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Abstract: Spoken Term Detection (STD) that considers the out-of-vocabulary (OOV) problem has generated signifi-
cant interest in the field of spoken document processing. This study describes STD with false detection control using
phoneme transition networks (PTNs) derived from the outputs of multiple speech recognizers. PTNs are similar to
subword-based confusion networks (CNs), which are originally derived from a single speech recognizer. Since PTN-
formed index is based on the outputs of multiple speech recognizers, it is robust to recognition errors. Therefore, PTN
should also be robust to recognition errors in an STD task, when compared to the CN-formed index from a single
speech recognition system. Our PTN-formed index was evaluated on a test collection. The experiment showed that the
PTN-based approach effectively detected OOV terms, and improved the F-measure value from 0.370 to 0.639 when
compared with a baseline approach. Furthermore, we applied two false detection control parameters, one is based on
the majority voting scheme. The other is a measure of the ambiguity of CN, to the calculation of detection score. By
introducing these parameters, the performance of STD was found to be better (0.736 for the F-measure value) than that
without any parameters (0.639).
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1. Introduction

Recently, the number of information technology environments
in which numerous audio and multimedia archives such as video
archives and digital libraries can be easily used has increased. In
particular, there is a rapidly increasing number of archived spo-
ken documents such as broadcast programs, spoken lectures, and
meeting recordings, with some of them being accessible through
the Internet. Although there is an increasing need to retrieve such
spoken information, there are currently no effective retrieval tech-
niques to meet these needs. Therefore, the development of the
technology for retrieving such information has become increas-
ingly important.

The National Institute of Standards and Technology (NIST)
and the Defense Advanced Research Projects Agency hosted the
Text REtrieval Conference (TREC) Spoken Document Retrieval
(SDR) track in the second half of the 1990s, and many studies on
SDR of English and Mandarin broadcast news documents were
presented [1]. The TREC-SDR is an ad-hoc retrieval task that
retrieves spoken documents, which are highly relevant to a user
query. In 2006, NIST initiated the Spoken Term Detection (STD)
project with a pilot evaluation and workshop [2]. STD intends to
detect the positions of target spoken terms from audio archives.

STD requires automatic speech recognition for speech-to-text
conversion. Therefore, STD is difficult with respect to searching
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for terms in a vocabulary-free framework because search terms
are unknown before using the speech recognizer. Many stud-
ies [3], [4] that address STD tasks have been proposed, and most
of them focused on the out-of-vocabulary (OOV) and speech
recognition error problems. For example, STD techniques that
employ entities such as subword lattices and confusion networks
(CNs) were proposed.

In this study, we propose an STD technique that uses subword-
based CN. We use a phoneme transition network (PTN)-formed
index derived from multiple speech recognizers’ 1-best hypoth-
esis and an edit distance-based dynamic time warping (DTW)
framework to detect a query term.

PTN-based indexing originates from the concept of CN being
generated from a speech recognizer. CN-based indexing for STD
is a powerful indexing method because CN has abundant infor-
mation when compared with that of the 1-best output from the
same speech recognizer. In addition, it is known that many can-
didates are obtained by one or more speech recognizers that have
different language models (LMs) and acoustic models (AMs).
For example, multiple speech recognizers’ outputs improve the
speech recognition effectively. Fiscus [5] proposed the ROVER
(recognizer output voting error reduction) method, which adopts
a word voting scheme. Utsuro et al. [6] developed a technique
for combining multiple recognizers’ outputs using a support vec-
tor machine to improve the speech recognition. The application
of the characteristics of the word (or subword) sequence output
by recognizers may enhance STD because these characteristics
are different for each speech recognizer. PTNs that are based on
multiple speech recognizers’ outputs can cover more subword se-
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quences of spoken terms. Therefore, the use of multiple speech
recognizers may improve STD relatively to that of a single rec-
ognizer’s output. This is the principal idea in this study.

This study employs 10 types of speech recognition systems
with the same decoder used for all types. Two types of AMs
(triphone- and syllable-based Hidden Markov Models (HMMs))
and five types of LMs (word- and subword-based) were prepared.
The multiple speech recognizers can generate the PTN-formed
index by combining subword (phoneme) sequences from the out-
put of these recognizers into a single CN.

