008).

[8] Brams, S.J. and Taylor, A.D.: An Envy-Free Cake Division Protocol,
The American Mathematical Monthly, Vol.102, No.1, pp.9–18 (on-
line), DOI: 10.2307/2974850 (1995).

[9] Brams, S.J. and Taylor, A.D.: Fair Division: From Cake-Cutting to
Dispute Resolution, Cambridge University Press (1996).

[10] Brassard, G., Chaum, D. and Crépeau, C.: Minimum Disclosure
Proofs of Knowledge, J. Comput. Syst. Sci., Vol.37, pp.156–189 (on-
line), DOI: 10.1016/0022-0000(88)90005-0 (1988).

[11] Dubins, L.E. and Spanier, E.H.: How to Cut a Cake Fairly, The Amer-
ican Mathematical Monthly, Vol.68, No.1, pp.1–17 (online), DOI:
10.2307/2311357 (1961).

[12] Gale, D.: Mathematical Entertainments, Mathematical Intelligencer,
Vol.15, pp.48–52 (online), DOI: 10.1007/BF03025257 (1993).

[13] Jones, M.A.: Equitable, Envy-Free, and Efficient Cake Cutting for
Two People and Its Application to Divisible Goods, Mathematics
Magazine, Vol.75, No.4, pp.275–283 (online), DOI: 10.2307/3219163
(2002).

[14] Magdon-ismail, M., Busch, C. and Krishnamoorthy, M.S.: Cake-
Cutting Is Not a Piece of Cake, Symposium on Theoretical Aspects of
Computer Science, pp.596–607 (online), DOI: 10.1007/3-540-36494-
3 52 (2003).

[15] Nicolò, A. and Yu, Y.: Strategic Divide and Choose, Games and Eco-
nomic Behavior, Vol.64, pp.268–289 (online), DOI: 10.1016/
j.geb.2008.01.006 (2008).

[16] Robertson, J. and Webb, W.: Cake-Cutting Algorithms: Be Fair If You
Can, Ak Peters Series, A.K. Peters (1998).

[17] Thomson, W.: Children Crying at Birthday Parties. Why?, Eco-
nomic Theory, Vol.31, pp.501–521 (online), DOI: 10.1007/s00199-
006-0109-3 (2007).

[18] Woodall, D.R.: A Note on the Cake-Division Problem, Jour-
nal of Combinatorial Theory, Vol.42, pp.300–301 (online), DOI:
10.1016/0097-3165(86)90101-9 (1986).

Yoshifumi Manabe was born in 1960.
He received his B.E., M.E., and Dr.E.
degrees from Osaka University, Osaka,
Japan, in 1983, 1985, and 1993, respec-
tively. In 1985, he joined Nippon Tele-
graph and Telephone Corporation. Cur-
rently, he is a senior research scientist,
supervisor of NTT Communication Sci-

ence Laboratories. His research interests include distributed al-
gorithms, cryptography, game theory, and graph theory. He has
been a guest associate professor of Kyoto University since 2001.
He is a member of IEICE, JSIAM, ACM, and IEEE.

Tatsuaki Okamoto received his B.E.,
M.E., and Dr.E. degrees from the Uni-
versity of Tokyo, Tokyo, Japan, in 1976,
1978, and 1988, respectively. He is a
Fellow of NTT Secure Platform Lab-
oratories. He is presently engaged in
research on cryptography and information
security. Dr. Okamoto is a guest professor

of Kyoto University.

c© 2012 Information Processing Society of Japan 693

