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Abstract: An image processing engine is an important component in generating high quality images in video systems.
Processing during capture and display are non-standard and vary from case by case, hence, the flexibility of image pro-
cessing engines has turned out to be an important issue. The conventional hardware type of image processing engine
such as an Application Specific Integrated Circuit (ASIC) is not applicable for this case. In order to increase design
reusability and ease time-to-market pressures, Application Specific Instruction-set Processors (ASIP) which provide
high flexibility and high computational efficiency have emerged as a promising solution. In this paper, we present two
ASIPs. PXL ASIP, which has a reconfigurable multi bank memory module and an SIMD type computation pipeline,
is designed for pixel level image processing, while 2D ASIP, which has slide register module and reconfigurable ALU
modules, is designed for 2D image processing. PXL ASIP can perform 4 to 10 times faster compared to its base
processor, and 2D ASIP can perform 5 to 43 times faster compared to its base processor.
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1. Introduction

Pre-processing after capturing images from image sensors,
post-processing before outputting image to display device, and
coding and decoding (CODEC) to compress and decompress im-
ages are three main types of processing in modern video systems.
Figure 1 shows the processing block diagram of general video
systems. In order to perform the different types of processing,
often ASICs are developed for different applications. However,
this is a time-consuming and costly solution. In order to ease
the time-to-market pressures and to maximize design reusabil-
ity, programmable or reconfigurable hardware has been gradu-
ally proposed [1], [2]. The variety of processing is one of the
issues in the implementation of image processing engines, and
performance requirements turn out to be another issue. In re-
cent years, the resolution of video systems is becoming higher
from 640 × 486 (NTSC) to 1,920 × 1,080 (Full HD). Some cam-
eras and LCD TVs have even started to support 4,096 × 2,160
(4K × 2K) resolution. In the Full HD case, if the working fre-
quency of the processor is 400 MHz, the allowable processing
time for each pixel is 6.43 cycles (400 M/(1,920 × 1,080 × 30)).
Uniprocessor architecture is not efficient in supporting such a
high performance requirement; therefore, multiprocessor-based
architectures are being adopted [3], [4], [5] to support high com-

1 Department of Communications and Integrated Systems, Tokyo Institute
of Technology, Meguro, Tokyo 152–8550, Japan

a) liao@vlsi.ss.titech.ac.jp
b) asri@vlsi.ss.titech.ac.jp
c) isshiki@vlsi.ss.titech.ac.jp
d) dongju@vlsi.ss.titech.ac.jp
e) kinieda@vlsi.ss.titech.ac.jp

putational image/video processing.
In designing a high performance multiprocessor architecture

for the image processing engine, the capability of processing el-
ement and communication architecture which is used to connect
the processing elements are essential issues. The common hard-
ware types of processing element on the market can be classified
into ASIC, reconfigurable ASIC, Application specific instruction-
set processor (ASIP), DSP and general purpose processor (GPP).
ASIC is area and power optimized for a specific application. The
state-of-the-art GPP has very complicated branch predictor and
multi-issue ALU. It has the best flexibility, but computational ef-
ficiency is the worst against other hardware types. DSP usually
has an independent data memory and multiply-accumulate log-
ics to improve performance for computing-intensive applications.
ASIP falls in between reconfigurable ASIC and DSP. ASIPs are
simple processors optimized for specific applications. They com-
bine the characteristics of higher computational efficiency and
some extent of flexibility.

Some reconfigurable architectures can also provide pro-
grammability. Fine-grained reconfigurable architectures such as
Field-Programmable Gate Arrays (FPGAs) consist of many bit-
level logic elements and configurable interconnections. FPGA
can provide the best flexibility, but the complex interconnection

Fig. 1 Block diagram of video systems.
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occupies too much chip area, and causes higher power consump-
tion. Furthermore, the configuration time of FPGA is longer than
the configuration time of processor, and this will bring to worse
performance during switching algorithm. Coarse-grained recon-
figurable platforms such as X4CP32 [12], and PARS [13] try to
provide the best performance for various ranges of processing
with the processing elements of a unified architecture. However,
this design concept causes low area efficiency. ASIPs, on the
other hand, which are optimized for image processing can provide
required performance, besides excellent computational efficiency.
We are targeting several specific image processing applications.
In this case, ASICs and DSPs solutions are unfortunately inap-
propriate, in terms of flexibility and area-efficiency for targeted
applications. ASICs can’t cope with flexibility properly, while
DSPs provide overly broad flexibility, sacrificing large area and
power consumption. In this work, we are proposing a reconfig-
urable ASIP-based approach to accommodate both the flexibility
and performance constraints, achieving near optimal trade-off be-
tween flexibility, performance and area.

In this paper, an image processing engine which consists of
several kinds of ASIPs is presented. Each ASIP is designed for
a specific domain of image processing, so a better computational
efficiency can be provided, and the flexibility of ASIPs can sup-
port variety of image processing.

