
Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

[DOI: 10.2197/ipsjjip.21.256]

Regular Paper

Distance and Similarity of Time-span Trees

Satoshi Tojo1,a) Keiji Hirata2,b)

Received: July 3, 2012, Accepted: January 11, 2013

Abstract: Time-span tree in Lerdahl and Jackendoff’s theory [12] has been regarded as one of the most dependable
representations of musical structure. We first show how to formalize the time-span tree in feature structure, introduc-
ing head and span features. Then, we introduce join and meet operations among them. The span feature represents
the temporal length during which the head pitch event is most salient. Here, we regard this temporal length as the
amount of information which the pitch event carries; i.e., when the pitch event is reduced, the information comparable
to the length is lost. This allows us to define the notion of distance as the sum of lost time-spans. Then, we employ
the distance as a promising candidate of stable and consistent metric of similarity. We show the distance possesses
proper mathematical properties, including the uniqueness of the distance among the shortest paths. After we show
examples with concrete music pieces, we discuss how our notion of distance is positioned among other notions of
distance/similarity. Finally, we summarize our contributions and discuss open problems.

Keywords: GTTM, time-span tree, music structure, distance, similarity

1. Introduction

Many research initiatives have explored stable and consistent
musical similarity metrics as a central topic in music modelling
and music information retrieval [4], [9]. Some of them are mo-
tivated by engineering demands such as music retrieval, classi-
fication, and recommendation [7], [15], [18], and others are by
modelling the cognitive process as reported in the Discussion Fo-
rum on music similarity [5], [6]. In this paper, we also seek for
a stable and consistent similarity, avoiding context-dependency
and subjectivity [21]. However, as is remarked in Ref. [25], an

ability to assess similarity lies close to the core of cognition. Mu-
sical similarity is multi-faceted as well [15], and this property in-
evitably raises a context-dependent, subjective behavior [14]. For
instance, Volk stated in Ref. [22]: Depending on the context, sim-

ilarity can be described using very different features.
To propose a stable and consistent similarity, we rely on such

music theory that represents the cognitive reality or perceptual
universality. As addressed in Ref. [23], systems which aim to en-

code musical similarity must do so in a human-like way. Now, we
take the stance that tree structure underlies the cognitive reality.
Bod claimed in his DOP model [1] that there lies cognitive plausi-
bility in combining a rule-based system with a fragment memory
when a listener parses music and produces a relevant tree struc-
ture, like a linguistic model. Lerdahl and Jackendoff presumed
that perceived musical structure is internally represented in the
form of hierarchies, which means time-span tree and strong re-
duction hypothesis in Generative Theory of Tonal Music (GTTM,
hereafter) [12], p.2, pp.105–112, p.332. Dibben argued that the

1 Japan Advanced Institute of Science and Technology, Nomi Ishikawa
923–1292, Japan

2 Future University Hakodate, Hakodate, Hokkaido 041–0803, Japan
a) tojo@jaist.ac.jp
b) hirata@fun.ac.jp

experimental results show that pitch events in tonal music are
heard in a strict hierarchical manner and provide evidence for the
internal cognitive representation of time-span tree of GTTM [3].
Wiggins et al. deployed discussions on the tree structures and ar-
gued that they are more about semantic grouping than about syn-
tactic grouping [24]. We basically follow their views and hypoth-
esize the time-span tree of a melody represents its meaning.

Among the properties of time-span tree, in particular, we con-
sider the concept of reduction essential, when a time-span tree
subsumes a reduced one. Selfridge-Field also claimed that a rel-
evant way of taking deep structures (meaning) into account is to
adopt the concept of reduction [19]. The subsumption relation
between time-span trees can be defined as a partial order, and
thus we may be able to treat time-span tree (i.e., the meaning of a
melody) as a mathematical entity.

On the other hand, there are tree representation designed for
assessing similarity and measuring distance. Marsden began with
conventional tree representations and allowed joining of branches
in the limited circumstances with preserving the directed acyclic
graph (DAG) for expressing information dependency [13]. As a
result, high expressiveness was achieved, while it was difficult to
define consistent similarity between melodies. Rizo Valero pro-
posed a representation method dedicated to a similarity compar-
ison task, called metrical tree [16]. He used a binary tree rep-
resenting the metrical hierarchy of music in which he avoided
encoding onsets and duration, and only pitches were encoded. As
a measure to compare metrical trees, he adopted the tree edit dis-
tance with many parameters, which were justified only by the best
performance in experiments, but not by cognitive reality.

In the following Section 2, we translate a time-span tree into a
feature structure, carefully preventing the other factors from slip-
ping into the structure, to guarantee stability. In Section 3, we de-
fine a notion of distance between time-span trees and then show

c© 2013 Information Processing Society of Japan 256

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

that the notion enjoys several desirable mathematical properties,
including the triangle inequality that ordinary distance metrics
should satisfy. In Section 4, we illustrate our analysis. In Sec-
tion 5 we discuss how our distance can be placed in ordinary no-
tions of distance and similarity. In Section 6 we summarize our
contribution and open problems.

