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Abstract: Graph clustering is a long-standing problem in data mining and machine learning. Traditional graph clus-
tering aims to partition a graph into several densely connected components. However, with the proliferation of rich
attribute information available for objects in real-world graphs, vertices in graphs are often associated with a number of
attributes that describe the properties of the vertices. This gives rise to a new type of graphs, namely attributed graphs.
Thus, how to leverage structural and attribute information becomes a new challenge for attributed graph clustering. In
this paper, we introduce the state-of-the-art studies on clustering large attributed graphs. These methods propose dif-
ferent approaches to leverage both structural and attribute information. The resulting clusters will have both cohesive
intra-cluster structures and homogeneous attribute values.
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1. Introduction

Graph as an expressive data structure is popularly used to
model structural relationship between objects in many applica-
tion domains such as web, social networks, sensor networks and
telecommunication, etc. Graph clustering is an interesting and
challenging research problem which has received much atten-
tion recently [7], [9], [10], [14]. Traditional graph clustering
methods aim to partition a graph into several densely connected
components. Such methods build clusters based on normal-
ized cuts [10], modularity [7], structural density [14], or stochas-
tic flows [9]. Typical applications of graph clustering include
community detection in social networks, identification of func-
tional related protein modules in large protein-protein interaction
networks, etc.

In recent years, with the proliferation of rich information avail-
able for real-world objects, vertices in graphs are often associated
with a number of attributes that describe the properties of the ver-
tices. This gives rise to a new type of graphs, namely attributed

graphs, and hence the demand of a new clustering task, attributed

graph clustering. Attributed graph clustering can find many real
applications. For example, in a social network, vertex attributes
describe roles of a person while the topological structure rep-
resents relationships among a group of people. Directly apply-
ing traditional graph clustering methods on attributed graphs will
completely ignore the rich attribute information in clustering. A
more reasonable clustering result should have a cohesive intra-
cluster structure with homogeneous vertex properties, by balanc-
ing the structural and attribute information. Let us look at the
following example.

Figure 1 (a) shows a coauthor graph where a vertex represents
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an author and an edge represents the coauthor relationship be-
tween two authors. In addition, there are an author ID and re-
search topic(s) associated with each author. The research topic
is considered as an attribute to describe the vertex property. As
we can see, authors r1–r7 work on XML, authors r9–r11 work on
S kyline and r8 works on both. Given a cluster number k = 2, we
could partition the graph into 2 clusters in several possible ways
depending on the clustering criteria:
• Structure-based Clustering. Figure 1 (b) shows a cluster-

ing result based on vertex connectivity, i.e., coauthor re-
lationship. Authors within clusters are closely connected;
however, they can have quite different topics, e.g., half work
on XML and the other half work on S kyline in one of the
clusters.

• Attribute-based Clustering. Figure 1 (c) shows another
clustering result based on attribute similarity, i.e., topics.
Authors within clusters work on the same topics; however,
the coauthor relationship may be lost due to the partitioning
so that authors are quite isolated in one of the clusters.

• Structural and Attribute Clustering. Figure 1 (d) shows
the clustering result based on both structure and attribute in-
formation. This clustering result balances the structural and
attribute similarities: authors within one cluster are closely
connected; meanwhile, they are homogeneous on research
topics.

In this paper, we will introduce the state-of-the-art attributed
graph clustering methods, including SA-Cluster [17] and Inc-
Cluster [18] which use random walk to unify the structure and
attribute information, and BAGC [15] which takes a model-based
approach to cluster attributed graphs. The goal of these methods
is to partition an attributed graph into k clusters with cohesive
intra-cluster structures and homogeneous attribute values.

The rest of this paper is organized as follows. Section 2 in-
troduces the preliminary concepts and formulates the attributed
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(a) Co-author Graph (b) Structure-based Cluster (c) Attribute-based Cluster (d) Structural/Attribute Cluster

Fig. 1 A coauthor network example with an attribute “topic.”

graph clustering problem. Section 3 describes SA-Cluster [17]
and its improved version Inc-Cluster [18]. Section 4 introduces
BAGC [15]. Section 5 briefly describes other related works on at-
tributed graph clustering. Finally, Section 6 concludes the paper.