The rest of this paper is organized as follows. Section 2
presents a brief overview of related work. The characteristics
of image processing algorithms in pre/post processing pipelines
are explained in Section 3. In Section 4, we present the design
process of our ASIPs. Section 5 describes the architecture of
ASIPs. Section 6 explains the proposed parallel architecture of
image processing engine. Section 7 summarizes the implementa-
tion results and comparisons. The conclusion and discussion are
given in Section 8.

2. Related Work

There are several ways to implement processing elements in
an image processing engine that can perform algorithms in both
pre-processing and post-processing systems. The first solution is
by reconfigurable ASIC. In paper [10], several kinds of reconfig-
urable stage processing elements (RSPE) are designed, trying to
support algorithms which have similar characteristic of computa-
tion as much as possible. However, the datapath in each RSPE
is fixed. User can only change the parameters and the sources of
input data. The area of this type of hardware can be effectively
reduced, but it cannot accommodate any additional computations
(even addition) from the original designed datapath, which re-
duces its flexibility.

Another common method is by DSP-based solutions. DSPs
which are commonly available in markets are mainly designed
for communication and multimedia applications, and offer very
good flexibility for image signal processing. Nevertheless, DSP
has certain drawbacks as it requires larger area and higher power
consumption than ASIC. Moreover, a powerful Very Long In-
struction Word (VLIW) compiler which can utilize all the com-
putational resources of DSP could provide positive impact on the
performance of DSP. DSP-ASIC hybrid solutions [1], [11] offer

another option to deal with this trade-off problem. By these solu-
tions, ASIC parts are used to perform the well-defined processing
and DSPs are used for nonstandard processing. It has the char-
acteristics of both ASIC and DSP, so the designer must handle
the functionality partition to attain the best performance. Refer-
ence [11] showed that when the number of supported applications
increases to a certain amount, the area of dedicated HW (ASIC)
starts to get larger than reconfigurable HW. In such situation, the
advantage of dedicated HW gradually disappears. This fact fully
matches our design condition, which is to design an engine which
can support as large number of image processing applications as
possible.

Some coarse-grained reconfigurable processors such as
X4CP32 [12], and PARS [13] have been designed intending to
provide the best performance for various range of processing
with processing elements of a unified architecture. However,
since each image processing has different characteristics, it is
difficult to reach the best area or computational efficiency. In this
work, we present a multiprocessor approach for realizing high
performance image processing. The system architecture will be
consisted of 1 dimensional (1D) ASIP, 2 dimensional (2D) ASIP
and pixel level ASIP connected to a crossbar bus. In previous
work [21], we proposed 1D ASIP and 2DX ASIP. However,
while pixel level processing can perform moderately competitive
performance, it cannot achieve Full HD performance require-
ment. Therefore, a pixel level ASIP is developed. Moreover, we
also improve the performance of 2D ASIP, so that it can match
state-of-the-art DSP video processor with much lesser chip area
and power consumption.

3. Algorithms in Video System

Algorithms of CODEC are standardized in video systems.
However, algorithms of pre/post processing have no explicit con-
straints and the effect of processing is hard to evaluate using ob-
jective factors. Therefore, ASICs which are optimized in perfor-
mance and chip area for a specific application are hard to ben-
efit from pre/post processing. Based on the above points, we
think that image algorithms of pre/post processing are suitable
for sharing hardware resources, and we can benefit from using
ASIP instead of ASIC. In order to design a high performance
ASIP, designer has to completely understand the characteristics
of target applications. In this section, we use a pre-processing
example and a post-processing example to roughly introduce the
target applications.

A typical image processing pipeline for pre-processing is de-
picted in Fig. 2. Images are captured from the sensor in a Color
Filter Array (CFA) format, typically Bayer pattern. Applica-
tions starts from auto white balance to false color suppression
can be executed by ASIPs. Details of these applications in pre-
processing pipeline are explained as follows.

Auto White Balance (AWB). The illumination during the
recording of a picture is different from the illumination when
viewing a picture. However, the white color level depends on
illumination source. In AWB, the color histogram of an image
is performed and analyzed to detect the source of illumination.
The correct parameters of each color channel are used in the next
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Fig. 2 The processing pipeline in normal DSC [1].

image.
Gamma Correction. Display devices can’t accurately display

colors as its input because the display property of display devices
is usually nonlinear. Gamma correction is used to eliminate this
problem. The common solution uses look-up table to convert
pixel values.

Color Filter Array (CFA) Color Interpolation. The image
sensor is covered by a color filter array (CFA), known as the
Bayer array which is shown in Fig. 2. In the Bayer array, each
pixel position only senses one color channel. This processing re-
constructs the missing color information by interpolating neigh-
boring pixels. The characteristics of color response are different
in accordance with image sensors. The interpolation algorithm
is also needed to be modified to fit the characteristic of image
sensor.

Color Conversion. Typical image sensor operates on RGB
color space, but image/video compression algorithms operate on
YCbCr color space. A color space conversion is performed to
transform the image from an RGB color space to a YCbCr color
space.

Edge Detection/ Edge Enhancement. The nature of CFA
color interpolation filters introduces a low-pass filter that
smoothes the edges in the image. In order to enhance the details
in an image, edge detection is used to compute the edge magni-
tude in the luminance channel at each pixel. The edge magnitude
is then scaled and added to the original luminance value to en-
hance the sharpness of the image.