2. Time-Span Tree in Feature Structure

In this section, we develop the representation method for time-
span tree in Refs. [10], [11], [21], in terms of feature structure [2].
First we introduce the general notion of feature structure, and then
we propose a set of necessary features to represent a time-span
tree. As feature structures can be partially ordered, we can define
such algebraic operations as meet and join and thus we show that
the set becomes a lattice. Since this section and the following
section include mathematical foundation, those who would like
to see examples first may jump to Section 4 and come back to
technical details afterward.

2.1 Time-Span Tree and Reduction
Time-span reduction [12] assigns structural importance to each

pitch events in the hierarchical way. The structural importance
is derived from the grouping analysis, in which multiple notes
compose a short phrase called a group, and from the metrical

analysis, where strong and weak beats are properly assigned on
each pitch event. As a result, a time-span tree becomes a binary
tree constructed in bottom-up and top-down manners by compar-
ison between the structural importance of adjacent pitch events
at each hierarchical level. Although a pitch event means a single
note or a chord, we restrict our interest to monophonic analysis
in this paper as the method of chord recognition is not included
in the original theory.

In the sequence of reductions, each reduction should sound like
a simplification of the previous one *1. In other words, the more
reductions proceed, each sounds dissimilar to the original. Re-
duction can be regarded as abstraction, but if we could find a
proper way of reduction, we can retrieve a basic melody line of
the original music piece. The key idea of our framework is that
reduction is identified with the subsumption relation, which is the
most fundamental relation in knowledge representation.

2.2 Feature Structure and Subsumption Relation
Feature structure (f-structure, hereafter) has been mainly stud-

ied for applications to linguistic formalism based on unification
and constraint, such as Head-driven Phrase Structure Grammar
(HPSG) [17]. An f-structure is a list of feature-value pairs where
a value may be replaced by another f-structure recursively. Below
is an f-structure in attribute-value matrix (AVM) notation where
σ is a structure, the label headed by ‘˜’ (tilde) is the type of the
whole structure, and fi’s are feature labels and vi’s are their val-
ues:

*1 Once a music piece is reduced, each note with onset and duration prop-
erties becomes a virtual note that is just a pitch event being salient during
the corresponding time-span, omitting onset and duration. Therefore, to
listen to a reduced melody, we assume that it needs to be rendered by
regarding a time-span as a real note with such onset timing and duration.

σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜type

f1 v1

f2 v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A type requires its indispensable features. When all these in-
trinsic features are properly valued, the f-structure is said to be
full-fledged.

Now we define the notion of subsumption. Let σ1 and σ2 be
f-structures. σ2 subsumes σ1, that is, σ1 � σ2 if and only if for
any (f v) ∈ σ1 there exists (f v) ∈ σ2 *2. Here ‘�’ corresponds
to the so-called Hoare order of sets (e.g., {b, d} � {a, b, c, d}). For
example, σ1 below is subsumed by the following σ2 but not by
σ3 unless v1 is another f-structure such that v1 � [f3 v3].

σ1 =

⎡
⎢⎢⎢⎢⎣

˜type1
f1 v1

⎤
⎥⎥⎥⎥⎦ , σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜type1
f1 v1

f2 v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, σ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜type1

f1

⎡
⎢⎢⎢⎢⎣

˜type2
f3 v3

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since there is no direct subsumption relation in σ2 and σ3, order-
ing ‘�’ is a partial order, not a total order like integers and real
numbers. Equivalence a = b is defined as a � b ∧ b � a.

To denote value v of feature f in structure σ, we write σ. f = v.
In the above, σ1. f1 = v1 and σ1. f2 is undefined while σ3. f1. f3 =

v3. We call a sequence of features f1. f2. · · · . fn a feature path.
Structure sharing is indicated by boxed tags such as i or j . The
set value {x, y}means the choice either of x or y, and⊥means that
the value is empty. Even for ⊥, any feature fi is accessible though
⊥. fi = ⊥.

2.3 Time-Span Trees in F-Structures
We define type ˜tree of f-structure, to represent a time-span

tree, as follows.
Definition 1 (Tree Type F-structure) A full-fledged ˜tree f-

structure possesses the following features.
• head represents the most salient pitch event in the tree.
• span represents the length of the time-span of the whole tree,

measured by the number of quarter notes.
• dtrs (daughters) are subtrees, whose left and right are recur-

sively ˜tree. This dtrs feature is characterized by the following
two conditions.

– The value of span must be the addition of two spans of the
daughters.

– The value of head is chosen from either that of left or of
right daughter.

If dtrs = ⊥ then the tree consists of a single branch with a single
pitch event at its leaf.