We evaluated the PTN-formed index derived from the 10 rec-
ognizers’ outputs. The experimental result for the Japanese STD
test collection [7] showed that the use of the PTN-formed index
effectively improved the STD compared with that of the CN-
formed index, which was derived from the phoneme-based CN
comprising the 10-best phoneme sequence outputs from a single
speech recognizer [8], [9].

However, many false detection errors occurred because the
PTN-formed index had redundant phonemes that were incorrectly
recognized by a few speech recognizers. The use of more speech
recognizers can achieve a better recognition performance, but
more errors may occur at the same time.

Therefore, we introduce the concept of majority voting to cal-
culate the edit distance between a query term and the index. In
addition, a measure of the ambiguity in the PTN is adopted into
the DTW. New parameters based on majority voting and am-
biguity are easily derived from the PTN and are considered for
distance calculation. We aim to improve the STD by effectively
utilizing the advantages realized by using multiple speech recog-
nizers. This is an original concept in the field of STD research.

The majority voting scheme is a powerful technique, and it
has applications in a wide range of research areas. For exam-
ple, “AKARA 2010,” a Japanese computer chess game (Shogi),
has also incorporated a majority voting scheme [10], and won the
mistress of the Shogi player in Japan. As will be shown later, the
ROVER method has been successfully used in speech recogni-
tion.

To prevent false detections, we applied the majority voting and
ambiguity parameters of the PTN to our term search engine on the
basis of the DTW. The improved term search engine drastically
decreased the number of false detections.

The remainder of this paper is organized as follows. In Section
2, we will introduce a few previous studies on STD. In Section 3,
we explain the types of indices that deal with the study and the
term search engine using the DTW framework. Moreover, the
STD experiment for OOV query terms is discussed in this sec-
tion. Section 4 describes a false detection control technique in
the term search engine. We discuss the STD experimental results
for the OOV terms using the improved engine. In Section 5, we
confirm the effectiveness of our indexing and parameters using a
different query set which is different from the one used in Sec-
tion 4. In addition, we compare our STD results with those of
others. Finally, we summarize this study in Section 6.

2. Related Works

There have been many studies on speech recognition errors,

OOV, and term pronunciation problems in STD [11], [12], [13].
This study addresses only the recognition errors and OOV prob-
lems.

STD may be improved by refining the speech recognition.
Many papers have already reported improvements in speech
recognition. In particular, a few studies [5], [6], [14] have pro-
posed methods to improve recognition with the help of combina-
tion of multiple speech recognizers’ outputs.

Subword-based speech recognition and subword-based term
matching are generally used to solve the OOV problem. Large
vocabulary continuous speech recognition (LVCSR) is effective
in detecting in-vocabulary (INV) words. However, it cannot de-
tect any OOV term. The deal with this problem, a combination of
phoneme recognition and LVCSR output was proposed [15], [16].
In addition, Wallace et al. [17] proposed a language modeling
method for improving the phoneme recognition.

In addition, a few indexing models/structures for STD were re-
ported, and a few studies on STD dealt with the lattice-formed
or CN-formed index [18], [19]. These indices have a high expres-
sion ability for subword sequences resulting from a speech recog-
nizer, and they can enhance the STD. Iwami et al. [20] proposed
a subword (syllable)-based N-gram indexing of N-best hypothe-
ses from single speech recognizers, and Katsurada et al. [21] pro-
posed the use of a suffix array index with a tree structure. Kaneko
et al. [22] proposed metric space indexing for a rapid STD.

Our proposed method for STD, PTN-based indexing, is based
on using the output of multiple speech recognizers [8], [9] and a
CN-formed index. The use of multiple speech recognition sys-
tems results in a variety of speech recognition results, which can
improve the speech recognition [6]. In addition, the confidence
measure of speech recognized words on the basis of majority vot-
ing can effectively detect recognition errors [23]. So, it is able to
reduce false detection errors of the STD. We apply this knowl-
edge [6], [23] to study the STD. However, no studies have used
a large number of speech recognizers and the confidence mea-
sure on the basis of majority voting on STD research. The pro-
posed PTN-formed index has abundant information than that of
a CN-formed index from a single speech recognizer, and the re-
liable majority voting can be used when a query term is searched
to control false detection errors. This is an original approach to
STD research.