False Color Correction. Since the edge detection/edge en-
hancement are performed in the Y channel of the image, unpro-
cessed chromatic channel introduces misalignment in the edge
pixels color channels. False color correction suppresses the edge
pixels chromatic information to reduce the above effect.

Following the information of pre-processing, a processing
pipeline of the post-processing in HDTV is depicted in Fig. 3.
Post-processing starts from the end of data decompression to the
input of display device. Some applications such as color conver-
sion and gamma correction are used on both processings. Some
applications which are specific for post-processing are introduced
as follows.

Deinterlacing. Interlace format was commonly used in ana-
log television systems to save bandwidth. However, the display
format in common display devices such as LCD is progressive.
Deinterlacing interpolates the insufficient rows by referring to

Fig. 3 The processing pipeline in normal HDTV [16].

neighboring rows or neighboring frames.
Dithering. The color depth of display devices is restricted to

the precision of D/A converter. To show deep color image on the
low-end display devices, dithering adds an intentionally applied
form of noise is used to randomize quantization error, so that the
artifacts caused by the quantization error can be visually reduced.

4. Design Flow of ASIP

Our ASIP-based design flow starts from performance analysis
in algorithm level. Then, the design flow is divided into hardware
(HW) design flow and software (SW) design flow. HW design
flow covers datapath design, then followed by instruction accu-
rate processor design which is then transformed into a cycle ac-
curate processor after the function verification of the algorithm.
SW design flow starts with the performance analysis of a sequen-
tial application written in C. In order to figure out computational
intensive operations in the application, we use tightly-coupled
thread (TCT) instruction accurate simulator [17], TCT simulator
has many evaluation tools which can help users to find out the
hotspots in program and to predict the performance after adding
special instructions. Two examples of datapath design and archi-
tecture design are explained as follows.

4.1 Design of Multi Bank Architecture for Pixel Level Image
Processing

Pixel level image processing in pre/post processing such as
color conversion doesn’t need to refer to neighboring pixels, so
processing performance can be improved by applying SIMD ar-
chitecture. Several data is computed in parallel; therefore, a wider
data memory (64 bit) [2], [18] is commonly adopted in SIMD ar-
chitecture processors. However, the performance of processing
which uses look-up table cannot be effectively improved by using
SIMD architecture [18] due to the single I/O of the data mem-
ory. The memory which is constructed by multi banks seems to
be able to solve this problem, but it fails when the accessed data
are in the same bank. In order to solve the access collision prob-
lem, we did several simulations in different memory architectures
and data allocations, and the probability of access collision is ob-
served. In simulations, we accessed four elements in the table
simultaneously, and we assumed the depth of each element in the
look-up table is 8 bits. Therefore, a 32 bit word can contain 4 ele-
ments. The content of look-up table is assigned to memory word
in raster scan order. Table 1 shows the probability of access col-
lision in different length of word in one memory. Although, the
wider memory word can effectively reduce the collision rate, the
collision rates are still too high to accept.
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Table 1 Access collision rate in different length of word in one memory.

Image Resolution Word length
32 bit 64 bit 128 bit 256 bit

Foreman 176 × 144 87.13% 74.97% 59.48% 43.56%
Mobile 352 × 288 90.70% 83.37% 72.80% 60.50%
Ice 352 × 288 56.37% 43.29% 30.54% 22.00%
Station 1,920 × 1,080 86.52% 66.65% 42.84% 24.73%
Pedestrian 1,920 × 1,080 75.23% 55.25% 33.94% 17.96%

Table 2 Access collision rate in different number of bank of memory.

Image Resolution Bank number
4 banks 8 banks 16 banks 32 banks

Foreman 176 × 144 64.04% 28.79% 9.66% 2.63%
Mobile 352 × 288 70.70% 37.95% 16.83% 6.61%
Ice 352 × 288 28.17% 12.29% 4.72% 1.71%
Station 1,920 × 1,080 56.87% 18.12% 3.59% 0.47%
Pedestrian 1,920 × 1,080 46.55% 11.93% 2.05% 0.31%

Fig. 4 (a) The content of look-up table. (b) The content after allocation in
memory banks.

Table 2 shows the probability of access collision in different
number of memory bank architectures. The width of each bank is
8 bit. The elements with index of a multiple of 4 in look-up table
is assigned to bank0, and the elements with index of a multiple of
1 in the look-up table is assigned to bank1 and so on. As Com-
pared to long memory word architecture, multi-bank architecture
can further reduce the access collision rate. The decrement of the
collision rates is lower than 10% in 32 bank case. However, the
number of bank affects the chip area directly.

Based on the results of above simulations, multi bank is a
feasible solution. We adopted 8 banks architecture as the ba-
sic memory architecture where we can improve the performance
with lesser chip area. In order to further reduce access collision to
about zero, we propose cross data allocation. Figure 4 shows an
example of the proposed data allocation. Elements in the first row
of the look-up table are stored in the first position from bank0 to
bank3 and position 1 to 4 in bank4. Elements in the second row
of the look-up table are stored in the second position from bank0
to bank3 and position 1 to 4 in bank5.