For example,

is represented by:

*2 When a subsumption relation is also defined in atomic values, e.g.,
v1 � v2, σ1 � σ2 if and only if for any (f v1) ∈ σ1 there exists
(f v2) ∈ σ2.

c© 2013 Information Processing Society of Japan 257

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

⎡
⎢⎢⎢⎣

˜tree

head i .head

span 3

dtrs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

left

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜tree

head i .head

span 2

dtrs

⎡
⎢⎢⎢⎢⎢⎣

left i C4
right E4

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

right G4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

.

Such bold-face letters as C4, E4 and G4 are trees for pitch
events, in which the value of head feature is occupied by ˜event f-
structure with pitch, onset, and duration features, where duration

of ˜event coincides with that of span in its upper ˜tree. For exam-
ple,

C4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜tree

head

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜event

pitch C4
onset . . .

duration 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

span 1
dtrs ⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.4 Unification, Join and Meet
We introduce the set notation of an f-structure using the set

of (feature path, value) pairs: {(f11. · · · . f1n v1), (f21. · · · . f2m v2),
· · · }. Given two f-structures in which a common feature appears,
we say they are inconsistent if the values of the feature does not
match. Unification is the consistent union of f-structures in the
set notation, resulting in another f-structure.

Now, when we compare two f-structures for unification, if
there is a missing feature fi on one f-structure let us complement
it with (fi ⊥). For example, we identify

σ4 =

⎡
⎢⎢⎢⎢⎣

˜type1
f1 v1

⎤
⎥⎥⎥⎥⎦ and σ5 =

⎡
⎢⎢⎢⎢⎣

˜type1
f2 v2

⎤
⎥⎥⎥⎥⎦ ,

with
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜type1
f1 v1

f2 ⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜type1
f1 ⊥
f2 v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Here, we extend the definition of unification in two
different ways. If the unification of two values of vi and ⊥ is re-
defined as vi, we call join operation; if the same two becomes ⊥,
we call meet operation. Then,

join(σ4, σ5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜type1
f1 v1

f2 v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

while meet(σ4, σ5) = ⊥.
Although we have introduced the notions of join/meet in terms

of unification, we should define these operations in terms of the
subsumption relation in f-structures to emphasize their intrinsic
property.

Definition 2 (Join) Let σA and σB be full-fledged f-
structures representing the time-span trees of melodies A and B,

Fig. 1 join and meet.

respectively. If we can fix the least upper bound of σA and σB,
that is, the least y such that σA � y and σB � y is unique, we call
such y the join of σA and σB, denoted as σA � σB.

Theorem 3.13 in Carpenter [2] provides that the unification of
f-structures A and B is the least upper bound of A and B, which is
equivalent to join in this paper. Similarly, we regard the intersec-
tion of the unifiable f-structures as meet.

Definition 3 (Meet) Let σA and σB be full-fledged f-
structures representing the time-span trees of melodies A and B,
respectively. If we can fix the greatest lower bound of σA and
σB, that is, the greatest x such that x � σA and x � σB is unique,
we call such x the meet of σA and σB, denoted as σA � σB.

We illustrate join and meet in a simple example in Fig. 1. The
‘�’ (join) operation takes quavers in the scores to fill dtrs value,
so that missing note in one side is complemented. On the other
hand, the ‘�’ (meet) operation takes ⊥ for mismatching features,
and thus only the common notes appear as a result.

Obviously from Definitions 2 and 3, we obtain the absorption
laws: σA � x = σA and σA � x = x if x � σA. Moreover, if
σA � σB, for any x x � σA � x � σB and x � σA � x � σB.

We can define σA � σB and σA � σB in recursive functions.
In the process of unification between σA and σB, when we are
to match a subtree with a single branch in the counterpart, if we
always choose the subtree the result becomes σA � σB and if we
always choose the single branch we obtainσA�σB. Because there
is no alternative action in these procedures, σA �σB and σA �σB

exist uniquely. Thus, the partially ordered set of time-span trees
becomes a lattice.

Since time-span tree T is rigidly corresponds to f-structure σ,
we identify T with σ and may call σ a tree in the following sec-
tions as long as no confusion.

3. Strict Distance in Time-Span Reduction

In GTTM, the following hypothesis is introduced: a listener
mentally constructs pitch hierarchies (reductions) that express
maximal importance among pitch relations [12], p.118. To de-
fine the domains over which reduction takes place, a hierarchy
of time-spans is provided. We here observe a time-span becomes
longer as the level of time-span hierarchy goes higher. Then, we
can suppose that a longer time-span contains more information,
and it is therefore regarded more important.

Based on the above consideration, we introduce the hypothesis
of distance between two time-span trees as follows:

If a branch with a single pitch event is reduced, the

amount of information corresponding to the length of

its time-span is lost.

Thus, we regard the accumulation of such lost time-spans as the

c© 2013 Information Processing Society of Japan 258

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

Fig. 2 Reduction by maximal time-spans; gray thick lines denote maximal time-spans while thin ones
pitch durations.

distance of two trees in the sequence of reductions, called reduc-

tion path. Thereafter, we generalize the notion to be feasible, not
only in a reduction path but in any direction in the lattice. Finally
in this section, we show the distance suffices the triangle inequal-
ity [21]. Again as this section includes technical details, those
who would like to see examples earlier may jump to Section 4
and can come back later.