3. STD Framework

3.1 Outline of the STD Framework
Figure 1 illustrates the STD framework in this study.
In the indexing phase, speech data is processed by speech

recognition, and the output (word or subword sequences) is con-
verted into the index for STD. In the search phase, the word-
formed query is converted into the phoneme sequence, and the
phoneme-formed query is then input into the term search engine.
For English queries, we have to consider a variety of pronuncia-
tions for the queries. A few reports have discussed the pronunci-
ation problem [24], but in this study, we deal with only Japanese
STD. Most of the Japanese words can be completely converted
into phoneme sequences (pronunciation) using a dictionary in
which the relationship between words and their pronunciations is
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Fig. 1 Overview of our STD framework.

Fig. 2 Phase of creating a simple index.

listed. In addition, most of the Japanese words have unambiguous
pronunciations. Therefore, we do not consider the pronunciation
problem in this study.

The term search engine searches the input query term from the
index at the phoneme level using the DTW framework.

3.2 Types of Indices for STD
To compare our proposed PTN-formed index with other in-

dices, we prepared three types of indices for the STD task: one
is a simple index, and the others are network-formed tasks, as
follows:
• subword-based simple index (denoted as “simple”),
• CN-formed index (denoted as “phoneme confusion network:

PCN”),
• PTN-formed index.

3.2.1 Simple Index
Figure 2 represents an indexing phase for the simple index.
First, the speech data is transcribed by a speech recognizer,

and the recognizer then outputs the N-best hypotheses. Each hy-
pothesis is converted into the simple index. The simple index
is a very simple structure that stores only phoneme sequences
without any additional information such as scores from the recog-
nizer. For example, the speech “cos θ and sin θ” is automatically
transcribed and converted to “k o s a i N sh i: t a t o

s a i N sh i: t a” (Japanese phoneme sequence of cos θ
and sin θ), and the sequence is stored to a simple index. The
term search engine can detect the input query term by perform-
ing DTW-based word spotting against the sequence in the simple
index.

When the engine searches a query term, it matches the term to
each sub-simple index. When the engine hits the query term for

Fig. 3 Phase of creating the CN-formed index.

Fig. 4 Phase of creating the PTN-formed index.

at least one sub-simple index, it is extracted even if the term does
not match the other sub-indices.
3.2.2 CN-formed Index

Figure 3 shows the indexing phase for creating CN-formed
index. The N-best hypotheses from a speech recognizer are com-
bined by aligning all N-best sequences using dynamic program-
ming (DP) and are then converted into the CN-formed index.
A CN can effectively represent multiple symbol (phoneme) se-
quences with the time order of the symbols. We created the CN-
formed index from the 10-best hypotheses output from a speech
recognizer.
3.2.3 PTN-formed Index

Figure 4 shows the index phase for creating the PTN-formed
index. Speech data was recognized by N speech recognizers. We
used 10 (N = 10) sorts of speech recognizers in this study. Each
1-best hypothesis was translated into the phoneme sequence, and
all N sequences were then combined to a PTN-formed index.

Figure 5 shows an example of the development of a PTN-
formed index for the speech “cosine” (Japanese pronunciation
is /k o s a i N/) by aligning N phoneme sequences from the
1-best hypothesis of all recognizer. The speech was recognized
by the 10 recognizers to yield 10 hypotheses, which were then
converted into phoneme sequences. Next, we obtained “aligned
sequences” using the DP scheme which is the same scheme de-
scribed in Ref. [5]. Finally, PTN was obtained by converting the
aligned sequences. The term “@” in Fig. 5 indicates a null tran-
sition. Arcs between the nodes in PTN have a few phonemes and
null transitions with an occurrence probability. However, in this
study, we did not consider any phoneme-occurrence probabilities.

3.3 Term Search Engine
3.3.1 For Simple Index

We adopted the DTW-based word spotting method. In this
study, Fig. 6 shows the permitted paths on the DTW lattice. X
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Fig. 5 Creating PTN-formed index by alignment using the DP scheme.

Fig. 6 Definition of the DTW path.

Fig. 7 Example of term search by using the simple index.

and Y indicate an index and a query term, respectively. More-
over, we used the edit distance to calculate the cost on the DTW
paths.