2. Preliminary Concepts

An attributed graph G is defined as a 4-tuple (V, E,Λ, F), where
V = {v1, v2, . . . , vN} is a set of N vertices, E = {(vi, v j) : 1 ≤ i, j ≤
N, i � j} is a set of edges, Λ = {a1, a2, . . . , aT } is a set of T

categorical attributes, F = { f1, f2, . . . , fT } is a set of T functions
and each ft : V → dom(at) assigns each vertex in V an attribute
value in the domain dom(at) of the attribute at (for 1 ≤ t ≤ T ).
In an attributed graph G, a vertex vi ∈ V is essentially associated
with an attribute vector of length T , where the t-th element in the
vector is given by the function ft(vi).

Given an attributed graph G and the number of clusters K, the
attributed graph clustering problem is to partition the vertex set
V of G into K disjoint subsets V1,V2, . . . ,VK , where V =

⋃K
i=1 Vi

and Vi ∩ Vj = ∅ for any i � j, such that: (1) vertices within one
cluster are densely connected, while vertices in different clusters
are loosely connected; and (2) vertices within one cluster have
similar attribute values, while vertices in different clusters can
have quite different attribute values.

3. SA-Cluster: A Random Walk Based Ap-
proach

The SA-Cluster method proposes to use graph augmentation to
express the attribute similarity by edge connectivity. In this way
it naturally combines the structural closeness and attribute simi-
larity through the random walk distance measure. The attribute

augmented graph is defined as follows.
Definition 1 (Attribute Augmented Graph) Given an attrib-

uted graph G = (V, E,Λ, F) with a set of attributes Λ =

{a1, a2, . . . , aT }. The domain of attribute ai is dom(ai) =
{ai

1, . . . , a
i
ni
} with a size of |dom(ai)| = ni. An attribute augmented

graph is denoted as Ga = (V∪Va, E∪Ea) where Va = {vi j}T, ni

i=1, j=1 is
the set of attribute vertices and Ea ⊆ V × Va is the set of attribute
edges. An attribute vertex vi j ∈ Va represents that attribute ai

takes the value ai
j. An attribute edge (vi, v jk) ∈ Ea iff f j(vi) = a j

k,

i.e., vertex vi takes the value of a j
k on attribute a j. Accordingly, a

vertex v ∈ V is called a structure vertex and an edge (vi, v j) ∈ E is
called a structure edge.

Figure 2 is an attribute augmented graph on the author-topic
example. Two attribute vertices v11 and v12 representing the top-
ics “XML” and “Skyline” are added. Authors with corresponding

Fig. 2 Attribute augmented graph with topics.

topics are connected to the two vertices respectively in dashed
lines. With the attribute edges, authors who are originally iso-
lated become much closer if they share a common topic, e.g., r1

and r5.

3.1 A Unified Random Walk Distance
SA-Cluster uses the neighborhood random walk model on the

attribute augmented graph Ga to compute a unified distance be-
tween vertices in V . The random walk distance between two ver-
tices vi, v j ∈ V is based on the paths consisting of both structure
and attribute edges. Thus it effectively combines the structural
proximity and attribute similarity of two vertices into one unified
measure. The transition probability matrix PA on Ga is defined as
follows.

A structure edge (vi, v j) ∈ E is of a different type from an at-
tribute edge (vi, v jk) ∈ Ea. The T attributes may also have dif-
ferent importance. Therefore, they may have different degree of
contributions in random walk distance. Without loss of general-
ity, we assume that a structure edge has a weight of ω0, attribute
edges corresponding to a1, a2, . . ., aT have an edge weight of
ω1, ω2, . . ., ωT , respectively. Therefore, the transition probability
from vertex vi to vertex v j through a structure edge is

pvi ,v j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω0

|N(vi)|ω0 +
∑T

i=1 ωi

, if (vi, v j) ∈ E

0, otherwise
(1)

where N(vi) represents the set of structure vertices connected to
vi. Similarly, the transition probability from vi to v jk through an
attribute edge is

pvi ,v jk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω j

|N(vi)|ω0 +
∑T

i=1 ωi

, if (vi, v jk) ∈ Ea

0, otherwise
(2)