3.1 Preparation
We presuppose that branches are reduced only one by one, for

the convenience to sum up distances. A branch is reducible only
in the bottom-up way, i.e., a reducible branch possesses no other
sub-branches except a single pitch event at its leaf. In the simi-
lar way, we call the reverse operation elaboration; we can attach a
new sub-branch when the original branch consists only of a single
event.

The head pitch event of a tree structure is the most salient event
of the whole tree, and the temporal duration of the tree appears at
span feature. Though the event itself retains its original duration,
we may regard its saliency is extended to the whole tree. The sit-
uation is the same as each subtree. Thus, we consider that each
pitch event has the maximal length of saliency.

Definition 4 (Maximal Time-span) Each pitch event has the
maximal time-span within which the event becomes most salient,
and outside the time-span the salience is lost.

In Fig. 2, a reducible branch on pitch event e2 has the time-
span s2. After e2 is reduced, branch on e1 becomes reducible
and the connected span s1 + s2 becomes e1’s maximal time-span,
though its original duration was s1. Finally, after e1 is reduced,
e3 becomes most salient during the length of s1 + s2 + s3.

Prior to join/meet operations, if either two heads or their time-
spans of time-span trees are different, the comparison itself is
futile. Therefore, we impose Head/Span Equality Condition

(HSEC, hereafter):
when σA and σB are not ⊥, σA.head = σB.head &

σA.span = σB.span

on the operations. Note that if σ.dtrs = ⊥, i.e., the tree consists
of a single pitch event, we do not need to care this head/span
equality, as σ � ⊥ = σ and σ � ⊥ = ⊥.

Let ς(σ) be a set of pitch events in σ, �ς(σ) be its cardinality,
and se be the maximal time-span of event e. Since reduction is
made by one reducible branch at a time, a reduction path σB =

σn, σn−1, . . . , σ2, σ1, σ0 = σA suffices �ς(σi+1) = �ς(σi) + 1. For
each reduction step, when a reducible branch on event e disap-
pears, its maximal time-span se is accumulated as distance.

Definition 5 (Reduction Distance) The distance d� of two
time-span trees such that σA � σB in a reduction path is defined
by

d�(σA, σB) =
∑

e∈ς(σB)\ς(σA) se.

For example in Fig. 2, the distance between σA and σC be-
comes s2 + (s1 + s2) when e2 and e1 are reduced in this order,
since the reduction of e2 yields s1 and e1 yields (s1 + s2). Al-
though the distance is a simple summation of maximal time-spans
at a glance, there is a latent order in the addition, for reducible
branches are different in each reduction step. In order to give a
constructive procedure on this summation, we introduce the no-
tion of total sum of maximal time-spans.

Definition 6 (Total Maximal Time-span) Given tree type
f-structure σ,

tms(σ) =
∑

e∈ς(σ) se.

We present tms(σ) as a recursive function in Algorithm 1.

Input: a ˜tree f-structure σ
Output: tms(σ)
if σ = ⊥ then1

return 0;2

else if σ.dtrs = ⊥ then3

return σ.span;4

else5

case σ.head = σ.dtrs.left.head6

return7

tms(σ.dtrs.left)+tms(σ.dtrs.right)+σ.dtrs.right.span;

case σ.head = σ.dtrs.right.head8

return9

tms(σ.dtrs.left) + tms(σ.dtrs.right) + σ.dtrs.left.span;

Algorithm 1: Total Maximal Time-span

In Algorithm 1, Lines 1–2 are the terminal condition. Lines
3–4 treat the case that a tree consists of a single branch. In Lines
6–7, when the right subtree surrender to the left, the left extends
the saliency rightward by σ.dtrs.right.span. Ditto for the case the
right-hand side overcomes the left, as Lines 8–9.

When σA � σB, from Definition 5 and 6,

d�(σA, σB) =
∑

e∈ς(σB)\ς(σA) se =
∑

e∈ς(σB) se −∑e∈ς(σA) se

= tms(σB) − tms(σA).

As a special case of the above, d�(⊥, σ) = tms(σ).

c© 2013 Information Processing Society of Japan 259

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

3.2 Properties of Distance
We consider the notion of distance that can be applicable to

two trees reside in different paths.
Lemma 1 For any reduction path from σA � σB to σA � σB,

d�(σA � σB, σA � σB) is unique.
Proof As there is a reduction path between σA�σB and σA�σB,
and σA�σB � σA�σB, d�(σA�σB, σA�σB) is computed by the
difference of total maximal time-span in Algorithm 1. Because
the algorithm returns a unique value, the distance is unique.

Theorem 1 (Uniqueness of Reduction Distance) If there
exist reduction paths from σA to σB, d�(σA, σB) is unique.