Based on this allocation, 4 parallel access could achieve low
collision, except for the case where the index of the parallel ac-
cess is the multiple of 16. Table 3 shows the collision rate of the
proposed approach,which is 8-bank memory against the 32-bank
memory. It shows the rate of access collision of the proposed
approach is effectively suppressed to less than 1%, with only 8
memory banks are used.

4.2 Reconfigurable Datapath for 2D Image Processing
The target applications of 2D ASIP focus on 2D filtering oper-

ation such as edge detection, and smooth filtering. The character-
istics of these 2D applications which include data input fashion,
the type of computation and data output fashion are analyzed.

Table 3 Access collision rate in different number of bank of memory (the
width of bank is 8 bit).

Image Resolution 8 banks with 32 banks with
cross allocation modulo allocation

Foreman 176 × 144 0.14% 2.63%
Mobile 352 × 288 0.49% 6.61%
Ice 352 × 288 0.13% 1.71%
Station 1,920 × 1,080 0.046% 0.47%
Pedestrian 1,920 × 1,080 0.033% 0.31%

Fig. 5 The examples of 2D filter.

Fig. 6 The design of reconfigurable filter module. (a) The operations in
target applications, (b) Merged circuit.

The similarity of the computation in applications can be utilized
to share hardware resources. A design example of the reconfig-
urable filter module is shown in Figs. 5 and 6. First, we analyzed
our 2D applications. Some examples of 2D image processing
are shown in Fig. 5. We found normal 2D filtering (ex: low pass
filtering) and edge-based filtering (ex: edge detection) have sim-
ilar data access pattern and computation fashion. For example,
the coefficients of filters are symmetry, and MAC operation is
the core processing in applications. Therefore, the core opera-
tions are merged and the multiplexors are used to select the oper-
ation type. A special instruction with configuration information
is used to activate the filter module and some relative logics. As
2D ASIP is designed based on a basic RISC processor, the appli-
cations which cannot be completely supported by reconfigurable
modules can be performed by original pipeline of RISC proces-
sor.

5. Architecture of ASIPs

Processing elements in our image processing engine are im-
plemented in ASIP. ASIPs are designed based on TCT ISA [19],
which is a 4-stage pipelined, Harvard architecture 32-bit RISC
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with local data and instruction memories. The four pipeline
stages are instruction fetch (IF), instruction decode (DC), exe-
cution and memory access (EX), and (register or data memory)
write back (WB). Communication modules are implemented by
extending another stage (DS) after WB stage to accomplish the
parallel processing with other ASIPs.

The proposed image processing engine consisted of three types
of ASIPs in accordance with the types of processing. 1D ASIP is
optimized for 1D filtering processing. The details is explained in
Ref. [20]. In this paper, pixel ASIP and 2D ASIP are introduced.
Pixel ASIP is optimized for applications which don’t need to re-
fer neighboring pixels. 2D ASIP is optimized for 2D filtering
applications.

5.1 Architecture of PXL ASIP
Figure 7 shows the block diagram of PXL ASIP. Colored

blocks are added into the basic RISC processor. The performance
of ASIP for pixel level processing can be effectively improved
by using SIMD architecture except for memory access opera-
tion. Therefore, A SIMD pipeline which can support four 16-bit
computations and eight 8-bit computations is equipped to process
most of the pixel level applications. 32-bit register file is used to
handle data from basic 32-bit pipeline and 64-bit register files is
used to handle data from SIMD pipeline. A permutation mod-
ule is used to extract a part of data from a register, merge two
registers and change data order in a register. An inner product
module is implemented by reusing the arithmetic logics of SIMD
datapath for inter channel operation such as color space conver-
sion. In order to improve multi memory access operation which
cannot be supported by normal SIMD architecture, we design a
reconfigurable multi bank memory module.

Figure 8 is the reconfigurable multi bank memory module.
Eight 1 KB memory banks are used to share look-up table, com-
munication buffers, data storage and stack. Two kinds of ad-
dressing mode are supported and address conversion is handled
by controller. The received data from other ASIPs are first stored
in the receiver queue to avoid memory access conflict from the
pipeline of ASIP at the same time. The memory access from the
pipeline of ASIP has higher priority than the receiver queue. The
address generation unit (AGU) is used to manage the addressing
of communication data. The load and store unit (LSU) is used
to handle the data access from the pipeline of ASIP. The content
of look-up table is loaded with proposed cross data allocation be-
fore the operation of core processing. LUT4 Ex module in Fig. 7

Fig. 7 Block diagram of PXL ASIP.

is used to calculate the address of elements in memory, detect ac-
cess conflict and select available banks. LUT4 Wb module reads
data from memory banks and allocates data to the proper position
in a register. If data fail to be accessed in one cycle, the rest of
unavailable data will be accessed in the following cycles.