The transition probability from vik to v j through an attribute edge
is
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pvik ,v j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

|N(vik)| , if (vik, v j) ∈ Ea

0, otherwise
(3)

The transition probability between two attribute vertices vip and
v jq is 0 as there is no edge between attribute vertices.

pvip ,v jq = 0,∀vip, v jq ∈ Va (4)

The transition probability matrix PA is a |V∪Va|× |V∪Va|matrix,
where the first |V | rows (columns) correspond to the structure ver-
tices and the rest |Va| rows (columns) correspond to the attribute
vertices. For the ease of presentation, PA is represented as

PA =

⎡⎢⎢⎢⎢⎣PV1 A1

B1 O

⎤⎥⎥⎥⎥⎦ (5)

where PV1 is a |V | × |V | matrix representing the transition proba-
bilities defined by Eq. (1); A1 is a |V |×|Va|matrix representing the
transition probabilities defined by Eq. (2); B1 is a |Va| × |V |matrix
representing the transition probabilities defined by Eq. (3); and O

is a |Va| × |Va| zero matrix.
Definition 2 (Random Walk Matrix) Let PA be the transi-

tion probability matrix of an attribute augmented graph Ga. Given
L as the length that a random walk can go, c ∈ (0, 1) as the ran-
dom walk restart probability, the unified neighborhood random
walk distance matrix RA is

RA =

L∑
l=1

c(1 − c)lPl
A (6)

3.2 Clustering Algorithm
With the random walk distance measure, SA-Cluster adopts the

K-Medoids clustering method [5]: it selects the most centrally lo-
cated point in a cluster as a centroid, and assigns the rest of points
to their closest centroids. In each iteration, the edge weights
{ω1, . . . , ωT } are adjusted to reflect the clustering tendencies of
attributes. This process is repeated until convergence.
3.2.1 Cluster Centroid Initialization

Good initial centroids are essential for the success of partition-
ing clustering algorithms such as K-Means and K-Medoids. In-
stead of selecting initial centroids randomly, SA-Cluster identi-
fies good initial centroids from the density point of view [3]. If
the L-step neighborhood of a vertex vi is dense, it means many
vertices are reachable from vi within L steps. Then vi has a high
probability of being in a dense cluster. The influence function is
defined as follows.

Definition 3 (Influence Function) Let σ be a user-specified
parameter. The influence function of one vertex vi on another
vertex v j is defined as

f
v j

B (vi) = 1 − e−
RA (vi ,v j )2

2σ2 (7)

The influence function f
v j

B (vi) ∈ [0, 1] measures the extent one
vertex influences another one. The influence of vi on v j is a func-
tion of the random walk distance RA(vi, v j). The larger the random
walk distance from vi to v j, the more influence vi has on v j.

Definition 4 (Density Function) The density function of one

vertex vi is the sum of the influence function of vi on all vertices
in V

f D
B (vi) =

∑
v j∈V

f
v j

B (vi) =
∑
v j∈V

(
1 − e−

RA (vi ,v j )2

2σ2

)
(8)

Then the vertices are sorted in the descending order of their
density values and the densest K vertices are selected as the ini-
tial centroids {c0

1, . . . , c
0
K}.

3.2.2 Clustering Process
With K centroids in the tth iteration, we assign each vertex

vi ∈ V to its closest centroid c∗ ∈ {ct
1, . . . , c

t
K}, i.e., a centroid

c∗ with the largest random walk distance from vi:

c∗ = arg max
ct

j

RA(vi, c
t
j)

When all vertices are assigned to some cluster, the centroid will
be updated with the most centrally located vertex in each cluster.
We denote the “mean point” of a cluster Vi as vi. The random
walk distance from vi to a vertex v j is computed by

RA(vi, v j) =
1
|Vi|

∑
vk∈Vi

RA(vk, v j). (9)

