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Abstract: This paper deals with a variation of crypt-arithmetics, called “arithmetical restorations.” Arithmetical
restorations are problems dealing with the reconstruction of arithmetical sums from which various digits have been
erased. We show the NP-completeness of a problem deciding whether a given instance of arithmetical restorations of
multiplication sums has a solution or not.
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1. Introduction

Crypt-arithmetic is a type of mathematical puzzle in which the
digits of arithmetical sums are replaced by symbols. The objec-
tive of the puzzle is to break a code used. That is, to replace each
symbol of the crypt-arithmetics by a numeral so that the resulting
mathematical expression becomes true. In a typical case, called
alphametic puzzle, digits are replaced by letters of the alphabet
and there is a one-to-one correspondence between the numbers
and the letters replacing them. That is, the same digit is always
represented by the same letter or symbol. Eppstein [1] showed
that the problem of determining if an alphametic puzzle has a so-
lution is NP-complete, when generalized to arbitrary bases. It is
easy to see that when we fix the numeral base, there exists a naive
linear time algorithm.

This paper deals with a variation of crypt-arithmetics, called
“arithmetical restorations.” Arithmetical restorations are prob-
lems dealing with the reconstruction of arithmetical sums from
which various digits have been erased. We show the NP-
completeness of a problem deciding whether a given instance of
arithmetical restorations of multiplication sums has a solution or
not. The problem remains NP-complete even if we fix the numer-
ical base to r ≥ 3. Our proof also gives ASP-completeness of the
problem.

2. Arithmetical Restorations

In this paper, we set the numerical base to 10, unless specif-
ically stated. We deal with arithmetical restorations of multipli-
cation sums in which most of the digits have been replaced by
asterisks. Each missing digit may be 1, 2, 3, . . . , 9 or 0. When the
number of digits of a row is greater than 1, the first digit is not
equal to 0. Figure 1 gives an example of arithmetical restorations
and its answer.
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3. NP-completeness

Given a problem of arithmetical restorations and a solution to
the problem, it is not hard to see that we can verify the solution
quickly. Thus, arithmetical restorations are in NP and it remains
to show that they are complete for NP.

First, we introduce Monotone One-in-Three 3SAT, which is a
well-known NP-complete problem.
Monotone One-in-Three 3SAT (e.g., see Ref. [2])
Input: A p× q matrix A such that (i) each entry is 0 or 1, and (ii)
every row contains exactly three 1s.
Question: Is there a vector z ∈ {0, 1}q satisfying Az = 1p? (The
vector 1p denotes the p-dimensional all one vector.)

Given an instance, a p×q matrix A, of Monotone One-in-Three
3SAT, we construct an instance of arithmetical restorations for
multiplication sums whose first and second rows represent num-
bers with 1 + pq(q + 1) digits and p(q + 1)(q − 1) + 1 digits,
respectively. We describe a procedure to construct rows of an in-
stance of arithmetical restorations. Figure 2 gives an example of
the following procedure. Each row of an instance of arithmetical
restorations is a number. In the following, we denote the number
by a vector whose entries are digits of the number.
1st row: We construct the first row in 2 steps as follows. First, we
construct a (1 + pq)-dimensional row vector (1, a�1 , a

�
2 , . . . , a

�
q )

where a j is the j-th column vector of a given matrix A. Next, we
insert a q-dimensional zero-vector 0�q (indicated by underlines in
the first row of Fig. 2) for each pair of consecutive elements of the
above vector and obtain a (1 + pq(q + 1))-dimensional vector.
2nd row: The second row is obtained from a q-dimensional all-
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Fig. 1 Arithmetical restorations.
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Given instance of Monotone One-in-Three 3SAT
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Fig. 2 Reduction to arithmetical restorations.

asterisk row vector by inserting a (p(q+1)−1)-dimensional zero-
vector 0�p(q+1)−1 for each pair of consecutive asterisks.
3rd, 4th, . . . , and (p(q + 1)(q − 1) + 3)-th rows: For each i ∈
{3, 4, . . . , p(q+1)(q−1)+3}, we set the i-th row to a (1+pq(q+1))-
dimensional all-asterisk row vector, if i = 3 (mod p(q+1)); and
we set the i-th row to 0, otherwise.
bottom row: First, we construct a p-dimensional all-four row vec-
tor 41�p and insert a q-dimensional zero vector 0�q for each con-
secutive pair of elements in 41�p . Next, we put ((p − 1)(q +
1) + 1)-dimensional all-asterisk row vector and a (p − 1)(q + 1)-
dimensional all-asterisk row vector at the head and the tail of the
above vector, respectively.