In order to support the parallel conditional computation, four
reconfigurable comparison units and four reconfigurable compu-
tation units are used. Figure 9 shows the block diagram of par-
allel comparison module, and Fig. 10 shows the block diagram
of parallel computation module. Conditional branch is widely
used in the image processing to determine the following compu-
tation. Parallel comparison module can be configured by special
instruction. The results of the comparison are stored in the condi-
tion registers for uncompleted comparison computation or for the
following conditional computation. Parallel computation module
can support SIMD computation such as 4 additions. Two ALUs in
each unit can perform true branch computation and false branch
computation at the same time. If the computation cannot be com-
pleted in one cycle, the results will be stored in temp registers and
will be reused in next cycle.

Table 4 shows the special instructions which are added into
PXL ASIP. Most of the special instructions are used to support
64-bit SIMD computation. LUT4 is used to execute the parallel
4 element look-up table access. LDPXL instruction can load data

Fig. 8 Architecture of reconfigurable multi bank memory.

Fig. 9 Block diagram of parallel reconfigurable comparison module.

Fig. 10 Block diagram of parallel computation module.
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Table 4 Special instructions in PXL ASIP.

Instruction Function Description

INPR4 4 element inner product

LUT4 4 element look-up table access

CMPR4 4 element parallel comparison

COMP4 4 element reconfigurable computation

VR2GPR Extract data or permute data from 64-bit register
to 32-bit register

GPR2VR Extract data or permute data from 32-bit register
to 64-bit register

LDPXL Load 4 channel pixel and increment access address

STM64 Store 64-bit data from a vector register to memory

LDM64 Load data from memory to a 64-bit vector register

ZOL Zero overhead loop

SET SPR Initialize special registers (ex: coefficient registers,
shift registers)

Fig. 11 Block diagram of 2D ASIP.

from 4 different banks and increase loading address simultane-
ously. It can effectively reduce the pixel data access time, and the
loaded data can be immediately used by SIMD type instruction
or special computing instruction such as COMP4 and INPR4 to
improve the performance.

5.2 Architecture of 2D ASIP
2D ASIP is mainly designed for 2D filtering applications which

are commonly used in pre/post processing such noise reduction,
and edge enhancement. The limited range of the applications
brings to the design of the ASIP with higher computational ef-
ficiency. Figure 11 shows the block diagram of 2D ASIP. Addi-
tional function modules and registers which are shown in colored
blocks are added into basic processor. Overlap buffers and block
buffers are used to store pixel data from other ASIPs. The slide
window module is used to improve the data access speed. The
filter module is mainly responsible for the processing of 2D filter-
ing. The compare module is used to handle the processing which
has conditional decisions such as edge enhancement. The sort
modules (Sort ex1 and Sort ex2) which can sort and determine
maximum value, minimum value and median value is responsi-
ble for sorting the processing. The PostProc module is respon-
sible for the post processing of the modules in EX stage. When
processing in EX stage is unfinished, the rest of the processings
are executed in PostProc module. The processed pixel can be
transmitted to other ASIP by PDTX or to be stored in registers.

In our previous work [21], a 3×3 slide window register module

Fig. 12 Block diagram of slide window register module.

Fig. 13 Block diagram of filter module.

was designed to improve the accessing of pixel data from mem-
ory. In order to achieve higher performance, we modify this mod-
ule so that it can automatically load data from memory during
memory idle time. Figure 12 shows the block diagram of the
slide window module. After initialization, buffer controller starts
to load data from memory and shift it up automatically. When
window shift instruction is decoded by instruction decoder, win-
dow controller shifts window registers to the left. For 3 × 3 fil-
tering applications, only the registers in bottom right corner are
used to save shift time. When the size of the processing window
is bigger than 5 × 5, the normal memory access instructions are
used to load the uncover data.

Figure 13 shows the block diagram of a filter module. The
design of the filter module has been introduced in Section 4. It
is designed to improve the performance of the filtering operation
such as multiply-after-sum or add-after-multiply. The computa-
tion of 5 × 5 filtering operation usually can be completed in one
or two cycles.

The sorting module is implemented in two pipeline stages, the
operation in the first pipeline stage is used to perform column
sorting, and the operation in the second stage is used to perform
row sorting. The sort instruction controls the type of sorting by
selecting the needed output from sorting logics. The details of the
sorting module is depicted in Fig. 14.

The reconfigurable datapath in post processing (PostProc)
module which is mainly designed to complete the processing af-
ter EX pipeline stage is shown in Fig. 15. It can support 6 types
of computation.

1. Add Add Mul Clip. Four inputs which come from pipeline
registers are summed up, and then it is multiplied by a coefficient,
followed by the clip operation. Smooth filtering uses this opera-
tion.

2. Sum4. Four inputs which come from pipeline registers are
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Fig. 14 Block diagram of sorting module.

Fig. 15 Block diagram of post processing module.

Table 5 Special instructions in 2D ASIP.

Instruction Function Description

SET SPR Initialize special registers (ex: coefficient registers,
shift registers)

WINSH Slide window loads new pixels or shift

ZOL Zero overhead loop

FLT2D 2D filtering operation

MOV SPR Move data from window register to general purpose
register

SORT Provide maximum, minimum and median sorting

POST PROC Processing by using PostProc module

EE POST Post processing for condition-driven computation

summed up. It can be used to sum the result of 3 × 3 filtering in
EX stage.