Accordingly, we can obtain a random walk distance vector
[RA(vi, v1), . . . ,RA(vi, vN)] from the mean point vi to all vertices
in V . We use RA(vi) to denote the above random walk distance
vector from the mean point of cluster Vi. Then we can find the
new centroid ct+1

i in cluster Vi as

ct+1
i = arg min

v j∈Vi

‖RA(v j) − RA(vi)‖ (10)

Thus we find the new centroid ct+1
i in the (t + 1)th iteration whose

random walk distance vector is the closest to the cluster average.
The clustering process iterates until the clustering objective func-
tion converges.
3.2.3 Attribute Weight Self-Adjustment

As different attributes may have different importance in cluster-
ing, SA-Cluster designs an adaptive weight adjustment method.
First, the structure edge weight is fixed at ω0 = 1.0. The attribute
weights {ω1, . . . , ωT } are iteratively adjusted relative to ω0. Let
Wt = {ωt

1, . . . , ω
t
T } be the attribute weights in the tth iteration. It

initializes ω0
1 = ω

0
2 = . . . = ω

0
T = 1.0, and iteratively adjusts ωt

i

with an increment 
ωt
i, which denotes the weight update of at-

tribute ai between the tth iteration and the (t + 1)th. The weight of
attribute ai in the (t + 1)th iteration is computed as

ωt+1
i =

1
2

(ωt
i + 
ωt

i) (11)

To accurately determine the extent of weight increment 
ωi, SA-
Cluster designs a majority vote mechanism: if a large portion
of vertices within clusters share the same value of a certain at-
tribute ai, it means that ai has a good clustering tendency. Then
the weight ωi of ai is increased; on the other hand, if vertices
within clusters have a very random distribution on values of a
certain attribute ai, then ai is not a good clustering attribute. The
weight ωi should be decreased. We define a vote measure which
determines whether two vertices share an attribute value.
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votei(vp, vq) =

⎧⎪⎪⎨⎪⎪⎩ 1, if vp, vq share the ai value

0, otherwise
(12)

Then 
ωt
i is estimated by counting the number of vertices within

clusters which share attribute values with the centroids on ai. The
larger number of vertices which share attribute values, the larger

ωt

i is.


ωt
i =

∑K
j=1

∑
v∈V j
votei(c j, v)

1
T

∑T
p=1

∑K
j=1

∑
v∈V j
votep(c j, v)

(13)

The denominator in Eq. (13) ensures that the constraint∑T
i=1 ω

t+1
i = T is still satisfied after weight adjustment. Combin-

ing Eq. (11) and Eq. (13) gives the weight adjustment formula.
Reference [17] shows that the attribute weights are adjusted

towards the direction of increasing the clustering objective

function value till convergence.

3.3 Inc-Cluster: Speedup Random Walk Computation
As the edge weights are iteratively adjusted to balance the

importance between structural and attribute similarities in SA-
Cluster, matrix multiplication is repeated in each iteration of the
clustering process to recalculate the random walk distances which
are affected by the edge weight update. In order to improve the
efficiency and scalability of SA-Cluster, Zhou et al. proposed
Inc-Cluster [18] to incrementally update the random walk dis-
tances given the edge weight increments. The main idea is to
compute the full random walk distance matrix RA only once at
the beginning of the clustering process. Then in each follow-
ing iteration of clustering, given the attribute weight increments
{
ω1, . . . ,
ωT }, we use Inc-Cluster to efficiently calculate the in-
crement matrix 
RA, and then get the updated random walk dis-
tance matrix RA + 
RA. In this process, we only calculate the
non-zero elements in 
RA, i.e., those elements which are affected
by the edge weight changes, but can ignore the unaffected parts
of the original matrix. If the number of affected matrix elements
is small, this incremental approach will be much more efficient
than calculating the full matrix RA from scratch in each itera-
tion. By analyzing how the transition probabilities are affected
by the weight increments, the random walk distance matrix is di-
vided into four submatrices for incremental update. Inc-Cluster
can speedup the clustering process significantly, and achieves the
same clustering result.