Consider a case that the arithmetical reconstruction puzzle de-
fined above has a solution. In this paper, a carry at the j-th
column means an operation of shifting digits into the ( j + 1)-
th column when the sum of i-th column exceeds the numeri-
cal base. We discuss a carry at the j-th column in the solu-
tion where j = 1 (mod p + 1); e.g., a column corresponding
to a digit in the bottom row with underline in Fig. 2. The def-
inition of the above procedure implies that the j-th column in
the multiplication sums does not receive a carry from the pre-
vious column, if j = 1 (mod p + 1). We denote the second
row of the solution by (z̃10qz̃20q · · · 0qz̃q). From the definition of
the 3rd, 4th, . . . rows (except the bottom row), each element in
the vector z̃ = (z̃1, z̃2, . . . , z̃q)� is a positive integer. Since each
row of the matrix A contains exactly three 1s, it is obvious that
z̃ j ∈ {1, 2} ( j ∈ {1, 2, . . . , q}). The definition of the bottom row im-
plies that Ãz = 41p and thus A(̃z − 1q) = 1p and (̃z − 1q) ∈ {0, 1}q
holds. Thus, a given instance of Monotone One-in-Three 3SAT
has a solution “YES.”

Next, we consider the inverse implication that a given instance
of Monotone One-in-Three 3SAT has a solution “YES.” We can
transform a 0-1 solution of the system of equalities Az = 1p in
a way similar to the above procedure, to the second row of the
obtained instance of arithmetical restorations.

From the above discussion, arithmetical restorations are proven
to be NP-complete.

4. Discussions

Here we discuss problems of arithmetical restorations defined
on a numerical base r ≥ 3. If r ≥ 5, a proof appearing in the
previous section remains correct.

When r = 3 or 4, we only need to replace the subsequence
(0q40q4 · · · 0q4) in the bottom row by

(0q−1100q−110 · · · 0q−110) (if r = 4),
(0q−1110q−111 · · · 0q−111) (if r = 3).

The NP-completeness of a binary case remains open.
For many sorts of puzzles, the uniqueness of a solution is

desired, and thus puzzle designers have to check the unique-
ness [3]. This work is exactly an instance of ASP (Another So-
lution Problem) introduced by Ueda and Nagao [4]. Yato and
Seta [6] proved that One-in-Three 3SAT is ASP-complete, where
ASP-completeness implies that given a solution to a problem, it is
NP-complete to decide if another solution exists. We give a brief
proof of the ASP-completeness of Monotone One-in-Three 3SAT
in the appendix section. Since our reduction procedure described
in the previous section gives a bijection between solution sets of
Monotone One-in-Three 3SAT and arithmetical restorations, we
have also shown that arithmetical restorations are ASP-complete.

When we solve problems created by puzzle designers, we can
assume that a given instance has a unique solution. The assump-
tion offers a possibility that there exists an algorithm which solves
every instance with a unique solution in polynomial time. This
concept is related to class UP discussed by Valiant in Ref. [5]. UP
is the class of sets recognized by nondeterministic polynomial-
time Turing machines that for all inputs have either zero or one
solution. The influence of the uniquness asumption on arithmeti-
cal restorations remains open.
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Appendix

A.1 ASP-completeness of Monotone One-in-
Three 3SAT

In this section, we show the ASP-completeness of Monotone
One-in-Three 3SAT. We need to prove that the following prob-
lem is NP-complete.
Input: A p′ × q′ matrix A′ satisfying

(i) each entry is 0 or 1, and
(ii) every row contains exactly three 1s,
and a vector w∗ ∈ {0, 1}q′ satisfying A′w∗ = 1p′

Question: Is there a 0-1 vector w′ ∈ {0, 1}q′ satisfying both
w′ � w∗ and A′w′ = 1p′?