3. Sum4 Sum2. Four inputs and other two inputs which come
from pipeline registers are summed up, respectively. It can be use
to sum the result of 5 × 5 filtering in EX stage.

4. Add Sub Rsh. Two pairs of two inputs are added first, and
the first result is subtracted from the second result. The edge-
related processing can use this computation.

5. Add Sub Rsh Clip. It has identical operations with
Add Sub Rsh, with an additional clip operation added as the last
operation.

6. Add Abs Add Clip. It can be used to complete the process-
ing which has magnitude computation such as edge detection.

The result after computation can be stored in the general pur-
pose registers or the accumulation registers. PDTX transmission
is activated in next pipeline stage, if the data is written into the
assigned general purpose registers.

The details of the special instructions designed in 2D ASIP
are explained in Table 5. Instruction SPR SET is used to set the

Fig. 16 Architecture of multi block-pipe image processing unit.

coefficients of multiplication, shift, clip and other initialization
parameters, while WINSH is used to shift window register right.
FLT2D controls the filter module and the PostProc module to per-
form the filtering processing. Sort module is activated by SORT
instruction to execute the different types of sorting processing.
POST PROC controls PostProc module to finish the incomplete
processing of the previous computation.

6. System Architecture

In order to support the processing of high resolution applica-
tions, we design a multi-ASIP parallel processing architecture.
Since, the interconnection and communication between ASIPs
affect the data flow, bandwidth and performance of image pro-
cessing engine, the design of parallel architecture is focused on
low communication overhead and high scalability.

6.1 Architecture of Image Processing Engine
Parallel architecture is designed based on the following as-

sumptions. In pre-processing application, we assume that the data
comes from camera sensor is connected to the system bus. In
post-processing application, we assume that the data is decoded
and stored in memory which is also connected to the system
bus. The architecture of the processing engine which is shown
in Fig. 16 can be categorized into three parts; front-end, block-
pipes and back-end, respectively. 1) Front-end includes one host
processor, two memories, one DMA controller (dispatcher) and
one video decoder. At first, host processor initializes the dis-
patcher. Then, the video decoder outputs the decoded block to
memory. Once the data is gathered enough, the dispatcher moves
a decoded block to a specific block-pipe according to its dispatch
table. 2) A block-pipe consists of 3 kinds of ASIP. All types
of image processing are performed inside the block-pipes, and
several block-pipes are used to process an image in parallel to
improve the processing performance. 1D H ASIPs, 1D V ASIPs
and 2D ASIPs in a block-pipe are connected to the same type of
ASIP in the next block-pipe and shared memories to process the
boundary pixel processing. 3) Back-end operates in the opposite
way to the front-end. In pre-processing application, the processed
data is sent to encoder directly. While in post-processing appli-
cation, pixel blocks are stored in memory and then sent to LCD
driver in raster scan order. The number of block-pipes can be
modified according to the performance requirement, but the max-
imum computing capability will be limited by the throughput of
the front-end and the back-end.

6.2 Block-pipe Subsystem
Block-pipe is the basic processing unit in our image process-
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Fig. 17 Interconnection of block-pipe.

ing engine, and multiple block-pipe is used to process one image
in parallel. Figure 17. shows the block diagram of a block-pipe.
Three types of ASIP which are PXL ASIP, 1D ASIP and 2D ASIP
together with two communication modules (CM) which are con-
nected to the frond-end and the back-end are equipped inside.
A full crossbar is used to connect these ASIPs and CMs. ASIPs
which are used to execute the horizontal processing such as 1D H
ASIP (horizontal processing executed 1D ASIP) and 2D ASIP are
connected to ASIPs in the next block-pipe to transmit necessary
pixels. ASIPs which are used to execute vertical processing such
as 1D V ASIP (vertical processing executed 1D ASIP) and 2D
ASIP can store pixels which are not able to be processed in cur-
rent block into its data memory or shard memory. Moreover, the
design of block-pipe has also been considered its scalability so
that the users can modify the number of block-pipe depends on
the performance requirement.

7. Experiment and Comparison

Processor Designer [22] is used to implement all ASIPs. This
is aimed to shorten the development time of the ASIPs by de-
scribing the architecture in high level architecture description lan-
guage (LISA) [23]. ASIPs in an image signal processing engine
are designed based on the same basic processor to save the de-
velopment time of basic instructions. The details of processor
such as pipeline registers, stall mechanism, external memory in-
terface can be handled by LISA, hence the designer can focus
on the architecture design, and subsequently improve the devel-
opment efficiency. Processor Designer is also used to generate
cycle-accurate SystemC [24] model, HDL and SW development
tools (assembler and linker). The architecture of the whole image
processing engine is built at system level using the commercial
ESL tool [25]. All cycle accurate simulations in this section are
carried out on this platform.

