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Abstract: This paper proposes a new privacy-preserving recommendation method classified into a randomized per-
turbation scheme in which a user adds a random noise to the original rating value and a server provides a disguised data
to allow users to predict the rating value for unseen items. The proposed scheme performs a perturbation in a random-
ized response scheme, which preserves a higher degree of privacy than that of an additive perturbation. To address the
accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function,
derived from Bayes’ estimation for the reconstruction of the original distribution, to revise the similarity between items
computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.
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1. Introduction

Collaborative Filtering (CF) [10], [11], [12] is a useful method
to predict rating values for unseen items based on the preference
of communities who have evaluated the target items and have a
similar preference with the users who wish to get a recommenda-
tion. CF has potential applications in the age of Internet where a
huge number of items are available on-line and hence users worry
about the best choice out of them. These personalized recommen-
dations, however, raise the privacy concerns, too [6]. The per-
sonal preference database has a risk to be disclosed by malicious
insiders.

In order to address the privacy concern in collaborative filter-
ing, there have been several attempts so far. The first one, called
the cryptographic approach, is made by Canny [7], [8], using an
additive homomorphic cryptosystem for performing the Singu-
lar Value Decomposition (SVD) of a matrix between items and
users. The scheme requires a number of iterative vector additions,
which suffers from intensive computational costs to perform. In
Ref. [14], Ahmad and Khokhar studied the modified version of
Canny’s protocol using the modified ElGamal cryptosystem in-
stead of the Paillier [9]. These approaches suffer from high com-
putation and communication costs for cryptographic operations.

The second approach of privacy-preserving CF is a randomized
algorithm, often referred to as a random perturbation, introduced
by Agrawal and Srikant in Ref. [1]. The idea is to add a random
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noise to an original data to preserve the privacy of the original
rating against the server, called disguised data, and then estimate
the original distribution from many collected disguised vectors.
Polat and Du proposed CF schemes for the Pearson correlation-
based algorithm [2]. Their idea was based on a hypothesis that the
random noise uniformly chosen from the range [α,+α] decreases
to zero, namely, letting A = (a1, . . . , an), B = (bi, . . . , bn), and
R = (r1, . . . , rn) be the original vectors and the random vector, the
scalar product is estimated as

(A + R) · (B + R) =
∑

(aibi + airi + biri + r2
i ) ≈
∑

aibi,

where
∑

airi and
∑

r2
i will converge to zero as aggregated from

many users. However, Zhang et al. pointed out that an additive
perturbation does not preserve the privacy as much as had been
believed by showing the experiment to derive an amount of the
original data in Refs. [4], [5]. Huang, Du and Chen also applied
the Principal Component Analysis (PCA) to the disguised data to
retrieve partial original data [3].

In this paper, we suggest that the perturbation called random-

ized response preserves the privacy better than the additive per-
turbation. In the randomized response, we replace the original
value by a uniformly chosen value in a pre-determined probabil-
ity, which yields uniformly distributed disguised data, while the
additive perturbation preserves the original distribution that con-
tains significant information to recover the original information.
Hence, the randomized response is expected to be robust against
attacks such as PCA.

In the cost of privacy degree, the randomized response based
perturbation may suffer from the reduction of the accuracy of the
prediction. We claim that Polat’s hypothesis does not hold in a
randomized response since the average of the random noise does
not necessary amounts to zero any more. To improve the accu-
racy in CF, we suggest to use the posterior probability distribu-

tion function P(X|Y), which is computed in Bayes’ estimation to
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reconstruct the original distribution X from the disguised Y . In
this paper, we propose a reconstruction scheme based on Bayes’
rule and the scheme by Agrawal and Srikant so that we apply
to the perturbation based on the randomized response. We show
that the similarity between items computed from the disguised
data Y can be revised based on the posterior probability distribu-
tion P(X|Y). Our simple experiment demonstrates the accuracy
improvement of our proposed CF method.

Our contributions of this work are as follows.
( 1 ) We propose a new perturbation method based on a random-

ized response to preserve the privacy of a rating value.
( 2 ) We present a new reconstruction method for a randomized

response based perturbed data.
( 3 ) We present a new CF method to predict a rating value based

on the posterior probability distribution given from the re-
vised similarity between items.

