
Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

[DOI: 10.2197/ipsjjip.20.727]

Regular Paper

How to Produce BlockSum Instances
with Various Levels of Difficulty

Kazuya Haraguchi1,a) Yasutaka Abe1 AkiraMaruoka1

Received: August 31, 2011, Accepted: March 2, 2012

Abstract: We propose a framework that yields instances of certain combinatorial puzzles. To explore such a frame-
work, we focus on certain types of puzzles that ask an assignment of numbers to the cells of an n × n grid so that
it satisfies certain constraints as well as the Latin square condition, that is, each row and column contains all of the
numbers in {1, 2, . . . , n}. Our algorithm based on the framework automatically yields puzzle instances whose diffi-
culties to solve can be adjusted by means of puzzle inference rules built into the algorithm. Taking up BlockSum
puzzle for example, we performed experiments to demonstrate that, as is expected, human solvers tend to solve puzzle
instances correctly that are produced with easy inference rules, whereas they tend to fail to solve those produced with
sophisticated rules.

Keywords: automatic puzzle generation, BlockSum puzzle, difficulty adjustment

1. Introduction

It has been often reported that practice to solve certain com-
binatorial puzzles develops human skill to perform intelligent
tasks [7], [8]. Although it would be an interesting theme to ex-
plore what type of puzzles are effective to leverage such skill and
how such skill can be obtained in our brain, it might be quite diffi-
cult to answer these questions. If we would try to investigate these
themes by an experimental approach, we need numerous puzzle
instances with various levels of difficulty. With that in mind, we
propose a framework that yields instances of certain combina-
torial puzzles such that solving these instances would hopefully
leverage human potential to perform certain types of computa-
tional tasks. The point of our framework is that it yields instances
of certain combinatorial puzzles that have an intended difficulty
level.

To explore such a framework, we focus on certain types of puz-
zles that ask an assignment of numbers to the cells of an n × n

grid that satisfies certain constraints as well as the Latin square
condition, that is, each row and column contains integers in [n]
exactly once, where [n] denotes {1, 2, . . . , n}. It is shown that an
algorithm based on our framework automatically yields puzzle
instances with such difficulty that can be adjusted by means of
inference rules plugged into the algorithm. We performed exper-
iments that demonstrate that, as is expected, human solvers tend
to solve puzzle instances correctly that are produced with simple
inference rules, whereas they tend to fail to solve those that are
produced with somewhat sophisticated rules.

The framework that we propose could be applied to many puz-

1 Department of Information Technology and Electronics, Faculty of
Science and Engineering, Ishinomaki Senshu University, Ishinomaki,
Miyagi 986–8580, Japan

a) kzyhgc@gmail.com

zles given in terms of the Latin square condition such as Sudoku
and its variants [5]. In this paper, we focus our arguments on
BlockSum *1. An instance of BlockSum is given as a partition
of an n × n grid into blocks, each block being associated with a
natural number. We restrict ourselves to partitions that consist of
connected blocks, that is, blocks made out of side-adjacent cells.
BlockSum is a puzzle to ask for an assignment of numbers to
the cells of an n × n grid such that the sum of numbers assigned
to cells in each block coincides with the number associated with
the block and at the same time the assignment satisfies the Latin
square condition. Figure 1 gives an instance of BlockSum puzzle
together with its solution, where n is equal to 4.

Before proceeding to explore how to specify the difficulty of
BlockSum puzzle, we explain how to generate instances of the
puzzle. The fundamental structure of the algorithm is as follows.
1. Generate a Latin square randomly and associate each number

of the Latin square with the corresponding cell.
2. Specify somehow a partition of an n × n grid into blocks.
3. To each block, assign the sum of the numbers of cells in the

block.
4. Delete the numbers allocated to all the cells based on the

Latin square.
The idea of the fundamental structure is that first we somehow

generate a Latin square together with a partition of an n × n grid
into blocks. Then we compute the sum of each block’s numbers,
given in terms of the Latin square, and finally hide the numbers of
all the cells in the Latin square. To figure out how the structure of
the algorithm works, we present Fig. 2 which gives what remains
after each stage of the algorithm.

*1 Although there is a different puzzle that has the same name (e.g.,
http://infotech.rim.zenno.info/products/blocksum/en/), we use Block-
Sum for the name of our puzzle as we consider this name the most suit-
able.

c© 2012 Information Processing Society of Japan 727

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

Fig. 2 The four 4 × 4 grids that are produced just after the four stages of the structure of the algorithm.

Fig. 1 Examples of an instance of BlockSum puzzle and its solution, where
n = 4. Small digits indicate the sums of blocks and large digits give
integers allocated to cells.

The main theme of this paper is how to make the partition in
2 so that the resultant puzzle instance has a given difficulty level.
Obviously, the Latin square generated in 1 becomes a solution
of the instance produced. We may call it a certificate since it
guarantees that the instance has a solution. In addition to a given
difficulty level, we also require that the instance generated has the
certificate as the unique solution. Throughout this paper, we as-
sume a certificate that is given in terms of a random Latin square.

We proceed to roughly describe how the algorithm to produce
an instance adjusts its difficulty level. Once an algorithm to yield
an instance is designed, it just behaves mechanically. On the other
hand, the difficulty of solving puzzles is inherently a subjective
matter. Then the point is how the algorithm adjusts the difficulty
level of a puzzle instance while behaving in the way described
above. Our approach to tackle this problem is to assume a collec-
tion of inference rules of a solver and to somehow incorporate the
collection into the algorithm. An inference rule states that, if an
instance and a partially filled solution satisfy a certain condition,
we can assign an integer to a certain empty cell. For example, in
the instance produced in 4 of Fig. 2, we can assign 1 to the up-
per left cell since the sum of all 4 integers in one column (or one
row) is 1 + 2 + 3 + 4 = 10 and the sum of all 3 integers in the 1st
column except the upper left cell is 9, which is given as the sum
of a block. The inference rules may be sophisticated or simple,
depending on whether a puzzle solver we assume is an expert or
a novice. We plug into the algorithm a collection of certain in-
ference rules. The algorithm built in such a collection behaves
to yield as output the “hardest” puzzle instance among those that
can be solved by using only the inference rules in the collection.
Consequently, the algorithm produces a difficult instance or an
easy instance, depending on the inference rules in the collection
and whether they are sophisticated or simple. In this way, we
can adjust the difficulty level of an instance by choosing appro-
priate inference rules in the collection that are plugged into the

algorithm.
The paper is organized as follows. We first present notations

and terminologies in Section 2. In Section 3, we describe two
algorithms to specify such a partition that induces a BlockSum
instance with a given level of difficulty. In Section 4, we in-
troduce various inference rules for BlockSum puzzle. Then in
Section 5, we validate the effectiveness of our approach by ex-
perimental studies. Finally, we present concluding remarks in
Section 6.