Figure 7 shows the DTW framework between the search term
“k o s a i N” (cosine) and the subword-based simple index.
The costs for the substitution, insertion, and deletion errors were
generally set to 1.0. The total cost at the grid point (i, j) (i =
{0, ..., I}, j = {0, ..., J}, where I and J are the number of phonemes
in an utterance for the index and the query term, respectively) on
the DTW lattice was calculated by the following equations:

D(i, j) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D(i, j − 1) + 1.0
D(i − 1, j) + 1.0
D(i − 1, j − 1) + Match(i, j)

(1)

Fig. 8 Example of term search on network-formed index.

Match(i, j) =

⎧⎪⎪⎨⎪⎪⎩
0.0 : Query( j) = ph(i)
1.0 : Query( j) � ph(i)

(2)

Here Query( j) indicates the j-th phoneme label in the query term
and ph(i) is the i-th phoneme label in the simple index.

To start searching a query term, the term search engine ini-
tializes D(i, 0) = 0, and then, it calculates D(i, j) using Eq. (1)
(i = {1, ..., I}, j = {0, ..., J}). Furthermore, D(i, J) is normalized
by the length of the DTW path.

After completing the calculation, the engine outputs the de-
tection candidates which have a normalized cost D(i, J) below a
threshold θ. By changing the θ value, the recall and precision
rates for STD can be controlled.

As an example, in Fig. 7, the total matching distance between
the query term and the index is 2.0 (one substitution and one in-
sertion error; it is not normalized).
3.3.2 For Network-formed Index

Figure 8 shows an example of the DTW framework for the
PTN- (or CN-) formed index. PTN (or CN) has multiple arcs be-
tween adjacent nodes. These arcs are compared with phoneme
labels of a query term.

In addition, PTN (or CN) has null transitions. Therefore, the
cost equation (1) was extended to the following equations:

D(i, j) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D(i, j − 1) + 1.0
D(i − 1, j) + NULL(i)
D(i − 1, j − 1) + Match(i, j)

(3)

Match(i, j) =

⎧⎪⎪⎨⎪⎪⎩
0.0 : Query( j) ∈ PT N(i)
1.0 : Query( j) � PT N(i)

(4)

Null(i) =

⎧⎪⎪⎨⎪⎪⎩
0.1 : NULL ∈ PT N(i)
1.0 : NULL � PT N(i)

(5)

Here PT N(i) is the set of phoneme labels of arcs at the i-th node
in the PTN.

When the query term matches to null (@) in the PTN (or CN),
the transition cost is set to 0.1. This value is empirically deter-
mined.
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3.4 Speech Recognition
As described in Section 3.2.3, the speech data was processed

by 10 speech recognizers. Julius ver. 4.1.3 [25], an open source
decoder for LVCSR, was used in all the systems.

We prepared two types of AMs and five types of LMs for con-
structing the PTN. AMs are triphone-based (Tri.) and syllable-
based HMMs (Syl.), both of which are trained on spoken lectures
in the Corpus of Spontaneous Japanese (CSJ) [26].

All the LMs were word- and character-based trigrams as fol-
lows:
WBC: word-based trigram in which words are represented

by a mix of Chinese characters, Japanese Hiragana, and
Katakana.

WBH: word-based trigram in which all words are represented
only by Japanese Hiragana. The words composed of Chi-
nese characters and Katakana are converted into Hiragana
sequences.

CB: character-based trigram in which all characters are repre-
sented by Hiragana.

BM: character-sequence-based trigram in which the unit of lan-
guage modeling is comprised of two Hiragana characters.

Non: LM is not used. Speech recognition without any LM is
equivalent to phoneme (or syllable) recognition.

Each model is trained by using transcriptions of the CSJ.
Finally, 10 combinations, which comprise two AMs and five

LMs, are formed.

3.5 Japanese STD Test Collection
3.5.1 Speech Data and Speech Recognition Performance

We used a subset of the Japanese test collection for the STD [7]
to verify our method. This test collection was created by a
working group of the Special Interest Group-Spoken Language
Processing (SIG-SLP) of Information Processing Society of
Japan (IPSJ).

The CSJ is used as the target spoken documents set of this test
collection. It totally contains 2,702 speeches files, including ac-
tual academic presentations and simulated public speeches. How-
ever, only 177 speeches (44 hours) of them are contained in this
collection. These speeches are referred to as the “CORE” part of
the CSJ. They are not included in the training data set of AM and
LM.