4. BAGC: A Bayesian Model Based Approach

Xu et al. proposed BAGC [15], a model-based approach for
attributed graph clustering. They develop a Bayesian probabilis-
tic model for attributed graphs, and then formulate the clustering
problem as a probabilistic inference problem. This work takes a
variational approach and designs an efficient approximate algo-
rithm to solve the inference problem.

The BAGC model is based on two assumptions: (1) there exists
a true but unknown clustering of the vertices underlying the data;
(2) vertices from the same cluster are similar to each other, while
vertices from different clusters are different. In this model, the
cluster label of each vertex is explicitly represented as a hidden

variable. Moreover, the model enforces the intra-cluster similar-
ity by asserting that the attribute values and edge connections of
a vertex should depend on its cluster label. In particular, for ver-
tices from the same cluster, their attribute values and edge con-
nections should follow the common distributions that are specific
to that cluster. Via the hidden clustering variable, BAGC seam-
lessly leverages the attribute and connection information of the
vertices.

The probabilistic model essentially defines a joint probability
distribution over the space of all possible clusterings and all pos-
sible attributed graphs. For a given attributed graph to be clus-
tered, the model assigns a probability for each possible clustering
of the vertices. Therefore, the clustering problem can be trans-
formed into a standard probabilistic inference problem, i.e., to
find the clustering that gives the highest probability [8]. This
clustering best explains the observed attribute values and edge
connections of the graph.

4.1 A Generative Process
Given a set of vertices V , a set of attributes Λ, and the number

of clusters K. Let N and T be the sizes of V and Λ, respectively.
• An adjacency matrix X = [Xi j] is an N × N symmetric ran-

dom matrix. Each element Xi j is a binary random variable
that takes value 0 or 1, which indicates whether there is an
edge between vertices vi and v j.

• An attribute matrix Y = [Yt
i ] is an N × T random matrix.

Each element Yt
i is a categorical random variable that takes

value from dom(at), which denotes the value of attribute at

associated with vertex vi.
• A clustering of vertices Z = [Zi] is an N × 1 random vec-

tor. Each element Zi is a categorical random variable that
takes value from {1, 2, . . . ,K}, which denotes the label of the
cluster that vertex vi belongs to.

By enumerating the values of X and Y, all possible attributed
graphs over V can be generated. Every instantiation of X and Y
leads to a unique graph. Furthermore, if the value of Z is known,
the tuple (X,Y,Z) is referred to as a clustered attributed graph.
A generative process takes as input a set of vertices V , a set of
attributes Λ, and the number of clusters K, and outputs a sample
from all possible clustered attributed graphs (X,Y,Z).

In order to generate a sample graph, BAGC needs to deter-
mine (1) an adjacency matrix X = [Xi j], (2) an attribute matrix
Y = [Yt

i ], and (3) a clustering of vertices Z = [Zi], in the follow-
ing steps:
( 1 ) It first samples the cluster label Zi of each vertex vi from

a multinomial distribution independently. The multinomial
distribution is defined as

p(Zi = k|α) = αk, k = 1, 2, . . . ,K. (14)

The distribution is parameterized by a K-vector α = (α1, α2,

. . . , αK). The element αk denotes the proportion of the ver-
tices belonging to cluster k, and satisfies the constraints
αk ∈ [0, 1] and

∑K
k=1 αk = 1. For now, assume the param-

eter α (and also θ, φ below) is given. We will explain how to
sample α from a Bayesian prior distribution later.

( 2 ) Given the cluster label Zi for vertex vi, it then samples the at-
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tribute values of this vertex. Specifically, sample the value Yt
i

of each attribute at from a multinomial distribution defined
as

p(Yt
i = m|θtZi

) = θtZim, m = 1, 2, . . . ,Mt. (15)

The parameter of the distribution is a Mt-vector θtZi
= (θtZi1

,

θtZi2
, . . . , θtZi Mt ), where Mt is the size of the domain dom(at).

The element θtZim
denotes the proportion of vertices in cluster

Zi that take the m-th value in dom(at). It satisfies θtZim
∈ [0, 1]

and
∑Mt

m=1 θ
t
Zim
= 1.