( 4 ) We present experimental results showing the accuracy im-
provement.

The rest of the paper is organized as follows. In Section 2, we
show the fundamental model and definitions of primitives used
to construct our protocol. We show our protocol in Section 3
with simple numerical examples. The performance evaluations
are given in Section 4 and finally, we conclude the paper.

2. Preliminaries

2.1 Model
Let U = {u1, u2, . . . , un} be a set of users, where n is the num-

ber of users. Let I = {i1, i2, . . . , im} be a set of items, where m is
the number of items. Let ri, j be a rating given by user ui for item
j, for i = 1, . . . , n, and j = 1, . . . ,m. Users do not evaluate all
items. We denote a missing rating by ri, j = φ. We assume that
the matrix of ratings contains many missing elements, that is, a
sparse matrix.

The goal of CF is to predict a missing rating based on the other
users’ preference to the given item. Our model supposes that
users are willing to get recommendations for items that they have
not seen before, but at the same time they are concerned about the
privacy of ratings made by themselves.

2.2 User-based Collaborative Filtering Algorithm
Collaborative Filtering is an algorithm to estimate missing rat-

ings based on the preference database. The prediction of user i

for item k is given by a weighted average of neighbor users whose
ratings are expected to be similar to those of the target user:

PU
i,k = ri,· +

∑
j∈Uk

s(ui, u j)(r j,k − r j,·)∑
j∈Uk
|s(ui, u j)| (1)

where Uk is the set of users who have rated the k-th item, i.e.,
Uk = {i ∈ U

∣∣∣ rik � φ}, and r j,· is the mean of all ratings made by
user j. The weight s(ui, u j) is the similarity between users ui and
u j. Although there exist many definitions of the similarity includ-
ing the Pearson correlation coefficient, or the Euclidean distance,
in this work, we use the simplest Cosine correlation defined by

s(ui, u j) =

∑n
k=1 ri,kr j,k√

r2
i,1 + · · · + r2

i,n

√
r2

j,1 + · · · + r2
j,n

. (2)

Table 1 Original probability distribution of A, P(A).

a 0 1 2 3

P(A = a) 0.1 0.3 0.1 0.5

Table 2 Conditional probability distribution P(B|A), where the probability
to remain same as the original, p = 0.4.

B\A 0 1 2 3

0 0.4 0.2 0.2 0.2
1 0.2 0.4 0.2 0.2
2 0.2 0.2 0.4 0.2
3 0.2 0.2 0.2 0.4

Table 3 Probability distribution of the disguised vector P(B).

b 0 1 2 3

P(B = b) 0.22 0.26 0.22 0.3

Table 4 The first and second estimations for the posterior distribution of
A = a in the reconstruction algorithm.

a 0 1 2 3

P1(A = a) 0.22 0.26 0.22 0.31
P2(A = a) 0.21 0.26 0.21 0.33

2.2.1 Randomized Response
We demonstrate how a randomized response works with a sim-

ple instance. Let A be a random variable chosen from a probabil-
ity distribution defined in Table 1.

A randomized response B of A with the conditional probability
P(B|A) given by Table 2, in which an original value is replaced by
a randomly chosen data from the range, {0, 1, 2, 3}, with a prob-
ability of 1 − p, i.e., p is the probability to be left as it was. Ta-
ble 3 shows the result of the probability distribution of B, modi-
fied from A in the randomized response with p = 0.4. The ran-
domized value is almost uniformly distributed around 0.3, while
the original value was skewed at A = 3 as the highest probability.
2.2.2 Reconstructing the Original Distribution

Given the probability distribution of a randomized response,
P(B), and the conditional probability to be used to disguise the
original distribution, P(B|A), we would like to estimate the orig-
inal distribution of P(A). The solution to the problem was given
by Agrawal and Srikant in the algorithm known as “reconstruc-
tion algorithm” [1].