7.1 Flexibility Evaluation
The ASIPs are designed to perform high performance in

various applications. To estimate the flexibility of the pro-
posed ASIPs, several applications are run on the proposed ASIP,
GPP (ARM946), a DSP (TMS320C64x) and our previous work
(TCTPE-2DX) in order to put their performance in comparison.
Applications executed by ARM946 are compiled using ARM C
Compiler (armcc) and evaluated using Realview debugger [27].
Applications executed by TMS320C64x are compiled using TI
compiler (CCS) with level 3 optimization or TI image library [28]
and they are then evaluated using DSP development board.

The design concept of PXL ASIP is to support a wider range
of pixel level image processing with reconfigurable multi bank
memory module and SIMD type computation modules. To prove

Table 6 Comparison of execution cycle per pixel of pixel level processing
with other processors for different applications.

Processor Color
conversion

Gamma
correction

Dithering

ARM946 71.3 15.9 25.0
TMS320C64x 29.8 6.4 35.8
TCTPE-2DX 8.9 11 41
PXL ASIP 4.2 3.3 5.36

ARM946: 441 MHz, TMS320C64x: 600 MHz,
TCTPE-2DX: 500 MHz, PXL ASIP: 400 MHz.

Table 7 Comparison of execution cycle per pixel of 2D image processing
with other processors for different applications.

Processor Color
Interpola-
tion

3×3 Edge
Detection

Median
Filtering

5×5 Edge
Detection

ARM946 68.6 81.5 218 147
TMS320C64x 12.3 2.61∗ 4∗ 5.8∗

TCTPE-2DX 9.32 7.36 44 34.7
2D ASIP 5.06 3.54 3.66 5.9

ARM946: 441 MHz, TMS320C64x: 600 MHz,
TCTPE-2DX: 500 MHz, 2D ASIP: 400 MHz. * TI IMGLIB.

the flexibility of PXL ASIP, three types of processing are tested.
Color conversion is used to test the performance of inter chan-
nel computation. The performance of parallel memory access is
tested by gamma correction. Dithering is used to test the per-
formance of processing which includes conditional computation.
The simulation results of different applications are shown in Ta-
ble 6. In order to estimate the performance without the influ-
ence of process technology and circuit level optimization, the
number of cycles per pixel is used as the unit. Color conver-
sion can be completed within 4.2 cycle/pixel that include pixel
loading, core processing and pixel storing. The address generate
unit of the reconfigurable multi bank memory module automat-
ically computes the pixel address and increase the address after
loading by executing LDPXL instruction. LDPXL contributes
1 cycle/pixel loading. The core processing of color conversion
is executed by using the parallel computation module for 3 cy-
cles. In gamma correction, 4 channel data are loaded by using
LDPXL instruction. LUT4 instruction performs 4 look-up table
access operations for 1 cycle. Two VR2GPR instructions are used
to move the data to the general purpose register and transmit to
next ASIP. The 5.36 cycles/pixel of the computation of dither-
ing mainly benefit from the parallel reconfigurable comparison
module and the parallel computation module. COMP4 ALU0,
CMPR4 and COMP4 COND instructions are massively used in
dithering. By Comparing other processors, it can be concluded
that the excellent performance is achieved by using SIMD type
special instructions and reconfigurable multi bank memory mod-
ule.

Since 2D ASIP is designed focusing on 2D filtering, we test
four typical 2D processing which are commonly used in the
pre/post processing to examine the flexibility of the 2D ASIP.
The results of the simulation are shown in Table 7. Color inter-
polation generates the lack channels of each pixel by referring to
the neighboring pixels. The filter module and the post processing
module of 2D ASIP are used to achieve 5.06 cycle/pixel. 3 × 3
edge detection is used to test the processing that the size of the
filter as 3 × 3, as it is widely used in the high pass filter. The
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Table 8 Improvement of PXL ASIP compared to our previous works.

Processor Color Gamma Dithering
Conversion Correction

CPP Speedup CPP Speedup CPP Speedup
TCTPE 41.29 1× 14.08 1× 44.18 1×
TCTPE-2DX 8.92 3.15× 11 1.28× 41 1.07×
PXL ASIP 4.15 9.95× 3.27 4.3× 5.36 8.24×
CPP: Cycles/Pixel.
TCTPE: 400 MHz, TCTPE-2DX: 500 MHz, PXL ASIP: 400 MHz.

Table 10 Synthesis results comparison.

ARM946E-S
[26]

TMS320
C64X [29]

TCTPE (original
CM) [19]

TCTPE-2DX
[21]

2D ASIP PXL ASIP

Technology 90 nm 130 nm 180 nm 90 nm 90 nm 90 nm
Frequency 441 MHz 600 MHz 100 MHz 500 MHz 400 MHz 400 MHz
Memory/Cache 8 kB/8 kB 16 kB/16 kB 4 kB/4 kB 4 kB/4 kB 4 kB/8 kB 4 kB/8 kB
size (P$/D$)
Area (mm2) 0.613 72 0.49 0.222 0.219 0.264

(w/o cache) (with cache) (w/o cache) (w/o cache) (w/o cache) (w/o cache)
Normalized area
(to 90nma)

0.613 34.5 0.123 0.222 0.219 0.264

slide window register module with 3 × 3 window mode, the fil-
ter module and the post processing module are used to provide
3.54 cycle/pixel in 3 × 3 edge detection. 5 × 5 edge detection
is used to show 2D ASIP has no significant decrement in per-
formance even in the larger filter size. In 5 × 5 edge detection,
The change is only the mode of slide window register module.
Median filtering is used to test the performance of sorting mod-
ule, 3.66 cycle/pixel is achieved. Although, 2D ASIP cannot gain
the better performance against DSP, the slower performance over
DSP is acceptable in our case. Moreover, the proposed ASIPs
have lower working frequency and extremely small area as com-
pared to DSP, because lower power consumption and lower cost
is more significant for embedded systems.