As indicated by its subscript Zi of θtZi
, the multinomial dis-

tribution is specific to cluster Zi. In other words, all vertices
belonging to the same cluster share a common multinomial
distribution, while the distributions can differ across differ-
ent clusters. The idea is that vertices in the same cluster are
similar to each other. Therefore, they should exhibit a simi-
lar pattern in their attribute values.

( 3 ) Given the cluster labels Zi and Zj for vertex pair vi and
v j, BAGC finally samples the indicator Xi j which denotes
whether there is an edge between vi and v j. Xi j is a binary
variable taking value 0 or 1. It is sampled from a Bernoulli
distribution defined as

p(Xi j|φZiZ j ) =
(
1 − φZiZ j

)1−Xi j
(
φZiZ j

)Xi j
. (16)

The parameter φZiZ j denotes the edge occurrence probability
between clusters Zi and Zj, and satisfies φZiZ j ∈ [0, 1] and
φZiZ j = φZ jZi .
Note that the parameter φZiZ j depends on the cluster labels Zi

and Zj. The implication is as follows. Consider two vertices
vi and v j. Suppose we are generating the indicators Xik and
Xjk for these vertices with respect to a common third vertex
vk. If vi and v j come from the same cluster, i.e., Zi = Zj,
we sample Xik and Xjk from the same Bernoulli distribution.
Otherwise, we use different Bernoulli distributions for sam-
pling. This is reasonable because vertices from the same
cluster should be similar to each other, and they should have
the same chance to connect with other vertices. On the other
hand, for vertices from different clusters, the chance may di-
verge.

There are three parameters α, θ, and φ in the above generative
process. BAGC takes a Bayesian approach to specify the parame-
ter values. Instead of presuming a fixed value for each parameter,
it treats α, θ, and φ themselves as random variables and places
a prior distribution over them. By doing so, BAGC explicitly
models the intrinsic uncertainty in the values of α, θ, and φ.

4.2 Model Definition
The Bayesian probabilistic model for clustered attributed

graphs is defined as:

p(α, θ, φ,X,Y,Z|ξ, γ, μ, ν)
= p(α|ξ)p(θ|γ)p(φ|μ, ν)p(Z|α)p(X|Z, φ)p(Y|Z, θ),

where

p(θ|γ) =
K∏

k=1

T∏
t=1

p(θtk |γt),

p(φ|μ, ν) =
K∏

k,l=1
k≤l

p(φkl|μ, ν),

p(Z|α) =
N∏

i=1

p(Zi|α),

p(X|Z, φ) =
N∏

i, j=1
i< j

p(Xi j|φZiZ j ),

p(Y|Z, θ) =
N∏

i=1

T∏
t=1

p(Yt
i |θtZi

),

and ξ, γ, μ, ν are the hyper-parameters for sampling α, θ and φ.
This model makes a number of conditional independence as-

sumptions among ξ, γ, μ, ν, α, θ, φ,X,Y,Z. For example, Zi is in-
dependent of ξ, γ, μ, ν, θ, φ given α. This is because the generation
of Zi depends only on α. Similarly, Zi and Zj are conditionally in-
dependent given α. This is because the cluster labels for different
vertices vi and v j are sampled independently.

4.3 Model-based Clustering
The Bayesian model shown above defines a joint distribution

p(α, θ, φ,X,Y,Z). Based on this model, the problem of clustering
a given attributed graph (X,Y) can be transformed into a standard
probabilistic inference problem, namely, finding the maximum a

posteriori (MAP) configuration [8] of the clustering Z condition-
ing on X,Y. That is to find

Z
 = arg max
Z

p(Z|X,Y), (17)

where p(Z|X,Y) is the posterior distribution of Z given X,Y (and
ξ, γ, μ, ν). Intuitively, Z
 gives the most probable clustering of
the vertex set V that best explains the attribute values Y and edge
patterns X of the given graph.

Despite its conceptual simplicity, the probabilistic inference
problem is notoriously hard. There are two major difficulties.

The first difficulty is the maximization over the N variables
Z = {Z1,Z2, . . . , ZN}. For large N, the global maximization is
computationally prohibitive.