Lemma 2 d�(σA, σA�σB) = d�(σA�σB, σB) and d�(σB, σA�
σB) = d�(σA � σB, σA).
Proof From set-theoretical calculus, ς(σA � σB) \ ς(σA) =
ς(σB) \ ς(σA � σB). Then, by Definition 5, d�(σA, σA � σB) =
∑

e∈ς(σA�σB)\ς(σA) se =
∑

e∈ς(σB)\ς(σA�σB) se = d�(σA � σB, σB).
Definition 7 (Meet and Join Distances)

d�(σA, σB) = d�(σA � σB, σA) + d�(σA � σB, σB)
d�(σA, σB) = d�(σA, σA � σB) + d�(σB, σA � σB)

Lemma 3 d�(σA, σB) = d�(σA, σB).
Proof Immediately from Lemma 2.

Lemma 4 For any σ′, σ′′ such that σA � σ′ � σA � σB,
σB � σ′′ � σA � σB, d�(σA, σ

′) + d�(σ′, σ′′) + d�(σ′′, σB) =
d�(σA, σB). Ditto for the meet distance.

Now the notion of distance, which was initially defined in the
reduction path as d� is now generalized to d{�,�}, and in addition
we have shown they have the same values. From now on, we omit
{�,�} from d{�,�}, simply denoting ‘d’.

Theorem 2 (Uniqueness of Distance) d(σA, σB) is unique
among shortest paths between σA and σB.

Note that shortest paths can be found in ordinary graph-search
methods, such as branch and bound, Dijkstra’s algorithm, best-
first search, and so on.

Corollary 1 d(σA, σB) = d(σA � σB, σA � σB).
Proof From Lemma 2 and Lemma 3.

Theorem 3 (Triangle Inequality) For any σA, σB and σC ,
d(σA, σB) + d(σB, σC) ≥ d(σA, σC).
Proof From Corollary 1 and by definition,

d(σi, σ j) = d(σi � σ j, σi � σ j) =
∑

e∈ς(σi�σ j)\ς(σi�σ j) se.

Then, d(σA, σB) + d(σB, σC) becomes the sum of maximal time-
spans in ς(σA�σB)\ς(σA�σB) plus those in ς(σB�σC)\ς(σB�
σC), while d(σA, σC) becomes ς(σA � σC) \ ς(σA � σC). Thus,
d(σA, σB) + d(σB, σC) ≥ d(σA, σC).

In Fig. 3, we have laid out various reductions originated from
a piece. As we can find three reducible branches in A there are
three different reductions: B, C, and D. In the figure, C (shown
diluted) lies behind the lattice where three back-side edges meet.
The distances, represented by the length of edges, from A to B,
D to F, C to E, and G to H are the same, since the reduced
branch is common. Namely, the reduction lattice becomes par-
allelepiped *3, and the distances from A to H becomes uniquely

*3 In the case of Fig. 3, as all the edges have the length of 2, the lattice
becomes equilateral.

Fig. 3 Reduction lattice.

2+2+2 = 6, which we have shown as Theorem 1. We exemplify
the triangle inequality (Theorem 3); from A through B to F, the
distance becomes 2 + 2 = 4, and that from F through D to G is
2 + 2 = 4, thus the total path length becomes 4 + 4 = 8. But, we
can find a shorter path from A to G via either C or D, in which
case the distance becomes 2+2 = 4. Notice that the lattice repre-
sents the operations of join and meet; e.g., F = B�D, D = F�G,
H = E � F, and so on. In addition, the lattice is locally Boolean,
being A and H regarded to be� and⊥, respectively. That is, there
exists a complement *4, and Ec = D, Cc = F, Bc = G, and so on.

4. Examples

In this section, we concretely assess the distance of time-spans
of music pieces.

The first is a rather simple comparison. The left-hand side in
Fig. 4 is Massa’s in De Cold Ground (Stephen Collins Foster,
1852) and the right-hand side is Londonderry Air (transposed to
C major). Their reduced melodies are shown in the downward or-
der. The horizontal lines below each score are the maximal time-
spans of pitch events though we omit explicit connection between
events and lines in the figure. The lines drawn at the bottom level
in each score correspond to reducible branches (i.e., reducible
pitch events) at that step. We may notice that these two pieces
are quite near in their skeletons in the abstract levels. Especially,
compare the configurations of maximal time-spans in the bottom
three levels and find them topologically equal to each other.

Note, however, that we cannot calculate the distance between
two arbitrary music pieces yet under the strict HSEC (cf. Sec-
tion 3.1). Thus, the demonstrated comparison in this section is
approximate and/or intuitive in some sense.

The next example is about Mozart’s K265/300e Ah! vous

dirais-je, maman, equivalent to Twinkle, Twinkle, Little Star.