Given an instance, a p×q matrix A, of Monotone One-in-Three
3SAT, we construct an instance of the above problem satisfying
p′ = 3p + 3 and q′ = q + 2p + 5. First, we introduce a small
system of equalities;

v0 + v1 + v2 = 1,
v0 + v1 + v3 = 1,
v0 + v2 + v3 = 1,

(A.1)

which has a unique 0-1 valued solution (v∗0, v
∗
1, v
∗
2, v
∗
3) = (1, 0, 0, 0).

For each equality in a given system Az = 1p, we construct three
equalities as follows. We introduce a specified variable z0. We
denote the �-th equality of Az = 1p by zi + z j + zk = 1. We intro-
duce a pair of variables (x�, y�) and construct three equalities;

zi + z j + x� = 1,
zk + y� + z0 = 1,

x� + y� + v1 = 1.

(A.2)

Here we note that the above system has a 0-1 valued solution
(z∗i , z

∗
j , z
∗
k; x∗� , y

∗
� ; z∗0, v

∗
1) = (0, 0, 0; 1, 0; 1, 0). By gathering equali-

ties in Eqs. (A.1) and (A.2), we construct a system of equalities,
denoted by Q, with (q + 2p + 5) variables and (3p + 3) equali-
ties. The left-hand side of each equality in system Q is the sum
of exactly three variables. Obviously, system Q has a 0-1 valued
solution (z∗0, z

∗, x∗, y∗, u∗) defined by z∗0 = 1, z∗ = 0q, x∗ = 1p,
y∗ = 0p and (v∗0, v

∗
1, v
∗
2, v
∗
3) = (1, 0, 0, 0).

Let us consider a case that a given system of equalities Az = 1p

has a 0-1 valued solution z′. Then, system Q has a solution
(z′0, z

′, x′, y′, u′) defined by z′0 = 0, (v′0, v
′
1, v
′
2, v
′
3) = (1, 0, 0, 0) and

x′� = 1 − (z′i + z′j), y
′
� = 1 − z′k (where the �-th equality of a given

system Az = 1p is zi + z j + zk = 1). The solution satisfies the third
equality in Eq. (A.2), since

x′� + y
′
� + v

′
1 = 1 − (z′i + z′j) + 1 − z′k + v

′
1

= 2 − (z′i + z′j + z′k) + v′1 = 2 − 1 + 0 = 1.

It is obvious that the solution (z′0, z
′, x′, y′, u′) is different from

(z∗0, z
∗, x∗, y∗, u∗).

Lastly, we consider the inverse implication that system Q has
a 0-1 valued solution (z′0, z

′, x′, y′, u′) which is different from (z∗0,
z∗, x∗, y∗, u∗). Obviously, we have that (v′0, v

′
1, v
′
2, v
′
3) = (v∗0, v

∗
1,

v∗2, v
∗
3) = (1, 0, 0, 0). Assume on the contrary that z′0 = 1. Then,

the definition of system (A.2) implies that (z′i , z
′
j, z
′
k; x′�, y

′
�) = (0,

0, 0; 1, 0), since v′1 = 0. Thus, we have (z′0, z
′, x′, y′, u′) = (z∗0,

z∗, x∗, y∗, u∗), which contradicts the assumption. Now we have
that z′0 = 0. The definition of system (A.2) implies that

z′i + z′j + z′j = (1 − x′�) + (1 − y′� − z′0) = 2 − (x′� + y
′
�) − z′0

= 2 − (1 − v′1) − z′0 = 2 − (1 − 0) − 0 = 1.

From the above discussion, z′ satisfies Az′ = 1p, and thus a given
system Az = 1p has a 0-1 valued solution. �
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