The second difficulty lies in the calculation of the posterior dis-
tribution of Z,

p(Z|X,Y) =
�

p(α, θ, φ,Z|X,Y)dαdθdφ, (18)

where

p(α, θ, φ,Z|X,Y) =
p(α, θ, φ,X,Y,Z)∑

Z

�
p(α, θ, φ,X,Y,Z)dαdθdφ

. (19)

Due to the integrals over the parameters α, θ, φ, there is no closed-
form expression for p(Z|X,Y).

4.4 A Variational Algorithm
An efficient variational algorithm is developed to solve the

probabilistic inference problem. The basic idea is to approxi-
mate the distribution p(α, θ, φ,Z|X,Y) defined in Eq. (19) using a
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variational distribution q(α, θ, φ,Z) that is tractable for the maxi-
mization over Z and integration over α, θ, φ in Eqs. (17) and (18).

Specifically, BAGC restricts the variational distribution to a
family of distributions that factorize as follows:

q(α, θ, φ,Z) = q(α)q(θ)q(φ)
∏

i

q(Zi). (20)

It then finds the distribution within this family that is the most
similar to the truth p(α, θ, φ,Z|X,Y) as the approximation. Given
this approximation q(α, θ, φ,Z), it can approximate the MAP
clustering Z
 as follows:

Z
 = arg max
Z

p(Z|X,Y)

= arg max
Z

�
p(α, θ, φ,Z|X,Y)dαdθdφ

≈ arg max
Z

�
q(α, θ, φ,Z)dαdθdφ

= arg max
Z

�
q(α)q(θ)q(φ)

∏
i

q(Zi)dαdθdφ

= arg max
Z

∏
i

q(Zi)

=

[
arg max

Z1

q(Z1), . . . , arg max
ZN

q(ZN)

]
. (21)

Due to the factorization of q(α, θ, φ,Z), the integrals over α, θ, φ
diminish and the global maximization over Z reduces to local
maximizations over each Zi independently.

To measure the distance between a variational distribution
q(α, θ, φ,Z) and the true posterior p(α, θ, φ,Z|X,Y), BAGC
adopts the Kullback-Leibler (KL) divergence [1] that is com-
monly used in information theory and machine learning. It is
defined as

KL(q||p)=
∑

Z

�
q(α, θ, φ,Z) log

q(α, θ, φ,Z)
p(α, θ, φ,Z|X,Y)

dαdθdφ.

(22)

The problem is thus to find the optimal variational parame-
ters that minimize the KL divergence. However, this optimiza-
tion problem is infeasible because the KL divergence involves
the term p(α, θ, φ,Z|X,Y), which is exactly what needs to be ap-
proximated in the first place.

Instead of directly minimizing the KL divergence, BAGC
solves an equivalent maximization problem. The objective func-
tion of this maximization problem is defined as

L̃(q) =
∑

Z

�
q(α, θ, φ,Z) log

p(α, θ, φ,X,Y,Z)
q(α, θ, φ,Z)

dαdθdφ.

(23)

The equivalence between these two optimization problems can be
easily seen by noticing that their objective functions sum up to a
constant:

KL(q||p) + L̃(q) = log p(X,Y).

To maximize the objective function L̃(q), we first character-
ize its stationary points. Based on the stationary point equations,
an iterative procedure is designed for maximizing L̃(q). Refer-
ence [15] shows that the iterative maximization procedure is guar-
anteed to converge with a finite number of iterations. In particu-
lar, it will converge to a local maximum of L̃(q).

5. Other Related Works

There are some other related works on clustering attributed
graphs. We briefly introduce them here.

Neville et al. [6] studied attributed graph clustering and pro-
posed a weighted adjacency matrix as the similarity measure.
The weight of each edge is defined as the number of attribute
values shared by the two end vertices. They then applied three
existing graph clustering algorithms, i.e., Min-Cut algorithm [4],
MajorClust algorithm [11], and Spectral algorithm [10], on the
weighted adjacency matrix to perform clustering. Steinhaeuser
and Chawla [12] proposed to use attribute similarity as edge
weights, similar as Ref. [6]. For each nominal attribute, if two
connected nodes have the same value then increment the edge
weight by one. For continuous attributes, to find the weight of
edge e(i, j), the method first normalizes each attribute to (0, 1)
and then takes the arithmetic difference between the pairs of at-
tribute values to obtain a similarity score. Then communities are
detected using a simple thresholding method. Given a threshold
t, two nodes whose edge weight exceeds the threshold are put in
the same community.