The melody in the left-hand side of Fig. 5 is the first variation
while those in the right-hand side are the seventh variation. As
both of which consist of sequences of semiquavers, we would like
to compare these two variations. Here, we have marked asterisks
‘∗’ below different maximal-time spans, seeing each reduction of
two variations laterally. Let us denote A ≈ B here if both of A and

*4 For any member X of a set, there exists Xc and X � Xc = � and
X � Xc = ⊥.

c© 2013 Information Processing Society of Japan 260

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

Fig. 4 Reduction processes of Massa’s in De Cold Ground and Londonderry Air.

Fig. 5 Reduction of Mozart: Ah! vous dirais-je, maman.

B possess the same hierarchical configuration of maximal time-
spans; that is, ignoring the difference in pitches of corresponding
notes, A and C have the same tree structure. Then, we tenta-
tively write A�̃B for the reduction where A and B are reduced
to be such A′ and B′, respectively, that A′ ≈ B′. This notation
enables us to compare the distance of two variations. We write
(2a) for ‘Level a of (2)’ and so on, where (1) is the first varia-
tion and (2) is the seventh variation of K265/300e, as in Fig. 5.
Then, (1a)�̃(2a) is equal either to (1c) or to (2c). Remember
here that we measure the length of a maximal time-span by the
number of quarter notes. First, the difference between (1b)�̃(2b)

and (1b) is one quaver, and thus d((1b)�̃(2b), (1b)) = 1/2. As
d((1b)�̃(2b), (2b)) = 1/2, too, d((1b), (2b)) = 1/2 + 1/2 = 1.
Next, the difference of (1a)�̃(2a) and (1a) is one quaver and nine
semiquavers, that is, d((1a)�̃(2a), (1a)) = 1/2 + 9/4 = 11/4. As
for the difference in (1a)�̃(2a) and (2a), there are one quaver and
seven semiquavers, i.e., d((1a)�̃(2a), (2a)) = 1/2 + 7/4 = 9/4.
Therefore, we obtain d((1a), (2a)) = 11/4+9/4 = 5, which is the
structural distance between two variations.

c© 2013 Information Processing Society of Japan 261

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

5. Discussion: Distance and Similarity

In this section, we survey various definitions of distance and
similarity, and try to position our measure among the existing cri-
teria.

Since our procedure consists of a series of edits, such as dele-
tion and insertion of branches, we may regard our distance be-
longs to a kind of Levenshtein distance. However, as every branch
has its own maximal time-span, we can regard this length as the
weight of Earth Mover’s Distance (EMD) *5, where the distance
of each insertion/deletion operation is uniformly 1. Furthermore,
since our target is a tree instead of a simple sequence of char-
acters, we need to locate our method in the category of tree edit
distance. As we have restricted our operations only on reducible

branches, the distance by the sum of maximal time-spans is 1-

degree tree edit distance, i.e., editting operations are limited only
to the leaves of the tree. As we have mentioned in Section 1,
Rizo Valero [16] also employed the tree edit distance for similar-
ity comparison. He compared the distance, however, in metrical
trees, not in time-span trees. The metrical structure is essentially
a binary or ternary tree and if two melodies have the same met-
rical pattern, the corresponding two metrical trees are the same,
independently of pitches in melodies. In addition he customized
the editting cost with the label-propagation and the pruning-level
control. Thus, the direct numerical comparison with our method
is difficult, but it is worth comparing the general behavior of two
methods in larger database.

Next in this section, we consider the distance as a metric of
similarity. As long as we stay in the lattice of reductions under
HSEC, the distance strictly reflects the similarity. The similarity
measures widely used in data mining and information retrieval
include Jaccard, Simpson, Dice, and Point-wise mutual informa-
tion (PMI) [20]. For instance, the Jaccard index (also known as
Jaccard similarity coefficient) is regarded as an index of the sim-
ilarity of two sets.

sim(σA, σB) =
|σA � σB|
|σA � σB| ,

Here, we may naı̈vely interpret ‘|σ|’ as the set of pitch events in
the tree as ‘�ς(σ)’. For example in the case of Fig. 1, |σA�σB| = 2
while |σA � σB| = 4, and thus, sim(σA, σB) = 1/2. However,
the number of notes does not fully reflect the internal structure.
Then, it may be appropriate to weight an individual note by its
time-span, and the content of a structure hence amounts to the
total maximal time-span tms(σ) in Definition 6, as

sim(σA, σB) =
tms(σA � σB)
tms(σA � σB)

.

Since the value of tms(σ) represents the complexity of the whole
structure, we can also consider the density of notes in the music
piece. Again in the case of Fig. 1, tms(σA � σB) = 1.5 + 3 = 4.5
while tms(σA � σB) = 0.5 + 0.5 + 1.5 + 3 = 5.5, and thus
sim(σA, σB) = 9/11. Similarly, we may make use of Simpson
index with tms as follows:

*5 EMD becomes the the least amount of work to fill the holes with the
multiple heaps of earth, measured by the sum of a mass times a distance.

sim(σA, σB) =
tms(σA � σB)

min(tms(σA), tms(σB))
.