2. Preliminaries

Let a cell in the i th row and in the j th column be denoted by
(i, j) ∈ [n]2. We say that two cells (i, j) and (i′, j′) are adjacent if
|i− i′|+ | j− j′| = 1. Let B ⊆ [n]2. In particular, (i, j) and (i′, j′) are
adjacent on B if they are adjacent and belong to B. The relation
of adjacency on B is denoted by ∼B, i.e., when (i, j) and (i′, j′)
are adjacent on B we write (i, j) ∼B (i′, j′). The transitive closure
of ∼B is denoted by ∼̂B. We say that two cells (i, j) and (i′, j′) are
connected on B if (i, j)∼̂B(i′, j′). A subset B ⊆ [n]2 is connected

if any two cells in B are connected on B. We call a connected
subset B a block. Throughout this paper, we restrict ourselves to
a partition of [n]2 into connected blocks. In particular, we call a
block consisting of a single cell a unit block.

An assignment of integers in [n] to the cells in an n × n grid
is denoted by a function ϕ : [n]2 → [n]. The function is partial
in general. Alternatively, such a function ϕ is denoted by the set
of triples given by {(i, j, ϕ(i, j)) | ϕ(i, j) is defined}. Such a set
associated with ϕ is denoted by Tϕ. By using this notation, the
condition that ϕ is an extension of ϕ′ is written Tϕ ⊇ Tϕ′ . If ϕ
satisfies the following Latin square condition, then ϕ is called a
Latin square.

Latin square condition: For any i and j in [n],

{ϕ(i, 1), . . . , ϕ(i, n)} = [n]

and

{ϕ(1, j), . . . , ϕ(n, j)} = [n].

A function ϕ is called a partial Latin square if there exists an
extension of ϕ that is a Latin square.

Let P denote a partition of n2 cells into blocks. Recall that,
throughout this paper, any block of the partition is assumed to be
connected. Assuming that P consists of m blocks, let us denote P

by {B1, . . . , Bm}. Given a partition P, σ denotes a function from P

to [n2(n+ 1)/2]. The function σ will be used as a condition that a
solution of BlockSum puzzle has to satisfy. The condition called
the BlockSum condition is given in terms of a function σ:

c© 2012 Information Processing Society of Japan 728

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

BlockSum condition: For any B in P,
∑

(i, j)∈B

ϕ(i, j) = σ(B).

We are ready to define an instance of BlockSum puzzle. An
instance of BlockSum puzzle is defined to be a pair of partition P

of n2 cells and function σ : P → [n2(n + 1)/2]. Let us denote an
instance (P, σ) by I. We callσ a BlockSum function. A solution of
an instance (P, σ) is defined to be a total function ϕ : [n]2 → [n]
that satisfies both the BlockSum condition and the Latin square
condition. A partial solution of instance I is defined to be a par-
tial function ϕ such that there exists a solution ϕtotal : [n]2 → [n]
that is an extension of ϕ. It should be noticed that an instance
(P, σ) arbitrarily given does not necessarily have a solution. As
we explained in Section 1, in order to generate an instance that
has a solution, we first generate a total function ϕ randomly and a
partition P, which together specify an instance (P, σ) as indicated
in Fig. 2. If we specify an instance (P, σ) in the way that Fig. 2
shows, then obviously the instance has at least one solution, that
is ϕ we first generate randomly. Such a random function, denoted
by ϕr�s, will be called a certificate because it guarantees that the
instance generated this way has at least one solution given by the
certificate.

Let P denote the set of all partitions of n2 cells into blocks. We
introduce a partial order on P in terms of refinement. That is, a
coarser partition is “larger than” a finer partition. More precisely,
P refines P′ if for any B in P there exists B′ in P′ such that B ⊆ B′.
When P refines P′, we write P � P′. Clearly � is a partial order
on P.

The partially ordered set (P,�) has the maximum element, de-
noted by P	, and the minimum element, denoted by P⊥, which
are given as follows:

P	 = {[n]2},
P⊥ = {{(i, j)} | (i, j) ∈ [n]2}.

We call a partition P non-trivial if P � P	 and P � P⊥. Two
blocks B and B′ are called adjacent if there exist adjacent cells
(i, j) ∈ B and (i′, j′) ∈ B′. If partitions P1 and P2 satisfy P1 < P2

and there exists no P with P1 < P < P2, then we say that P2

covers P1. Clearly, if P2 covers P1, then there exist adjacent B

and B′ in P1 such that

P2 = (P1 \ {B, B′}) ∪ {B ∪ B′}.

To put it another way, we can say that P2 is obtained from P1

by merging adjacent two blocks B and B′ in P1. Recall that any
block in a partition we deal with is connected. We define U(P1)
to be the set of partitions that cover P1. The partially ordered set
(P,�) is drawn as a Hasse diagram that consists of nodes asso-
ciated with partitions and edges from P1 to P2 when P2 covers
P1.

3. Algorithm to Produce a BlockSum Instance

In this section, we shall explain how to specify the partition in
2 in the algorithm described in Section 1 so that we can obtain an
instance with desired difficulty.

1. Generate a Latin square ϕr�s randomly.
2. Compute somehow a partition P of an n × n grid.
3. For each block B of P, compute

σ(B) =
∑

(i, j)∈B

ϕr�s(i, j).

4. Output instance (P, σ).

Fig. 3 Structure to produce a BlockSum instance.

3.1 Uniqueness Condition
Before proceeding to discuss how to specify the partition, we

rewrite in Fig. 3 the structure of the algorithm presented in Sec-
tion 1 in terms of the notations introduced in Section 2.

Throughout this paper, we assume a random Latin square, de-
noted by ϕr�s. Since ϕr�s is assumed as a certificate, we can take
any partition as an instance as described so far. In fact, we im-
pose a further condition on the output partition in 4. That is, the
partition P in 2 is chosen so that ϕr�s becomes a unique solution
for instance (P, σ). In what follows, we identify a partition with
an instance when no confusion arises. Thus, although in general
an instance does not necessarily have a solution, we do not need
to care about an instance with no solution because we assume a
certificate. After all, what we want to do is to derive a partition
such that the instance associated with the partition has difficulty
that we desire. Before going into details, we describe an idea on
how to accomplish it.

The difficulty of an instance is an inherently subjective matter,
so we need, first of all, to somehow formalize the difficulty. For
that purpose, we introduce a notion of inference rules that are sup-
posed to reflect the intellectual ability of solvers who try to solve
instances. More specifically, we introduce various collections of
inference rules that reflect the ability of solvers, depending on
whether they are novice solvers or expert solvers, and build one
of the collections of rules into the algorithm. The idea is that
the algorithm shall yield the hardest instance among the ones that
can be solved by using only the inference rules that belong to the
collection plugged into the algorithm. Thus, we can say that the
more sophisticated the inference rules in the postulated collec-
tion, the more difficult the instance that the algorithm yields as
output tends to be. In order to present what is explained above
more clearly, we need to describe it more precisely.