Table 1 shows syllable-based correct and accuracy rates of

Table 1 Syllable recognition rates for the CSJ CORE lectures [%].

1-best 10-best comb.

LM / AM Corr. Acc. Corr. Acc.

WBC / Tri 86.46 83.01 89.96 44.88

WBH / Tri 86.27 81.42 89.95 35.06

CB / Tri 81.83 77.42 85.99 41.74

BM / Tri 83.60 78.64 88.35 39.47

Non / Tri 71.00 51.20 74.56 21.06

WBC / Syl 79.11 76.35 84.19 35.73

WBH / Syl 79.32 75.83 84.29 29.90

CB / Syl 73.84 71.18 79.47 42.10

BM / Syl 77.89 74.42 84.60 37.26

Non / Syl 63.68 45.43 67.96 21.57

10 Systems comb. 94.28 −13.78 96.47 −243.51

each speech recognizer which are represented by “Corr.” and
“Acc.”. The combination of 10 recognizers can obtain the high
correct rate but a very low accuracy rate. This is because the ac-
curacy rate of the combination of all the recognizers’ outputs is
based on the method used to calculate the accuracy. First, each
recognizer’s output was converted into a syllable sequence, and
then, 10 types of syllable sequences were obtained. We aligned
all the syllable sequences using dynamic programming on a syl-
lable level. The syllable that appeared in the recognizer’s output
temporally corresponded to other syllables in other outputs si-
multaneously. Finally, we found that the one syllable sequence
in which syllables appeared simultaneously were adjacently ar-
ranged by combining the aligned syllable sequences. We calcu-
lated the accuracy using the reference and the combined syllable
sequences. Therefore, the syllable-based correct rate was drasti-
cally improved, but the insertion errors also increased.

The best combination of AM and LM for syllable recognition
is the word trigram LM (WBC) and triphone-based AM (Tri.).
3.5.2 Query Set

Various search terms, which include Japanese single word and
multiword terms, and common and rare terms were prepared in
the test set. All terms from the test speech data were spoken.

The Japanese test collection for the STD includes OOV and
INV query sets. The OOV (mainly used for the STD experi-
ment) set has 50 terms totally, which were spoken 233 times in
the CORE lecture speeches. All of these OOV terms are picked
up with respect to the speech recognition dictionary of the WBC
LM. Meanwhile, the INV set also has 50 terms, which were spo-
ken 742 times in the CORE. All the terms are included in the
dictionary.

3.6 STD Experiment
3.6.1 Evaluation Metric

The evaluation metrics used in this study were the recall, pre-
cision, F-measure, and mean average precision (MAP) values.
These measurements are frequently used to evaluate the infor-
mation retrieval performance, and they are defined as follows:

Recall =
Ncorr

Ntrue
(6)

Precision =
Ncorr

Ncorr + Nspurious
(7)

F − measure =
2 · Recall · Precision
Recall + Precision

(8)

Here Ncorr and Nspurious are the total number of correct and spu-
rious (false) term detections, and Ntrue is the total number of true
term occurrences in the speech data. The F-measure values for
the optimal balance of Recall and Precision values are denoted
by “maximum F-measure.”

The STD performance for the query sets can be displayed by a
recall-precision curve, which is plotted by changing the threshold
θ value on the DTW-based word spotting.

MAP is the mean of the average precision values for each
query. It can be calculated as follows:

MAP =
1
Q

Q∑

i=1

AveP(i) (9)
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Fig. 9 Recall-precision curves for OOV terms detection. Our proposed PTN
is compared with the other types of indices.

Table 2 Maximum F-measure and MAP values for each index.

Index type Maximum F-measure MAP

WBC/Tri. (simple) 0.370 0.565

WBC/Tri. (PCN) 0.428 0.585

CB/Tri. (simple) 0.531 0.695

CB/Tri. (PCN) 0.574 0.695

10PHOs (simple) 0.639 0.775

PTN 0.639 0.806

where Q is the number of whole queries and AveP(i) denotes the
average precision of the i-th query of the query set. Average pre-
cision is calculated by averaging the precision values computed
for each relevant term in the list in which retrieved terms are
ranked by a relevance measure.