We begin with an initial estimation as P0(A) = P(B), and use
Bayes’ rule to estimate the i-th posterior distribution function as

Pi(A|B) =
P(B|A)P(A)

P(B)
(3)

=
P(B|A)Pi−1(A)∑

a∈A P(B|A = a)Pi−1(A = a)
(4)

which follows the corresponding posterior probability of A given
by the average for possible values in the range as

P1(A) =
∑
b∈B

P0(A|B = b)P(B = b).

After a sufficient number of iterations of estimation by Pi+1(A) =
Pi(A), we have the convergence of the estimation, indicated as
P∗. The estimated distribution would be close to the original one
as illustrated in Table 4.

2.3 Item-based Collaborative Filtering
Collaborative filtering (CF) is a method to predict the ratings of
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Table 5 Matrix of original rating values (RX).

i1 i2 i3 i4 i5
u1 2 2 3 1
u2 1 3 2 3
u3 2 3 3 2
u4 3 2 ∗ 2 2

an unseen item based on the similarities between users, or items,
known as user-based and item-based CFs, respectively. In the
paper, we study the latter one as for the base algorithm to be ex-
tended toward privacy preservation.

Let V be the range of the rating value, and ru,i ∈ V be a rating
value for item i evaluated by user u. Let R be an n by m matrix of
rating values, where n and m are the numbers of users, and items,
respectively. Table 5 is an example matrix with n = 4 and m = 5.
Note that users don’t evaluate all items and empty cells indicate
missing values.

According to the item-based CF algorithm, a rating value indi-
cated as ∗ is predicted by *1

ru,i =

∑m
j s j,iru, j∑
j | s j,i | , (5)

where si, j is a similarity between items i and j. An arbitrary defi-
nition of the similarity can be used here. Because of the simplic-
ity, we use the cosine similarity defined by

s j,i =

∑n
k=1 rk,irk, j√

r2
1,i + · · · + r2

n,i

√
r2

1, j + · · · + r2
n, j

. (6)

3. Proposed Method

3.1 Idea
The goal of privacy-preserving collaborative filtering is to pre-

dict rating values as accurately as possible, given the probability
p to randomize the original matrix RX and the disguised matrix
RY .

The privacy of a rating value is preserved since the original
values are disguised by the randomized values. The degree of
privacy in the randomized response is expected to be higher than
that of the additive perturbation in which the original value X is
randomized by a random noise R as Y = X +R because the distri-
bution of Y is skewed as evenly in the randomized response, while
the random variable Y in the additive perturbation is distributed
almost identically to the original X.

Without learning the original rating matrix RX , we may esti-
mate the rating value from the disguised matrix RX but we have
to compromise the accuracy of prediction in the cost of privacy.
The accuracy is not as high as that of the prediction from the orig-
inal matrix RX .

Our approach for improving the accuracy is to use the posterior
probability distribution function P(X|Y) given via the reconstruc-
tion processes. We use the additional information not only for
reconstructing the original distribution but also for predicting the
rating for missing items. Namely, our formalized problem is to

*1 We use a simplified equation for prediction without z-score assuming
rating values are distributed with mean of zero and variance of 1 for all
items. The simplification makes our modification easier and can be ex-
tended if we wish to improve accuracy.

Fig. 1 The proposed scheme for privacy-preserving collaborative filtering.

Table 6 Matrix of disguised rating values RY .

i1 i2 i3 i4 i5
u1 2 3 1 1
u2 1 1 2 1
u3 1 3 3
u4 3 2 ∗ 2 3

Table 7 Posterior probability distribution P(X|Y) with p = 0.4.

Y\X 0 1 2 3

0 0.37 0.18 0.23 0.22
1 0.19 0.36 0.23 0.22
2 0.18 0.17 0.44 0.21
3 0.18 0.17 0.22 0.43

predict rating values from P(X|Y) in addition to the disguised ma-
trix RY and the probability p of retention a value in the random-
ization. The accuracy is expected to be improved since we have
the estimation of the probability distribution closer to the original
one, which must be useful to approximate the similarity between
items more accurately.