Let us consider how instances with various difficulties repre-
sented by the partitions are laid out in the Hasse diagram. The
extreme instances are the one denoted by P⊥ at the bottom and
the one denoted by P	 at the top. In case of P⊥, σ gives the val-
ues of all the cells in the n × n grid, so we are done. On the other
hand, in case of P	, any Latin square can be a solution of the
instance determined by P	. After all, we exclude such extreme
cases from our consideration.

In order to obtain the instances described above, we only deal
with instances that satisfy the following condition.
Uniqueness condition: An instance has the unique solution

that is given by the certificate.
Focusing on the hardest instances among the ones that have the
certificate as the unique solution, you might expect that an in-

c© 2012 Information Processing Society of Japan 729

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

stance with appropriate difficulty appears somewhere between the
top and the bottom in the Hasse diagram.

It should be noticed here that obviously the Uniqueness condi-
tion is monotone decreasing in the sense that, for any partitions P

and P′, P � P′ implies Cunq(P) ≥ Cunq(P′), where Cunq(P) takes
value 1 if the instance associated with P has ϕr�s as the unique
solution, and takes value 0 otherwise. To prove the fact, let us as-
sume in contradiction that P � P′ holds, but Cunq(P) ≥ Cunq(P′)
does not hold. The latter condition is equivalent to that both
Cunq(P) = 0 and Cunq(P′) = 1 hold. Let the BlockSum func-
tions induced from P and P′ be denoted by σP and σP′ , respec-
tively. Obviously, Cunq(P) = 0 implies that there exists a solution
ϕ, other than ϕr�s, that satisfies σP. On the other hand, since P

refines P′, σP′ is satisfied by not only ϕr�s but also by ϕ, con-
tradicting to Cunq(P′) = 1. Because of the monotonicity of the
Uniqueness condition, it makes sense to consider the unique max-
imal partition, that is, the maximal partition among the ones that
satisfy the Uniqueness condition.

We developed an algorithm that yields as output one of the
unique maximal partitions [3]. Roughly, the algorithm finds the
unique maximal partition by starting at the bottom P⊥ and climb-
ing upward along a path in the Hasse diagram until it reaches one
of the maximal partitions such that any partition, immediately
above the maximal partition, no longer satisfies the Uniqueness
condition. However, unfortunately, the partitions obtained this
way turn out to be too difficult for human solvers to solve. This
observation motivates us to explore how to produce instances
with various difficulties desired.

Basically, the algorithm that produces an instance behaves as
described in Fig. 3. Since we can roughly figure out how the al-
gorithm behaves in the three stages except Stage 2, we shall de-
scribe how to specify a partition of n×n grid which, together with
random Latin square ϕr�s, gives an instance.

3.2 How to Specify a Partition with the Desired Difficulty
Level

In order to specify a partition with desired difficulty, we in-
troduce a collection of inference rules, denoted by R, which is
supposed to be used when human solvers try to solve instances.
We call a partition R-completable if the instance associated with
the partition can be solved by using only the inference rules in
R. In other words, a partition is R-completable if all the cells
in an n × n grid of the corresponding instance can be filled out
by “reasoning” based on inference rules in R, but without trial-

and-error. We omit R in R-completable when it is clear from the
context. We will present concrete examples of inference rules in
Section 4.

We are now ready to explain how to specify a partition. First
of all, we specify desired difficulty of an instance in terms of a
collection R of inference rules. The algorithm tries to search for
a partition that is completable and at the same time that induces
a “hardest” instance among the completable partitions. We intro-
duce two ideas on which partitions induce “hardest” instances
among the completable partitions, and describe algorithms to
search for such a partition.

The first idea is a maximal partition in terms of the refinement

SearchMaximal
1. Let P← P⊥.
2. Repeat the following:

2-1. Let UR(P) ← {P′ ∈ U(P) | P′ is R-completable}.
The UR(P) can be constructed by checking whether each
P′ ∈ U(P) is R-completable by using the procedure Check-
Completability.

2-2. IfUR(P) = ∅, then output P and halt.
Otherwise, choose P′ ∈ UR(P) arbitrarily and P← P′.

Procedure CheckCompletability
1. Let Tϕ ← ∅.
2. In the instance associated with P′, while there is an empty cell

(i, j) that we can fill with an integer v by applying a certain
inference rule in R, do Tϕ ← Tϕ ∪ {(i, j, v)}.

3. If |Tϕ | = n2 (i.e., all the cells are filled), then P′ is R-
completable. Otherwise, P′ is not R-completable.

Fig. 4 Algorithm SearchMaximal to find an R-completable maximal parti-
tion for given R that is used in Stage 2 of Fig. 3.

relation among the completable partitions. Roughly, the larger a
partition becomes, the more difficult the corresponding instance
becomes. This is because the larger partition has less constraints
on the BlockSum conditions, and hence it becomes more diffi-
cult to find the unique solution, namely, the random Latin square,
among a larger number of candidates for the unique solution.
Therefore, we can say that the completable maximal partition is
the “hardest” one among the completable partitions.

Now we present an algorithm to output a completable maximal
partition. Starting at the bottom P⊥, the algorithm goes upward
step by step along a path in the Hasse diagram as long as there
exists a completable partition. After all, the algorithm finds out
and yields as output a partition P such that no partition above
P is completable. In Fig. 4, we summarize the algorithm named
SearchMaximal that works to output a completable maximal par-
tition. For a partition P, letUR(P) denote the subset ofU(P) such
that each P′ ∈ UR(P) is R-completable. Starting with P = P⊥,
the algorithm goes to an arbitrary partition in UR(P) repeatedly
unlessUR(P) = ∅. The algorithm needs to constructUR(P), and
to do this, it checks whether each P′ ∈ U(P) is completable or
not by the procedure CheckCompletability in Fig. 4. The Check-
Completability tries to solve the instance associated with P′ by
applying the inference rules in R; it repeatedly applies an appro-
priate rule in R to fulfill an empty cell with an integer and decides
whether or not all the cells in an n× n grid can be filled with inte-
gers. Starting with function ϕ with all the cells being empty, and
with the partition P′, CheckCompletability applies an inference
rule to revise ϕ. More precisely, each time an inference rule is
applied, ϕ is updated by filling out an empty cell with an integer
based on ϕ so far obtained and the partition P′. In fact, instead of
ϕ, the algorithm deals with set Tϕ that corresponds to ϕ:

Tϕ = {(i, j, v) ∈ [n]3 | ϕ(i, j) = v}.
Figure 5 schematically illustrates the notion of unique max-

imal and that of R-completable maximal. Let us notice that an
R-completable partition is “less than” a unique maximal parti-
tion. This is because an R-completable partition is automatically
a unique partition. It should be noticed that changing the col-
lection R of rules to a more sophisticated one leads to moving

c© 2012 Information Processing Society of Japan 730

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

Fig. 5 Unique maximal partitions and R-completable partitions in the Hasse
diagram.

upward the boundary between the R-completable region and the
not R-completable region. In what follows, this boundary will be
called R-boundary.