AveP(i) =
1

Reli

Ni∑

r=1

(δr · Precisioni(r)) (10)

where r is the rank, Ni is the rank number at which all the rele-
vance terms of query i are detected, and Reli is the number of the
relevance terms of the query i. δr is a binary function for a given
rank r.
3.6.2 Experimental Results

As mentioned above, we prepared the following four types of
indices for the STD experiments:
• Simple is phoneme based, and it is derived from the 10-

best hypotheses of the WBC/Tri. (LM/AM) recognizer,
which shows the best phoneme-based speech recognition
rate among all the recognizers. Moreover, we use the index
comprising 10-best hypotheses of the CB/Tri. and 10 of the
1-best hypotheses from the 10 types of speech recognizers’
outputs.

• PCN index is formed of CN, and it comprises 10-best out-
puts of the WBC/Tri. or CB/Tri. recognizer.

• PTN is our proposed PTN-formed index from the 10 types
of speech recognizers’ outputs.

Figure 9 shows the recall-precision curves for the OOV STD
test collection. In addition, Table 2 represents the maximum F-
measure and MAP values for each index. “10PHOs (simple)”
indicates the recall-precision curve from 10 sub-indices formed
of 10 1-best hypotheses from the 10 speech recognizers’ outputs.

First, we compared different speech recognition systems. By
comparing the curves of WBC/Tri. with CB/Tri., the index of
the CB/Tri. was found to result in a better performance than the
WBC/Tri. In addition, the F-measure and MAP values of the
CB/Tri. were also higher than the WBC/Tri.

We used the OOV query set, and not all the queries are reg-
istered in the dictionary of the WBC/Tri. system. Therefore, the
phoneme sequences converted from the word-level transcription
were unsuitable for detecting the OOV terms. While performing
speech recognition of an OOV term using the recognizer with the
word-based LM, the OOV term was confused with other words
or word sequences. In many cases, their pronunciations were dif-
ferent from the original term. On the other hand, the phoneme
sequences from the recognizer with the subword-based LM was
more similar to the pronunciation of the OOV term. This influ-
enced the performance for the OOV term detection.

Using the outputs of 10 speech recognizers leads to a better
performance than that obtained with only the CB/Tri. recognizer.
The “10PHOs (simple)” results in a 20% improvement in the F-
measure when it is compared with that of the simple index which
is from the subword-based recognizer (CB/Tri.). This is because
the combination of 10 recognizers achieved a good speech recog-
nition performance, as shown in Table 1, although many insertion
errors occurred.

Next, we compared two types of index structures: simple and
PTN (CN). In either of three cases (WBC/Tri., CB/Tri., and 10
recognizers), PTN- (CN-) based indices exhibited a better perfor-
mance in both F-measure or MAP than the simple index. CN can
effectively represent phoneme sequences using the time order of
symbols, and it is apparently suitable for the STD task.

From Fig. 9 and Table 2, our proposed PTN index has the best
performance among the six indices. However, the precision rate
of the PTN index is not higher than that of the simple index in
the low-level (under approximately 60%) range of the recall rate
because of the occurrence of many false detections. Therefore,
we introduced false detection control parameters to our search
engine.

4. False Detection Control

By using the PTN-formed index based on outputs from mul-
tiple speech recognizers, we obtained a good STD performance
value. However, there were many false detections because we
did not use any parameters that were related to CN, such as the
posterior probability.

In this section, we introduce a few false detection control pa-
rameters that are related to the characteristics while using multi-
ple recognizers and CN.

4.1 Parameters for False Detection Control
We provide the following two parameters to control false de-

tection:
• “Voting(p)” is the number of speech recognizers that output

the same phoneme p at the same arc. A larger Voting(p) will
give a higher reliability on the phoneme p.

• “ArcWidth(i)” is the number of arcs (phoneme labels) at
PT N(i). Having fewer values of ArcWidth(i) also improves
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Fig. 10 Recall-precision curves for OOV terms detection with the false
detection control technique.

the reliability of phonemes at PT N(i).
The control parameters are applied to Eq. (3) as follows:

D(i, j) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D(i, j − 1) + 1.0
D(i − 1, j) + NULL(i)
D(i − 1, j − 1) + Match(i, j)

+ Vot(i, j) + Acw(i)

(11)

Vot(i, j) =

⎧⎪⎪⎨⎪⎪⎩
α

Voting(p) : ∃p ∈ PT N(i), p = Query( j)

1.0 : Query( j) � PT N(i)
(12)

Acw(i) = β · ArcWidth(i) (13)

where α and β are hyper parameters, which are set to 0.5 and 0.01,
respectively.