3.2 New Scheme – Collaborative Filtering with Expected
Similarities

We illustrate our proposed scheme in Fig. 1. Each user ran-
domizes his/her original rating vectors X according to the com-
mon probability p before submitting to a server. The random-
ization processes are performed independently from users. The
randomized response y of the original rating value ru,i is defined
by

y =

⎧⎪⎪⎨⎪⎪⎩ ru,i w./p. = p,
v ∈ V − {ru, j} otherwise,

(7)

where p is a probability that the y is equal to the original value.
The server collects the disguised vectors Y from all users to

form the matrix RY and then applies the Bayes’ reconstruction to
obtain the posterior probability distribution of Z. For instance,
Table 7 shows the posterior probability distribution of P∗(X|Y),
estimated from the disguised matrix of RY in Table 6 and P(X|Y)
in Table 5, which is given from the probability that the random-
ized value is the same to the original value as p = 0.4.

Finally, any party (users and server) allows to predict the rating
value for an arbitrary item from the published disguised matrix RY

and the posterior probability distribution of Z, which is close to
the original one of X, in Algorithm 1.

4. Evaluation

4.1 Accuracy
In order to evaluate the improvement in accuracy in the pro-

posed scheme, we compare it with a prediction using the similar-
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Algorithm 1 PPCF (RY ,P(Y |X))
Input: disguised matrix RY , conditional probability of P(Y |X)

Out: predicted rating value rE
u,i

Step 1 Let W = Y1 · Y2 be a random variable of product of two disguised

rating values Y1 and Y2. Compute the probability distribution of W by

P(W |Y1,Y2) =
∑

W=α·β
P(X = α|Y1) · P(X = β|Y2).

Step 2 Compute the expected value of W as

E[W |Y1,Y2] =
∑
γ∈V2

P(W = γ|Y1,Y2),

where V2 is a range of product of two Vs, i.e., letting V = {1, . . . , v}, we

have V2 = {1, . . . , v2}.
Step 3 Compute the expected value of Cosine similarity between item i and

j, sE
i, j, defined by Eq. (6), by

sE
i, j = E[S i, j |RY ] =

E[
∑n

u rX
u,i · rX

u, j |RY ]

E
[√∑

u(rX
u,i)

2
√∑

u(rX
u, j)

2
]

=

∑n
u E[W |Y1 = rY

u,i,Y2 = rY
u, j]√∑

u(rY
u,i)

2
√∑

u(rY
u, j)

2
,

where we assume that the perturbation does not change the mean of the

squared sum of norm of the original matrix RX , which is replaced by

that of the disguised matrix RX at the denominator.

Step 4 Predict the rating of user u for item i using the revised similarity sE
ii, j

and the collaborative filtering prediction, Eq. (5),

rE
u,i =

∑m
j S E

i, j · rX
u, j∑m

j S E
i, j

.

ity computed from a disguised matrix RY without correcting.
Our experiment uses the original matrix RX and the disguised

matrix RY using probability p = 0.4, shown in Tables 5 and 6,
respectively. The matrix consists of rating values in the range
V = {1, 2, 3} for n = 4 users, and m = 5 items. The value ri,u = 0
indicates a missing value.

Figure 2 shows the result of the reconstruction scheme with
distributions of rating values in the original matrix X, the dis-
guised matrix Y with p = 0.4, and the reconstructed one Z, which
is estimated by Bayes rule in 50 iterations. We observe that the re-
construction successfully makes the distribution of Z close to the
original X, while the disguised values in Y are distributed nearly
uniformly (with about 0.25 probability) and hence the original
value is hard to be guessed from a single submitted rating value.
The number of iterations to converge depends on the original dis-
tribution and the probability to randomize.

We revise the disguised similarity with the posterior probabil-
ity distribution P(X|Y) obtained through the reconstruction pro-
cesses. For instance, given two disguised values Y1 = 2 and
Y2 = 3, we can compute the probability distribution of the prod-
uct W(= Y1 · Y2) for all possible combinations of X1 and X2, as
follows

P(W |Y1, Y2) =
∑

W=α1 ·α2

P(α1 · α2|Y1,Y2)

=
∑

W=α1 ·α2

P(X1 = α|Y1)P(X2 = α2|Y2),

Fig. 2 Distribution of original, disguised and reconstructed values.