In this case, min(0.5 + 1.5 + 3, 0.5 + 1.5 + 3) = 5.0 and
sim(σA, σB) = 4.5/5.0 = 9/10. Such values of 9/11 or 9/10, in
consideration of internal structure, seem rather convincing than
that of 1/2, which is by naı̈ve set cardinality. However again, we
need to scrutinize the general tendency of these similarities with
the larger database including more complicated examples.

6. Conclusions

In this paper, we relied on the strong reduction hypothesis of
Generative Theory of Tonal Music [12] which could generate hi-
erarchical tree structures, and presented the notion of distance
between the trees. In addition, we applied the notion to the met-
ric of similarity. In order to do this, we showed a feature structure
to represent a time-span tree, employing head and span features.
Thereafter, we regarded that a reduction was the loss of informa-
tion, and the loss of an pitch event was quantified by its maximal

time-span, within which the event is most salient. Then, the dis-
tance in a reduction path was defined as the sum of the length
of such maximal time-spans, and could be the metric of similar-
ity. We have shown several mathematical properties concerning
the metric, including uniqueness of distance among any shortest
paths as well as the triangle inequality.

Our main contribution in this paper is that we have presented
a stable and consistent metric of similarity, which does rely on
neither subjective nor context-dependent factor; it is mathemati-
cally sound since we can locate our index as 1-degree weighted
tree edit distance.

Finally, we summarize open problems.
i) In Section 2, although we have introduced the representation

of time-span tree in feature structure with join and meet oper-
ations, they can be applied properly only to those which were
under HSEC. From a practical point of view, this condition is too
restrictive. If we were to compute join and meet for two music
pieces with different metrical structures, we need to seek for a
more flexible mechanism to match heads and spans. The situa-
tion is the same as the comparison of two pitch events at head

feature; we should tolerate the difference of on-time, duration,
octave difference of pitch, and so on. For the purpose, we have
to provide the flexible subsumption relations in time-spans and in
pitch events, grounded to cognitive reality; if these partial orders
truly coincide with our intuition or perception, we can loosen the
condition of unification.

(ii) We have treated the maximal time-spans evenly, indepen-
dent of their lengths and levels at which they occur. However,
suppose we listen to two melodies of the same length; one is with
full of short notes while the other with a few long notes, then the
perceptual lengths of these two melodies may be different. This
effect is actually well known as the Weber-Fechner law; the rela-
tionship between stimulus and perception is logarithmic in audi-
tory and visual psychology. Since our initial purpose of this paper
has been to present a stable and consistent distance and similarity,
we do not reflect such perceptual aspects.

(iii) The third problem concerns the footnote *1. After sev-
eral reductions from an original music piece, we obtain a reduced

c© 2013 Information Processing Society of Japan 262

Journal of Information Processing Vol.21 No.2 256–263 (Apr. 2013)

time-span tree together with remaining pitch events. However,
since these remaining but salient pitch events possess only orig-
inal durations, they cannot fill out the whole temporal length of
saliency; unless we insert extra rests or extend their durations,
we cannot obtain a proper music score, i.e., we cannot listen
to the reduced time-span tree as music. Inversely, to listen to a
time-span tree, we need to transform a time-span tree into a cor-
responding audible melody. We call the transformation melodic

rendering. In general, such duration extension has multiple op-
tions, and thus, melodic rendering involves several possibilities.
We have encountered the same issue in the footnote in Section 4;
we have mentioned a common reduction from two music pieces
which possesses the same hierarchical maximal time-spans, but
each maximal time-span cannot inversely identify a pitch event
with the proper onset/duration.

(iv) At last, we still need to recognize the fundamental problem
of the original theory, that is the reliability of time-span tree. We
admit that some processes in the time-span reduction is still frag-
ile and proper reduction is not promised yet. Thus far we have
tackled the automatic reduction system, and even from now on
we need to improve the system performance.

Acknowledgments The authors would like to thank the all
anonymous reviewers for their fruitful comments, which helped
us to develop the contents and to improve the readability. This
work was supported by KAKENHI 23500145, Grants-in-Aid for
Scientific Research of JSPS.

References

[1] Bod, R.: A Unified Model of Structural Organization in Language and
Music, Journal of Artificial Intelligence Research, Vol.17, pp.289–308
(2002).

[2] Carpenter, B.: The Logic of Typed Feature Structures, Cambridge Uni-
versity Press (1992).

[3] Dibben, N.: Cognitive Reality of Hierarchic Structure in Tonal and
Atonal Music, Music Perception, Vol.12, No.1, pp.1–25 (Fall 1994).

[4] Downie, J.S., Byrd, D. and Crawford, T.: Ten Years of ISMIR: Reflec-
tions of Challenges and Opportunities, Proc. ISMIR 2009, pp.13–18
(2009).

[5] ESCOM: 2007 Discussion Forum 4A, Similarity Perception in Listen-
ing to Music, Musicæ Scientiæ (2007).