We allow a null transition between two nodes in the PTN-(CN-)
formed index with a cost of 0.1. Therefore, the values of Vot(i, j)
and Acw(i) must be less than the null transition cost. Therefore,
α is set to be less than 0.1. If α ≥ 0.1, the null transitions have an
advantage in the term search process. This may nullify the voting
parameter. The parameter βmust be set to 0.1 or less for the same
reason.

Voting(p) has a range of 1 to 10. Larger values of Voting(p)
further strengthens the confidence of phoneme p. By setting α to
0.5 intuitively, the phoneme p output by more than five recogniz-
ers may be accurate. In addition, ArcWidth(i) has a range of 1 to
10. Arcs that have fewer values of ArcWidth(i) are more accurate.
The i-th node has the most inaccurate arcs when ArcWidth(i) is
10. In this case, we set β to 0.01, then Acw(i) becomes 0.1, it is
the same value of the null transition cost.

Eq. (11) considers both parameters, however, sometimes, we
can only use one parameter. If the voting parameter is only ap-
plied, the Acw(i) is set to 0.

4.2 STD Experiment with False-Detection Control
Figure 10 shows the recall-precision curves of OOV term de-

tection in different search engine environments. Table 3 shows
the F-measure and MAP values for each false detection parame-
ter on the same test set.

Table 3 Maximum F-measure and MAP values for each false
detection control parameter on OOV term detection.

Parameter Maximum F-measure MAP

Nothing 0.639 0.806

Voting only 0.712 0.860

ArcWidth only 0.634 0.821

Voting + ArcWidth 0.736 0.850

“Nothing” indicates that the term search engine did not use any
parameters. “Voting only” and “ArcWidth only” indicate that the
term search engine used the Voting or ArcWidth parameters, re-
spectively. “Voting + ArcWidth” indicates that the engine used
both the parameters.

As shown in Fig. 10 and Table 3, the voting parameter effec-
tively decreases the false detections in a wide range of recall
rates. The F-measure and MAP values (in “Voting only”) are
appreciably improved from 0.639 (in “Nothing”) to 0.712 and
from 0.806 to 0.860, respectively. However, the effect of intro-
ducing the ArcWidth parameter is less than that of the Voting
parameter. With the “ArcWidth,” the MAP value achieved an im-
provement of 0.015 points, but the F-measure value decreased
slightly. The combination of the two parameters further improves
the F-measure value up to 0.736, but it does not improve the MAP
value.

The experiments with false detection control indicate that the
majority voting scheme on multiple speech recognizers is a very
powerful technique. In addition, the ArcWidth parameter has a
positive influence on the STD performance only when it is com-
bined with the voting scheme.

5. Discussion

It was shown that our proposed PTN-formed index with the
majority voting scheme could effectively search for OOV terms.
In this section, we discuss the superiority of PTN indexing by
performing other STD experiments on another query set. In ad-
dition, we will compare our indexing and searching techniques
with other studies reported at NTCIR-9 *1 SpokenDoc task [27].

First, we describe the experimental results using a different
query set. We used the INV query set of the test collection pro-
vided by the working group of SIG-SLP and IPSJ [7]. All the
terms in the query set are included in the speech recognition dic-
tionary of WBC/Tri. or WBC/Syl. recognizer. The set is com-
pletely different from the OOV query set used in the previous
section.

Table 4 shows the experimental results for the F-measure and
MAP values for each index using the INV term set. “Grep” shows
the STD result by performing a Unix command “grep” against the
transcriptions of the CORE speeches generated by the WBC/Tri.
recognizer. The value of the F-measure is the same as that shown
in Ref. [7]. This is the simplest search method.

In Table 4, the only difference between “Grep” and
“WBC/Tri.(simple)” is the search method. The values of
“WBC/Tri.(simple)” are derived from the STD engine with the
DTW framework. This results in a predictably better perfor-

*1 The NTCIR Workshop (http://research.nii.ac.jp/ntcir/ntcir-9/index.html)
is a series of evaluation workshops designed to enhance research in in-
formation access technologies.
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Table 4 Maximum F-measure and MAP values for each index on INV
term detection.