We proceed to the second idea to yield a “hardest” instance
among the completable partitions. Recall the definition of com-
pletability. Completability guarantees that the instance is solvable
by somehow applying inference rules in R, but how they are ap-
plied does not matter. It is natural to consider that an instance
is more difficult if we need to apply sophisticated rules more of-
ten to solve it. Here we consider producing a “hardest” instance
based on this observation. For this, to each inference rule r in R,
we assign a real number w(r) as the weight so that w(r) reflects
the sophistication level of the rule; we assign larger weights to
sophisticated rules as compared to simple rules. We then eval-
uate a completable partition by the sum of the weights of the
inference rules that we need to apply in order to solve the as-
sociated instance. More precisely, let P denote an R-completable
partition. Assume that the completability of P is guaranteed by
a sequence s = ((i1, j1, r1), (i2, j2, r2), . . . , (in2 , jn2 , rn2)) such that
the instance associated with P can be solved by fulfilling from
(i1, j1) to (in2 , jn2) by applying r1 to rn2 , respectively. We define
the weight of partition P with respect to s, denoted by Ws(P), as
the sum of the weights of r1, r2, . . . , rn2 in the sequence s;

Ws(P) = w(r1) + w(r2) + · · · + w(rn2). (1)

Observe that there may exist a couple of sequences that guarantee
completability of P. Among these, we use such s that is obtained
as follows; When we try to solve the instance, we need to de-
cide (ik, jk, rk) for k = 1, 2, . . . , n2. If there are a few candidates
for (ik, jk, rk), we choose the (ik, jk, rk) that attains the minimum
weight w(rk) since we would like to model the behavior of human
solvers who may prefer simple rules that have small weights. In
the sequel, we denote the weight of P with respect to such ob-
tained s by W(P) = Ws(P), and simply call W(P) the weight of

P.
We expect that, the larger the weight of a partition becomes,

the harder the associated instance should be. We do not aim, how-
ever, at finding the completable partition of the maximum weight
since there are a vast number of completable partitions in general,
meaning that the search space can be too huge. Instead, we only
search one path from P⊥ to a completable maximal partition and
employ the one that has the largest weight in the path.

In Fig. 6, we summarize the algorithm named Search-

SearchLargeWeight
1. Let P← P⊥ and P∗ ← P⊥.
2. Repeat the following:

2-1. Let UR(P) ← {P′ ∈ U(P) | P′ is R-completable}.
The UR(P) can be constructed by checking whether each
P′ ∈ U(P) is R-completable by using the procedure Check-
Completability in Fig. 4.

2-2. IfUR(P) = ∅, then output P∗ and halt.
Otherwise, find the partition P′ that attains the largest

W(P′)
among the ones inUR(P). Let P← P′.

2-3. If W(P) > W(P∗), then let P∗ ← P.

Fig. 6 Algorithm SearchLargeWeight to find an R-completable partition
that has a large weight for given R that is used in Stage 2 of Fig. 3.

LargeWeight to output such a partition. This algorithm behaves
in a similar way as SearchMaximal in Fig. 4. Starting with P =

P⊥, both algorithms go upward in the Hasse diagram by choos-
ing a certain P′ ∈ UR(P) and updating P ← P′ until they reach a
completable maximal partition. However, the algorithms are dif-
ferent in the following two points. The first point is the way the al-
gorithm chooses P′ ∈ UR(P). The SearchLargeWeight chooses
such P′ that attains the largest weight among those inUR(P), like
a typical greedy method, while SearchMaximal chooses an arbi-
trary P′ ∈ UR(P). The second point is that SearchLargeWeight
outputs the completable partition of the largest weight among
those searched, whereas SearchMaximal outputs a completable
maximal partition. For this, SearchLargeWeight maintains the
partition P∗ that attains the largest weight among those searched
so far. After the search is over, SearchLargeWeight outputs P∗,
which is not necessarily maximal in terms of the refinement rela-
tion. In Section 5, we will report experimental results on whether
we can produce BlockSum instances with intended difficulty lev-
els by these two algorithms.

3.3 Conditions Imposed on Partitions
In order to search for the desired instances, we introduced the

Uniqueness condition and the condition of R-completable. We
also introduced the notions of unique maximal and R-completable
maximal to specify the instances the algorithms yield. These
frameworks described so far can be easily generalized. By con-
sidering an appropriate condition C, we can introduce a notion
of C-maximal in a similar way to these cases. For example, C

is taken as a condition that an instance should be solvable by
a certain solving technique. However, we are not interested in
instances that we need to apply trial-and-error to solve, or more
specifically backtracking, which is often performed when we deal
with search problems. To avoid them, we use the condition of R-
completable based on inference rules. We will introduce exam-
ples of inference rules in Section 4.

Before proceeding further to explain inference rules, we would
like to mention a certain technique that is explored when puzzle-
type problems are discussed. The technique that we take up is so
called constraint propagation [11]. In our case, this technique
could be applied when the algorithm checks whether or not a
given partition is R-completable, which is done by CheckCom-
pletability in Fig. 4. Assume that we have a partial solution ϕ to

c© 2012 Information Processing Society of Japan 731

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

the instance associated with the partition. The point of the tech-
nique is that, in the course of making the decision, the algorithm
keeps a list of possible candidate integers for each cell (i, j) and
iterates updating the lists by eliminating integers based on which
integers each list contains. For example, we can eliminate such a
candidate integer v that will violate the Latin square condition or
the BlockSum condition if (i, j) were filled with v. The algorithm
may identify whether v will violate at least one of the two condi-
tions in the course of completing an assignment Tϕ ∪ {(i, j, v)} by
applying appropriately chosen inference rules repeatedly; if we
encounter a violating assignment, then we can eliminate v from
the list of (i, j). In principle, we can apply such a constraint prop-
agation based technique to our framework. However, we have not
yet applied such a technique, which will be left for future work.

4. Collection R of Inference Rules

The algorithm that computes an instance in the way described
so far needs to check if the partition in question is R-completable
repeatedly. Concretely, the check is done by the procedure
CheckCompletability in Fig. 4. In this section, we introduce ex-
amples of inference rules for BlockSum puzzle that are to be in-
cluded in R. An inference rule states that, if a given partition P

and a partial solution ϕ to the instance associated with P satisfy a
certain condition, then we can specify an integer v that should be
assigned to a certain empty cell (i, j). In this case, we can update

Fig. 7 Situations where the 4 inference rules derived from the Latin square condition are applied. A cell
filled with an integer is denoted by (i, j), and the integer is denoted by v. The cell (i, j) is designated
by a shaded square. These conventions are also used in Fig. 8.