[6] ESCOM: 2009 Discussion Forum 4B, Musical Similarity, Musicæ Sci-
entiæ (2009).

[7] Grachten, M., Arcos, J.-L. and de Mantaras, R.L.: Melody retrieval us-
ing the Implication/Realization model, 2005 MIREX, available from
〈http://www.music-ir.org/evaluation/mirexresults/articles/similarity/
grachten.pdf〉.

[8] Hamanaka, M., Hirata, K. and Tojo, S.: Implementing “A Genera-
tive Theory of Tonal Music”, Journal of New Music Research, Vol.35,
No.4, pp.249–277 (2007).

[9] Hewlett, W.B. and Selfridge-Field, E.: Melodic Similarity, Computing
in Musicology, Vol.11, The MIT Press (1998).

[10] Hirata, K. and Tojo, S.: Lattice for Musical Structures and Its Arith-
metics, LNAI 4384, Selected Papers from JSAI 2006, Washio, T. et al.
(Eds.), Springer-Verlag, pp.54–64 (2007).

[11] Hirata, K., Tojo, S. and Hamanaka, M.: Melodic Morphing Algorithm
in Formalism, Proc. 3rd International Conference, MCM 2011 (LNAI
6726), pp.338–341 (2011).

[12] Lerdahl, F. and Jackendoff, R.: A Generative Theory of Tonal Music,
The MIT Press (1983).

[13] Marsden, A.: Generative Structural Representation of Tonal Music,
Journal of New Music Research, Vol.34, No.4, pp.409–428 (2005).

[14] Ockelford, A.: Similarity relations between groups of notes: Music-
theoretical and music-psychological perspectives, Musicae Scientiae,
Discussion Forum 4B, Musical Similarity, pp.47–98 (2009).

[15] Pampalk, E.: Computational Models of Music Similarity and their Ap-
plication in Music Information Retrieval, PhD Thesis, Vienna Univer-
sity of Technology (Mar. 2006).

[16] Rizo Valero, D.: Symbolic Music Comparison with Tree Data Struc-

ture, Ph.D. Thesis, Universitat d’ Alacant, Departamento de Lenguajes
y Sistemas Informatı́cos (2010).

[17] Sag, I.A. and Wasow, T.: Syntactic Theory: A Formal Introduction,
CSLI Publications (1999).

[18] Schedl, M., Knees, P. and Böck, S.: Investigating the Similarity
Space of Music Artists on the Micro-Blogosphere, Proc. ISMIR 2011,
pp.323–328 (2011).

[19] Selfridge-Field, E.: Conceptual and Representational Issues in
Melodic Comparison, Computing in Musicology, Vol.11, pp.3–64
(1998).

[20] Tan, P.N., Steinbach, M. and Kumar, V.: Introduction to Data Mining,
Addison-Wesley (2005).

[21] Tojo, S. and Hirata, K.: Structural Similarity Based on Time-span
Tree, Proc. CMMR 2012, pp.645–660 (2012).

[22] Volk, A. and Wiering, F.: Music Similarity, ISMIR 2011 Tutorial on
Musicology, available from 〈http://ismir2011.ismir.net/tutorials/
ISMIR2011-Tutorial-Musicology.pdf〉.

[23] Wiggins, G.A.: Semantic Gap?? Schematic Schmap!! Methodologi-
cal Considerations in the Scientific Study of Music, 2009 11th IEEE
International Symposium on Multimedia, pp.477–482 (2009).

[24] Wiggins, G.A., Müllensiefen, D. and Pearce, M.T.: On the non-
existence of music: Why music theory is a figment of the imagination,
Musicae Scientiae, Discussion Forum, Vol.5, pp.231–255 (2010).

[25] Wilson, R.A. and Keil, F. (Eds.): The MIT Encyclopedia of the Cogni-
tive Sciences, The MIT Press (May 1999).

Satoshi Tojo received degrees of Bache-
lor of Engineering, Master of Engineer-
ing, and Doctor of Engineering from Uni-
versity of Tokyo, Japan. He joined Mit-
subishi Research Institute, Inc. (MRI)
in 1983, and Japan Advanced Insti-
tute of Science and Technology (JAIST),
Ishikawa, Japan, as associate professor in

1995; professor from 2000. His research interest is in formal
semantics of natural language, logic in artificial intelligence in-
cluding knowledge and belief of artificial agents, and grammar
acquisition, as well as linguistic model of music.

Keiji Hirata received degree of Doctor
of Engineering from University of Tokyo
in 1987. He joined NTT Basic Research
Laboratories in 1987 (later changed to
NTT Communication Science Laborato-
ries) and Future University Hakodate as
professor in 2011. His research inter-
est includes music informatics (computa-

tional music theory), smart city (demand-responsive transporta-
tion), ICT support for depression, and video communication sys-
tem.

c© 2013 Information Processing Society of Japan 263