Index type Maximum F-measure MAP

Grep (simple) 0.686 N/A

WBC/Tri.(simple) 0.715 0.679

WBC/Tri.(PCN) 0.726 0.728

PTN (no control param.) 0.770 0.776

PTN (with Voting) 0.774 0.810

Table 5 STD evaluation results of all the participants of the CORE set for
the NTCIR-9 SpokenDoc task. The data was a part of Table 4 in
Ref [27].

System ID Maximum F-measure MAP

AKBL-1 0.393 0.264

AKBL-2 0.385 0.272

ALPS-1 0.725 0.837

ALPS-2 0.714 0.757

IWAPU-1 0.644 0.772

IWAPU-2 0.510 0.733

NKGW-1 0.645 0.491

NKI11-1 0.570 0.684

NKI11-2 0.569 0.672

RYSDT-1 0.318 0.393

RYSDT-2 0.526 0.468

RYSDT-3 0.521 0.469

YLAB-1 0.425 0.344

mance than that obtained by using a simple search such as “grep”
command.

By comparing the simple index with the CN-formed index
which is from the output of the single recognizer, the CN-formed
index is found superior to the simple index in both the F-measure
and MAP values. In addition, the 10 speech recognizers resulted
in a good performance. Furthermore, our proposed indexing and
searching techniques including the PTN-formed index and false
detection control parameters obtained the best STD performance
among all indexing and searching techniques on the INV query
set.

However, the F-measure with the control parameter (Voting) is
slightly improved compared to that without the parameter. The
parameters controlled the false detections of query terms effec-
tively, which consist of less than 10 phonemes in the OOV query
set. This is because there is a difference between the phoneme se-
quences produced by the 10 speech recognizers for an utterance
including OOV term(s). On the other hand, the 10 recognizers
output similar phoneme sequences for an utterance without any
OOV term. In this case, the parameter has little impact on the
control of false detections.

Next, we discuss the comparison of other studies at the
NTCIR-9 SpokenDoc task. Seven teams participated in the task.

Table 5 shows the STD evaluation results for all the partici-
pants. All the STD systems were evaluated for the CORE set, in
which 31 of the 50 queries were OOV queries. We submitted two
STD systems: one was the PTN with false detection control and
the other was the PTN without the control, and these are denoted
in the table as “ALPS-1” and “ALPS-2,” respectively.

Among all the systems, our proposed technique (“ALPS-1”)
realized the best F-measure and MAP values. The other studies

excepting “NKGW-1” did not use many multiple speech recog-
nizers. “NKGW-1” used both the word-based and syllable-based
recognition results with N-best hypotheses [28]. Among all the
participants, “NKGW-1” realized the second best F-measure be-
cause the index formed of N-best hypotheses should have more
abundant information than that of a single speech recognizer.
Thus, an index having a lot of information improves the STD
performance.

Our technique realized the best performance, but our search en-
gine could not rapidly search for terms. “AKBL-1/2,” “NKGW-
1,” and “NKI11-1/2” achieved fast searches, which can find terms
for a query in less than 1 second [27]. On the other hand, our en-
gine took approximately 5 seconds for each query.

6. Conclusion

This study describes the STD techniques for OOV queries.
First, we introduced PTN-based indexing, which is essentially

a phoneme-based CN. One of the aims of this study was to
use multiple outputs of speech recognition systems to construct
the PTN-formed index for the STD, which is different from the
subword-based approaches proposed earlier.

The experimental results showed that the PTN-formed index
with the DTW framework improved the OOV STD performance
when it is compared with that of simple and CN-formed indices
from the single speech recognizer’s output. Finally, the use of
multiple recognizers achieved 20% and 11% improvements in the
OOV search task compared with the simple and CN-formed in-
dices, respectively.

However, using the 10 speech recognizers resulted in many
false detections such as reducing the precision to lower than 60%
of the recall-rate range. In order to overcome this problem, we
applied the false detection control parameters, majority voting,
and the width of the arc in PTN to the DTW framework. The re-
sults indicated that false detections were effectively controlled in
the OOV query set. In addition, our proposed searching methods
were found to achieve better results than the other studies of the
NTCIR-9 STD task.

In future, we intend to develop a fast search algorithm under
the DTW framework because the processing speed of our engine
is still very slow for practical applications.
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