Fig. 8 Situations where the 5 inference rules derived from the BlockSum condition are applied.

the partial solution Tϕ ← Tϕ ∪ {(i, j, v)}.
We introduce 9 inference rules. Among these, 4 inference rules

are derived from the Latin square condition, and the other 5 infer-
ence rules are derived from the BlockSum condition. In Figs. 7
and 8, we illustrate the situations in which the inference rules are
applied. The inference rules have different levels of sophistica-
tion. Some inference rules are simple in the sense that they are
directly derived from the Latin square condition or the BlockSum
condition, whereas others are sophisticated in the sense that the
derivation is not so simple. In what follows, the empty cell that
an inference rule fills with an integer is denoted by (i, j) and the
integer assigned to the (i, j) is denoted by v.
The 4 Inference Rules Derived from The Latin Square
Condition

We denote the 4 inference rules derived from the Latin square
condition by r�ts1 , r�ts2 , r�ts3 and r�ts4 . The suffix represents the so-
phistication level of the inference rule that we decide based on
our experience, e.g., we consider r�ts2 more sophisticated than r�ts1 .
The simplest rule r�ts1 states that, if all the n − 1 cells in the i th
row (or in the j th column) other than (i, j) are already filled with
n − 1 distinct integers, then fill (i, j) with the remaining integer
v. The inference rule r�ts2 is a generalization of r�ts1 . Let X ⊆ [n]2

denote the set of all the cells in the i th row and in the j th column
other than (i, j). Obviously, |X| = 2(n− 1). The inference rule r�ts2

states that, if n − 1 distinct integers are already assigned to cells

c© 2012 Information Processing Society of Japan 732

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

in X, then fill (i, j) with the remaining integer v.
Let Y be the set of cells in the i th row (resp., the j th column)

other than (i, j). Obviously, |Y | = n − 1. If there exists an integer
v such that any cell in Y is judged not to be filled with v, then we
can fill (i, j) with v. We adopt the following two conditions that
v does not appear on any cell in Y , denoted by (i, �) with � � j

(resp., (�, j) with � � i).
(i) Integer v appears in a cell outside the i th row (resp., the j

th column), that is, a cell (k, �) with k � i (resp., (�, k) with
k � j).

(ii) An integer other than v appears on cell (i, �) (resp., (�, j)).
The inference rule r�ts3 states that, if any cell in Y is in the case
(i), then fill (i, j) with the integer v. The inference rule r�ts4 is a
generalization of r�ts3 . It states that, if any cell in Y is in either
(i) or (ii), then fill (i, j) with the integer v. We do not take up the
situation in which any cell in Y is in the case (ii) since we already
considered this situation as the inference rule r�ts1 .
The 5 Inference Rules Derived from The BlockSum Condition

We denote the 5 inference rules derived from the BlockSum
condition by rsum

1 , rsum
2 , rsum

3 , rsum
4 and rsum

5 . Again, the suffix
represents the sophistication level that we decide based on our
experience. The simplest inference rule rsum

1 states that, if (i, j)
is contained in a unit block B (i.e., B consists solely of a single
cell (i, j)), then fill (i, j) with v = σ(B) that is clearly given to
the solver. The inference rule rsum

2 is a generalization of rsum
1 . It

states that, if there exists a block B such that all the cells in B

except (i, j) are filled with integers, then fill cell (i, j) in B with

v = σ(B) −
∑

(k,�)∈B: (k,�)�(i, j)

ϕ(k, �).

If there exists a row (resp., a column) such that the sum of the
integers of all the cells except (i, j) in the row (resp., the column)
can be computed, then fill cell (i, j) with n(n + 1)/2 minus the
sum. Let Y denote the set of cells except (i, j) in the i th row
(resp., the j th column). In order to compute the sum, consider
the following three cases where the integer of a cell in Y or the
sum of the integers of a subset of Y can be specified.
(iii) A cell is already filled out with an integer by ϕ.
(iv) There exists a block B contained within Y so that the sum

of the integers in B is given by σ(B).
(v) There exists a block B such that all the cells in B outside the

row (resp., the column) are filled with integers. Let the set of
such outside cells filled with integers be denoted by A. The
set B\A is assigned with σ(B) minus the sum of the integers
of cells in A.

The inference rule rsum
3 (resp., rsum

4 and rsum
5) states that, if the

entire Y consists of such cells and subsets that are in the case
(iv) (resp., in the cases (iii) or (iv), and in the cases (iii), (iv) or
(v)), then fill (i, j) with the integer v that is given by n(n + 1)/2
minus the sum of integers that are specified as above. Clearly,
the inference rule rsum

4 is a generalization of rsum
3 , and rsum

5 is a
generalization of rsum

4 .
In Fig. 9, we summarize the generalization relationship among

the 9 inference rules and their weights for SearchLargeWeight.
The weight values are used in the experiments in Section 5. We
use powers of two as weights for all the inference rules except

Fig. 9 The generalization relationship among the 9 inference rules and their
weights. A directed edge indicates that the inference rule on the
starting point is a generalization of the one on the end point.

rsum
1 . The inference rule rsum

1 specifies the integer that should be
assigned to the cell of a unit block. As it must be obvious to
human solvers, we would like to remove unit blocks by setting
w(rsum

1) to an extremely small value.
Before closing this section, let us give some remarks on R-

completability and on the weight of an R-completable partition
when R is a subset of the 9 inference rules. Recall that some in-
ference rules are a generalization of others. For example, r�ts2 is
a generalization of r�ts1 . Suppose that R contains r�ts2 but does not
contain r�ts1 (i.e., r�ts2 ∈ R and r�ts1 � R). Then adding r�ts1 to R

does not change the R-boundary. In other words, if we denote
R′ = R ∪ {r�ts1 }, any R-completable partition is R′-completable,
and any R′-completable partition is R-completable. This is be-
cause the situation where r�ts1 can be applied is also the situation
where r�ts2 , its generalization, can be applied. Hence whether we
choose R or R′ does not matter in the context of completability,
whereas it matters in the context of weight. Recall that we eval-
uate a completable partition P by the weight Ws(P) with respect
to the sequence s = ((i1, j1, r1), . . . , (in2 , jn2 , rn2)) that was defined
in (1). To compute s, we choose (ik, jk, rk) of the smallest w(rk)
among the candidates for k = 1, 2, . . . , n2. Therefore, since we
take w(r�ts1) < w(r�ts2), then R and R′ may give different weights
to completable partitions, and SearchLargeWeight may output
different partitions between R and R′.