7.2 Performance and Area Evaluation
In order to support high resolution image processing, the tar-

get performance of ASIPs and the implementation conditions
have to be defined. Our initial target of performance is to pro-
cess Full HD image using an ASIP, with the working frequency
of ASIPs at 400 MHz. The maximum allowable processing
cycles for each pixel can be calculated by dividing the work-
ing frequency with the number of pixel for one second, that is
400 M/(1,920 × 1,080 × 30) = 6.43 cycles per pixel.

We compare the proposed ASIP with our previous works to
show the performance improvement. TCTPE is the basic RISC
processor which is used to design ASIPs. TCTPE-2DX ASIP [21]
is the ASIP that we have developed to process 2D processing
and pixel level processing. Its flexible datapath can support vari-
ous applications, but its flexibility scarifies the computational ef-
ficiency. In order to satisfy the performance requirements, we
decide to design two ASIPs for each dimension of image pro-
cessing. We use the same applications which are used in pre-
vious subsection to estimate the improvement of performance.
The performance of PXL ASIP for different pixel level process-
ings improves from 4 times to 10 times against the basic RISC
processor, and it shows 3 times to 8 times improvement against
TCTPE-2DX. The SIMD type comparison instruction, reconfig-
urable arithmetic instruction and parallel memory access instruc-

Table 9 Improvement of 2D ASIP compared to our previous works.

Processor Color interpolation 3×3 Edge Detection
(bilinear) (Sobel)

CPP Speedup CPP Speedup
TCTPE 29.40 1× 52.34 1×
TCTPE-2DX 9.32 3.15× 7.36 7.11×
2D ASIP 5.06 5.81× 3.54 14.79×
Processor Median Filtering 5×5 Edge Detection

(Sobel)
CPP Speedup CPP Speedup

TCTPE 160.56 1× 161 1×
TCTPE-2DX 44.03 3.65× 34.7 4.6×
2D ASIP 3.66 43.87× 5.9 27.3×
CPP: Cycles/Pixel.
TCTPE: 400 MHz, TCTPE-2DX: 500 MHz, 2D ASIP: 400 MHz.

tion provide high efficient computation for most of the pixel level
image processings are the main reason of excessive improvement
in PXL ASIP. The performance of new 2D ASIP for 2D dif-
ferent processing improves from 5 times to 40 times against the
basic RISC processor. Compared to TCTPE-2DX [21], the new
2D ASIP shows 2 times to 14 times improvement. The simulation
results are shown in Tables 8 and 9.

The synthesis results are shown in Table 10. The ancestor
of these two ASIPs is TCTPE [19] which has a general purpose
communication module. Its area is about 0.123 mm2. TCTPE-
2DX [21] added some special instructions into TCTPE to support
the pixel level image processing and the 2D image processing.
The area of TCTPE-2DX increases to 0.222 mm2. In order to
support high resolution image processing, general purpose com-
munication module is removed and message-passing fashion the
communication pipeline which is optimized for parallel image
processing is equipped into the system. 2D ASIP which is de-
signed based on TCTPE with message-passing fashion communi-
cation pipeline has 1.78 times larger area than its base processor.
The area of PXL ASIP is 0.264 mm2 due to SIMD datapath and
64-bit register file. PXL ASIP has 2.14 times larger area than its
base processor.

8. Conclusion and Discussion

In this paper, we discussed the design of an image processing
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engine. We choose ASIP as our processing element, because its
flexibility and computational efficiency meet the requirements of
pre/post processing. Since our ASIPs are designed based on a
basic RISC processor which has no communication ability, the
message-passing fashion communication pipeline is employed in
the first stage. Then, we analyze the target applications and de-
sign special instructions to improve the processing performance
of ASIPs. A reconfigurable multi-bank memory module and
SIMD type computation pipeline make a maximum of 9.95 times
improvement compared to its basic processor. New 2D ASIP im-
proves the low computational efficiency drawback of its previous
work. An improved window slide module increases the data ac-
cess speed through automatic loading. Filter module, PostProc
module and other additional modules which are optimized for 2D
image processing can effectively reduce the processing time. A
maximum of 43.87 times performance improvement is achieved.
The implementation time of ASIPs is shortened by using high
level architecture description language. However, the analysis of
applications and the design of reconfigurable datapath are still
to be done manually. We derive several design rules by going
through these processes. Therefore, we believe these processes
can be performed automatically, and the design automation can
further shorten the development time of ASIP.
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