Another two works [2], [16] take a model-based approach.
Reference [16] adopts a similar generative process as Ref. [15],
and also proposes a probabilistic model to cluster attributed
graphs. There are several major differences between Refs. [16]
and [15]. First, Ref. [16] targets on continuous attributes, and
cannot deal with categorical attributes. Second, that work
treats model parameters as fixed values, while Ref. [15] takes a
Bayesian treatment on the model parameters. Last, Ref. [15] as-
sumes the number of clusters K is given, but Ref. [16] treats the
number of clusters as an unknown parameter of the statistical
model, and uses the Integrated Classification Likelihood (ICL)
criterion to choose the optimal number of classes. Reference [2]
introduces a novel Bayesian framework for hybrid community
discovery in graphs. The proposed framework, HCDF (short for
Hybrid Community Discovery Framework), can effectively incor-
porate hints from a number of other community detection algo-
rithms and produce results that outperform the constituent parts.
Reference [2] applies the Latent Dirichlet Allocation (LDA) as
the core Bayesian method for community detection. But it deals
with edge attributes rather than vertex attributes.

Tian et al. [13] also study attributed graphs. But their goal is
to summarize large graphs by grouping nodes, so that vertices in
one group share the same attribute values and relate to vertices
in another group through the same type of relationship. Refer-
ence [13] introduces two database-style operations to summarize
graphs. The first operation, called SNAP, produces a summary
graph by grouping nodes based on user-selected attributes and re-
lationships. The summary graph contains a number of disjoint
groups, each containing a set of nodes. For any two nodes in
the same group, they have the same attribute values on the user-
selected attributes. In addition, for any two nodes in the same
group, they relate to the same set of other groups through user-
specified relationship types.

The SNAP operation produces a grouping in which nodes of
each group are homogeneous with respect to user-selected at-
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tributes and relationships. But homogeneity is often too restric-
tive in practice, as most real life graph data is subject to noise
and uncertainty. Applying SNAP on noisy data can result in a
large number of small groups, which is not very useful in prac-
tice. Therefore, the second operation, called k-SNAP, relaxes the
homogeneity requirement for the relationships, based on the fol-
lowing observation. For each pair of groups in the result of the
SNAP operation, if there is a group relationship between the two,
then every node in both groups participates in this group rela-
tionship. On the other hand, if there is no group relationship be-
tween two groups, then absolutely no relationship connects any
nodes across the two groups. However, in reality, if most (not
all) nodes in the two groups participate in the group relationship,
it is often a good indication of a strong relationship between the
two groups. Likewise, it is intuitive to mark two groups as being
weakly related if only a small fraction of nodes are connected be-
tween these groups. Based on these observations, the homogene-
ity requirement for the relationships can be relaxed, by not requir-
ing that every node participates in a group relationship. k-SNAP
allows users to control the resolutions of summaries by specify-
ing the required number of groups k, and provides the drill-down
and roll-up abilities to navigate through summaries with different
resolutions.

The SNAP and k-SNAP operations achieve homogeneous at-
tribute values within clusters, but do not enforce dense topolog-
ical connection within clusters. Therefore, the generated groups
will have very low connectivity within themselves.

6. Conclusions

With the proliferation of rich information available for real-
world objects, attributed graphs are becoming increasingly popu-
lar and important. In this paper, we present a brief overview of the
state-of-the-art methods on clustering attributed graphs. These
methods solve the clustering problem using different approaches,
including the distance-based approach and the model-based ap-
proach. The attributed graph clustering methods can provide us
a better understanding and management of the large attributed
graphs arising in different applications domains, by considering
both the node attribute similarity and the topological connectivity.
The current research outcomes are quite encouraging, and we be-
lieve there are still many research problems that can be explored
along this direction in the future.
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