5. Experimental Results

To adjust the difficulty level, the basic idea is to decide the
collection R of inference rules that assumed human solvers may
have, and to search for such an R-completable partition that in-

c© 2012 Information Processing Society of Japan 733

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

duces a “hardest” instance among all the R-completable ones.
We introduced two ideas on what completable partition induces
a “hardest” instance. One is a maximal completable parti-
tion in terms of the refinement relation. The other is a com-
pletable partition that requires us to apply sophisticated rules
in R many times to solve, the degree of which is measured by
the weight. We described two algorithms, SearchMaximal and
SearchLargeWeight, to search for a completable partition of
these two types.

In this section, we investigate whether BlockSum instances
produced by the algorithm really have the intended difficulty lev-
els. Although instances are basically produced by our mechanical
algorithm, evaluating difficulty in solving those instances is inher-
ently subjective in nature. One way to validate that the instances
have actually intended difficulties is to conduct experiments in
which we obtain empirical data by making human solvers solve
BlockSum instances and then evaluate difficulties of the instances
in terms of the number of cells filled with the correct integers.

We conduct two experiments. In Section 5.1, we compare
difficulty levels of the instances generated with different R’-s,
where we produce instances by generating R-completable max-
imal partitions by SearchMaximal. In Section 5.2, for a fixed R,
we compare difficulty levels of the instances generated with two
algorithms to specify a partition, SearchMaximal and Search-
LargeWeight.

5.1 Comparison of Difficulty Levels of the Instances
Produced with Different Rule Collections

In our expectation, the more sophisticated R we build into the
algorithm, the more difficult instance the algorithm should pro-
duce. We validate this expectation by an experiment using Block-
Sum instances produced with different R’-s.

Let us describe the protocol of the experiment precisely. First
we prepared 3 collections of inference rules, denoted by R+, R++
and R+++, where we intend a simple rule collection by R+, an in-
termediate rule collection by R++, and a sophisticated rule col-
lection by R+++. We take R+ as a small collection of simple
inference rules so that there exist non-trivial partitions (which
are neither P⊥ nor P) that are R+-completable. Here we use
R+ = {r�ts1 , r

sum
2 }. We take the intermediate rule collection R++ as

a random subset of the 9 inference rules so that R+ ⊆ R++ holds.
We take R+++ as the set of the 4 general inference rules, that is,
R+++ = {r�ts2 , r

�ts
4 , r

sum
2 , r

sum
5 }. Note that adding any other infer-

ence rule to R+++ does not change the R+++-boundary. Observe
that the R++-boundary is not below the R+-boundary and that the
R+++-boundary is not below the R++-boundary.

Next, we constructed a computer system on which human
solvers can play BlockSum puzzle. For a rule collection R that
we choose, the system produces a BlockSum instance by gen-
erating an R-completable maximal partition by SearchMaximal,
based on a randomly chosen certificate. A human solver can play
the produced BlockSum instances repeatedly on the system. The
solver can skip an instance if he or she cannot solve it. While
the solver is playing the instances, the system stores the data on
which integer is assigned to which cell.

We collected 38 students in our institution as experimental

Fig. 10 The distributions of the total numbers of cells to which the solvers
in S +++, S ++ and S + gave the correct integers. For a number x in
the horizontal axis, the height of the bar represents the number of
solvers who gave the correct integers in x − 19 to x cells.

solvers. We divided them into 3 groups in order to make them
solve the instances generated with different rule collections. Each
student is given the ID number by the institution. We denote
by S + (resp., S ++ and S +++) the group of students such that the
residue of the ID number divided by 3 is 0 (resp., 1 and 2). There
are 14 (resp., 13 and 11) students in the group S + (resp., S ++ and
S +++). We consider that the numbers are not different from each
other to a large extent. The students in S + (resp., S ++ and S +++)
will be assigned the instances generated with R+ (resp., R++ and
R+++). We told the students neither which groups they belong to
nor the purpose of the experiment. Since no student had great
experience in playing BlockSum puzzle, we taught the students
the rule of the puzzle and let them work on some practice. Seat-
ing the students in front of PCs, we asked them to solve as many
BlockSum instances as possible on our system within 10 minutes.
Each student was assigned instances that were generated with the
rule collection of the group which the student belongs to. We re-
stricted all the instances to n = 4 for which the system produces
an instance in less than 0.1 seconds. Then we regard that almost
all 10 minutes were devoted to solving the instances.

The system stored the data on this 10-minute test successfully.
From the data, we calculated how many cells each student filled
with the correct integers. We show the distributions of the 3
groups in Fig. 10. The students in S + tend to give more correct
integers than those in S ++ and S +++; 13 out of the 14 students in
S + gave the correct integers to more than 160 cells, while 23 out
of the 24 students in S ++ and S +++ gave the correct integers to
at most 160 cells. Although both S ++ and S +++ have their peaks
at 81 to 100 cells, we claim that the students in S ++ should tend
to give more correct integers than those in S +++; 5 students in
S ++ and 4 students in S +++ gave the correct integers in 81 to 100
cells, but 7 out of the remaining 8 students in S ++ gave the cor-
rect integers to more than 100 cells, while 6 out of the remaining
7 students in S +++ gave the correct integers to at most 80 cells.
These results illustrate that difficulty levels are adjusted to some
extent by means of the rule collection.

For the criterion for whether the instances have the intended
difficulty, we used the number of cells that are filled with the cor-
rect integers, while there may be various alternative criteria. An

c© 2012 Information Processing Society of Japan 734

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

example of such criteria is the time needed to solve an instance.
We expect that, the more difficult an instance becomes, the more
time a human solver should need to solve it. Therefore, we also
expect that, the more sophisticated rule collection we build into
the algorithm, the more time a human solver needs to solve the
generated instance. However, collecting the data on the time
to solve is more time-consuming than collecting the data on the
number of cells filled with the correct integers. The time to solve
is not measured until the solver solves an instance completely,
that is, fills all n2 cells with the correct integers. On the other
hand, we can measure the number of cells filled with the correct
integers within an appropriate time-limit even if the solver does
not solve an instance completely or skips it. This convenience is
the reason why we employed the number of correct cells as the
criterion in the experiment.

5.2 Comparison of Difficulty Levels of the Instances Pro-
duced with Different Algorithms to Specify a Partition

In the last experiment, we confirmed that we can adjust the
difficulty level by choosing R appropriately, where we produced
an instance by generating an R-completable maximal partition
by SearchMaximal, regarding such a partition as the “hardest”
among all the R-completable partitions. Recall that we intro-
duced two ideas on which completable partition induces a “hard-
est” instance. Next we compare difficulty levels of the “hardest”
instances of the two types. In other words, we observe which
algorithm to specify a partition, SearchMaximal or Search-
LargeWeight, results more difficult instances for a fixed R. Here
we take R as the set of all the 9 inference rules introduced in Sec-
tion 4. For SearchLargeWeight, we use the values indicated in
Fig. 9 as the weights of the inference rules.

We performed the experiment in a similar way as Section 5.1.
We collected 26 students in our institution as experimental
solvers. The students do not overlap with those in the last experi-
ment. We divided the students into two groups in order to assign
them with the instances produced by different algorithms. The di-
vision was made at random so that the two groups have the same
number of students. We denote the two groups by S weight and
S maximal, which were assigned the instances produced by Search-
LargeWeight and SearchMaximal respectively. We made the
students solve so many BlockSum instances as possible within
10 minutes. To try various experimental environments, we did
not utilize the system that was used in the last experiment, but
utilized handouts; we made two types of handouts such that one
type has 30 instances produced by SearchLargeWeight and the
other type has 30 instances produced by SearchMaximal. Each
student in S weight (resp., S maximal) was given a handout in the for-
mer (resp., latter) type. We found that 30 instances are sufficient
for the time-limit of 10 minutes. Other major settings are as in
Section 5.1.

After the 10-minute test finished, we collected the handouts
and calculated how many cells each student filled with the cor-
rect integers. In Fig. 11, we show the distributions of S weight and
S maximal. The two distributions have an overlap; 7 students in
S weight and 4 students in S maximal gave the correct integers in 41
to 100 cells. However, all the remaining 6 students in S weight

Fig. 11 The distributions of the total numbers of cells to which the solvers
in S weight and S maximal gave the correct integers.

Table 1 The weights of produced partitions and the ratios of R-completable
maximal partitions among them.

n SearchMaximal SearchLargeWeight
(Weight) (Ratio) (Weight) (Ratio)

4 3.0 × (−106) + 152.0 100% 1.4 × (−106) + 365.6 100%
5 5.7 × (−106) + 397.4 100% 2.7 × (−106) + 629.5 87%
6 8.3 × (−106) + 577.4 100% 5.3 × (−106) + 742.7 95%
7 14.5 × (−106) + 468.3 100% 8.6 × (−106) + 974.3 92%
8 19.7 × (−106) + 703.7 100% 14.1 × (−106) + 1146.5 92%
9 26.7 × (−106) + 762.6 100% 19.5 × (−106) + 1355.2 89%

gave the correct integers to at most 40 cells, whereas all the
remaining 9 students in S maximal gave the correct integers to at
least 100 cells. Based on these, for a given R, we conclude that
SearchLargeWeight tends to produce more difficult instances
than SearchMaximal.

5.3 Comparison of the Two Algorithms on Other Aspects
We compare the two algorithms on other aspects. Throughout

this subsection, we use the collection R of all the 9 inference rules
in Section 4. First, we compare the algorithms in terms of the
weights of produced partitions. For any 4 ≤ n ≤ 9, we produce
1,000 partitions by each algorithm based on random certificates.
We then compute the average of the weights of the produced par-
titions. We show the results in Table 1. In the table, the weights
are represented as the sum of the averaged number of unit blocks
multiplied by −106, which is the weight of rsum

1 , and the values
derived from the other inference rules. Recall that rsum

1 has the
smallest weight among the inference rules. When we compute
the weight of a partition, rsum

1 is surely applied for each unit block.
We can see that the partitions produced by SearchLargeWeight
have larger weights and fewer unit blocks than SearchMaximal.
In Table 1, we also show the ratio of R-completable maximal
partitions among the 1,000 partitions. SearchMaximal achieves
100% by definition, whereas SearchLargeWeight does not do so
for n ≥ 5. This means that R-completable partitions of the largest
weights are not necessarily maximal in terms of the partial order
�.

Next, we compare the two algorithms in terms of computa-
tion time needed to specify a partition, which is the most time-
consuming part in our algorithm to produce a BlockSum instance.
For any 4 ≤ n ≤ 9, we measured the average of computation time
over 1,000 generations of partitions. We show the averages in

c© 2012 Information Processing Society of Japan 735

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

Fig. 12 (Left) Computation time taken to specify a partition. (Right) The number of searched partitions.

the left of Fig. 12. Our PC carries 2.83 GHz CPU. As shown,
SearchMaximal specifies a partition in less than 0.1 seconds for
any n ≤ 9, whereas SearchLargeWeight takes about 0.5 seconds
for n = 8 and more than 1 second for n = 9. The reason why
both algorithms are different in computation time comes from the
difference in the number of searched partitions, which is shown
in the right of Fig. 12. Recall the two algorithms in Figs. 4 and 6.
Suppose that we are now with a completable partition P. In prin-
ciple, both algorithms search all the partitions in U(P) to con-
struct the subset UR(P) of completable partitions that cover P.
Observe that, however, SearchMaximal can go to the first found
completable partition without searching the remaining ones since
an arbitrary partition in UR(P) is admitted as the next partition.
In fact, our current implementation searches U(P) in a random
order and goes to the first found completable partition. On the
other hand, SearchLargeWeight needs to search all the partitions
in U(P) in order to find the completable partition of the largest
weight inU(P).

6. Discussion and Concluding Remarks

In this paper, we presented a framework to produce BlockSum
instances with various difficulty levels. In our framework, we
produce a BlockSum instance in the way that we first determine
a random Latin square ϕr�s as the certificate and then specify a
partition P of n2 cells. To adjust the difficulty level, we build into
the algorithm a collection R of inference rules that assumed play-
ers may have; the more sophisticated rules R contains, the more
difficult instance we expect to be generated. The algorithm gen-
erates such an instance that has ϕr�s as its unique solution and at
the same time that is the “hardest” among the instances that can
be solved by using only the inference rules in R. In Section 3, we
presented two algorithms to specify a partition, SearchMaximal
and SearchLargeWeight, based on two ideas on which partition
induces the “hardest” instance. In Section 4, we introduced 9 in-
ference rules of various sophistication levels. In Section 5, we
validated whether the instances produced by the algorithm have
intended difficulty levels. As is expected, the more sophisticated
rules R contains, the less correct integers human solvers are likely
to give. We also observed that, given appropriate weights to infer-
ence rules, SearchLargeWeight tends to produce more difficult

instances than SearchMaximal.
The framework discussed so far can be applied to combina-

torial puzzles that ask to assign integers in {1, 2, . . . , n} to all
the cells of the n × n grid so that the assignment satisfies not
only the Latin square condition but also certain other conditions.
Sudoku is a good example of such combinatorial puzzles. We
already studied how to apply the framework to generation of a
Futoshiki [2], [5] instance, and will report the results in our fu-
ture papers.

The highlight of this paper is that, to the best of our knowl-
edge, it is the first paper that considers the instance generation
task as the main theme. Most of the previous papers deal with
one of the following two themes: (i) To solve a given instance by
such mathematical methods as constraint programming [1], [11]
and metaheuristics [6], where the methods are mainly evaluated
by how fast they solve the instance. (ii) To rate the difficulty
level of a given instance based on how it is solved by a mathe-
matical method [1], [4], [9], [11], where the rating is evaluated
by how it agrees with the difficulty level given by a human puz-
zle designer. The instance generation task includes repetition of
solving candidate puzzle instances as sub-tasks. We need to de-
fine the instance space, to design the algorithm that searches the
space by solving candidate instances, and to determine the mech-
anism to select the output among the instances searched so far.
We formulate the instance space as a partially ordered set of par-
titions, each of which corresponds to one instance that has the
certificate as its solution. Our algorithm starts from the bottom of
the Hasse diagram and goes upward along a path. The algorithm
checks the completability of any searched partition. After find-
ing a completable maximal partition, it outputs the instance as-
sociated with the maximal partition (SearchMaximal) or the one
associated with the partition of the largest weight among those
searched (SearchLargeWeight).

Simonis [11] applied constraint programming techniques to
solve Sudoku instances and also sketched a procedure to gen-
erate a Sudoku instance. His procedure first decides an n × n

Latin square that serves as the certificate, fills all the cells in the
n × n grid with the integers of the Latin square, and then repeats
removing an integer in the grid unless a termination condition is
satisfied. Hence, his procedure and our algorithm have something

c© 2012 Information Processing Society of Japan 736

Journal of Information Processing Vol.20 No.3 727–737 (July 2012)

in common. He gave neither the details of the generation proce-
dure nor experiments on generated Sudoku instances. We can
regard that this paper concretizes Simonis’s idea and applies it to
generation of a BlockSum instance.

We have two major future works. (i) We are interested in what
kind of instances human players can solve or not. In our expe-
rience, an instance associated with a unique maximal partition is
too difficult for human solvers in general, whereas an instance as-
sociated with an R-completable partition is not so difficult as long
as we take R as a subset of the inference rules introduced in Sec-
tion 4. In order to observe what instances lie between the unique-
ness boundary and the R-boundary, we should perform experi-
ments using more difficult instances. Thus we need to apply such
a technique as constraint propagation to our framework, which
was described in Section 3.3. (ii) We need to exploit better experi-
mental schemes. We dealt with experimental human solvers in or-
der to validate whether instances produced by the algorithm have
the intended difficulty levels. We have not seen such experiments
in the literature until the latest work of Palanek [10]. Palanek uses
data on the time needed to solve Sudoku instances, where the data
is obtained by making anonymous human solvers solve instances
on the Internet. To design an experimental scheme, we need to
define the data type to be collected (e.g., the number of cells filled
with the collect integers within a time-limit, or the time needed
to solve an instance) and to design the protocol to obtain the data.
In order to obtain the data, we collected students in our institu-
tion and made them solve puzzle instances in front of us. In our
experimental scheme, it is not easy to collect many experimental
solvers, but it is easy to make them solve the instances intensively.
Therefore, the data obtained are expected to be good for analysis.
On the other hand, if we constructed a system based on the In-
ternet, we could collect a lot of experimental solvers more easily,
but it would be difficult to force them to work on puzzles inten-
sively; the data obtained would be rather noisy. There are various
alternatives for experimental schemes. We should clarify their
characteristics and use the most suitable one for our purpose.

Our goal is to establish a framework to produce puzzle in-
stances with various difficulty levels, not limited to development
of a fast algorithm to solve a given puzzle instance. We believe
that this is a challenging research theme in such fields as artificial
intelligence and primary education.

Acknowledgments We gratefully acknowledge very careful
and detailed comments given by anonymous reviewers. This
work is partially supported by Grant-in-Aid for Scientific Re-
search (C, 20500760) from the Japan Society for the Promotion
of Science (JSPS), and by the Foundation for the Fusion of Sci-
ence and Technology (FOST).

References

[1] Davis, T.: The Mathematics of Sudoku (online), available from
〈http://www.geometer.org/mathcircles/sudoku.pdf〉 (accessed 2011-
06-01).

[2] Flueckiger, M.: Sudoku-Puzzles.net (online), available from
〈http://www.sudoku-puzzles.net/〉 (accessed 2011-06-01).

[3] Haraguchi, K., Hiraoka, Y. and Maruoka, A.: How to Construct
Solvable Instances for BlockSum Puzzle, Proc. 11th Japan-Korea
Joint Workshop on Algorithms and Computation (WAAC08), pp.85–
92 (2008).

[4] Johnson, A.: Simple Sudoku (online), available from
〈http://www.angusj.com/sudoku/〉 (accessed 2011-06-01).

[5] Leeuwen, M.: Sudoku Variants, Passion for Puzzles (online), available
from 〈http://www.passionforpuzzles.com/sudoku-variants/〉 (accessed
2011-06-01).

[6] Lewis, R.: Metaheuristics can solve sudoku puzzles, Journal of
Heuristics, Vol.13, pp.387–401 (2007).

[7] Miyamoto, T.: Kyouikuron (The Art of Teaching without Teaching),
Discover (2004). Japanese book.

[8] Miyamoto, T.: Chou Kyouikuron (The Super Art of Teaching without
Teaching), Discover (2006). Japanese book.

[9] Ono, S., Miyamoto, R., Nakayama, S. and Mizuno, K.: Difficulty es-
timation of number place puzzle and its problem generation support,
Proc. ICCAS-SICE 2009, pp.4542–4547 (2009).

[10] Pelánek, R.: Difficulty Rating of Sudoku Puzzles by a Computational
Model, Proc. Florida Artificial Intelligence Research Society Con-
ference (online), available from 〈http://www.aaai.org/ocs/index.php/
FLAIRS/FLAIRS11/paper/view/2517〉 (2011).

[11] Simonis, H.: Sudoku as a Constraint Problem, Proc. 4th Interna-
tional Workshop of Modelling and Reformulating Constraint Satisfac-
tion Problems, pp.13–27 (2005).

Kazuya Haraguchi received his B.E.,
Master of Informatics, and Doctor of In-
formatics from Kyoto University, in 2001,
2003 and 2007, respectively. He is cur-
rently with the Department of Informa-
tion Technology and Electronics, Faculty
of Science and Engineering, Ishinomaki
Senshu University. His interest includes

algorithms, optimization, and their application to artificial intelli-
gence and operations research.

Yasutaka Abe received his B. Sci. Eng. from Ishinomaki
Senshu University in 2010. He is currently in the master course in
the Department of Material Engineering at the Graduate School
of Science and Engineering, Ishinomaki Senshu University.

Akira Maruoka graduated in 1965 from
the Faculty of Engineering, Tohoku Uni-
versity, and received Dr. of Eng. degree
from Tohoku University in 1971. He
joined the Faculty of Engineering, Tohoku
University in 1971, and had been a profes-
sor in the Department of Information En-
gineering since 1985. In 2006 he moved

to Ishinomaki Senshu University as a professor. His research in-
terests include circuit complexity, computational complexity and
computational learning theory.

c© 2012 Information Processing Society of Japan 737