Fig. 3 Probability distribution of W(= Y1 · Y2) given Y1 = 2 and Y2 = 3,
P(W |Y1 = 2,Y2 = 3).

Table 8 Expected value of product of rating values E[W |Y1,Y2].

Y2\Y1 0 1 2 3 sum

0 1.69 1.92 2.18 2.47 8.26
1 1.92 2.19 2.49 2.81 9.41
2 2.18 2.49 2.82 3.19 10.68
3 2.47 2.81 3.19 3.16 11.63

Table 9 Expected value of similarity between items E[S i, j |RY ].

i1 i2 i3 i4 i5
i1 − 0.60 0.46 0.66 0.54
i2 0.60 − 0.46 0.65 0.56
i3 0.46 0.46 − 0.50 0.44
i4 0.66 0.65 0.50 − 0.62
i5 0.54 0.56 0.44 0.62 −

which follows the distribution shown in Fig. 3. The most likely
value for W is 0, followed by the 2nd highest W = 6 = 2 · 3.
Taking average for W = 1, . . . , 9, we have the revised product
E[W |Y1,Y2] = 3.19, which will be the primary element to eval-
uate the similarity for two items in Eq. (2). If we just use the
disguised matrix RY , the product of 2 · 3 gives 6 > 3.19. The
difference would work to improve the prediction accuracy.

In the same way, we have the expected value of products of rat-
ing values for Y1, Y2 ∈ V and the revised similarity matrix in Ta-
bles 8 and 9, respectively. We illustrate how the revised similarity
is distributed as close as the original one in Fig. 4, where the re-
vised similarity S Z and the disguised similarity (without revision
process) S Y are plotted with respect to the original similarity S X .
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Fig. 4 Revised similarities with regard to original values, (S X , S Y , S E).

Fig. 5 Predicted rating values in collaborative filtering from original, dis-
guised and revised similarities, rX , rY and rE .

Table 10 Mean absolute error.

MAE Standard deviation

Original 0.968 1.171
Disguised 1.033 1.204
Proposed 1.009 1.228

Based on the revised similarity, we apply the CF to predict the
rating value for unseen items and show the distribution of pre-
dicted values with respect to the original values in Fig. 5. We
show distributions from the original rating matrix X, which lies
along the linear line, from the disguised matrix Y , and the recon-
structed values Z, which are plotted closely to the original one.

We summarize the Mean Absolute Error (MAE) of predic-
tion for the proposed scheme in Table 10, defined by MAEE =∑

u,i |rX
u,i − rE

u,i| for the proposed scheme, and the MAE for the dis-
guised matrix as MAEY =

∑
u,i |rX

u,i − rY
u,i|. In the summary, the

proposed scheme reduces the error in the prediction. The reason
of the failure of prediction for some items includes the skew in the
experimental matrix and the negative effect of a missing value.

4.2 Hypothesis Testing
The difference of MAE between the proposed scheme and

the disguised one is 0.024 and may not be significant for other
datasets. In order to verify the reliability of the experiment, we
conduct a statistical hypothesis test.

The null hypothesis is

Fig. 6 Distribution of differences of prediction between the disguised and
the proposed scheme.

H0 : MAEE ≥ MAEY

and the alternative is

HA : MAEE < MAEY .

In our study, a rating value is predicted from a simple disguised
similarity (disguised) and from the revised similarity (proposed).
Hence, we examine the paired t-test for the analysis, rather than
considering the two sets of observations to be distinct samples.

The mean of the set of differences is

d =
1

nm

∑
u,i

ryu,i − re
u,i = 0.34

and the standard deviation of the difference is

sd =

√
ryu,i − re

u,i − d

nm − 1
= 0.39789.

As Fig. 6 shows, the differences can be considered to be approxi-
mately normally distributed, with the center being shifted toward
positive. Therefore, H0 can be tested by computing the statistic

t =
d − 0

sd/
√

nm
= 3.8214.

If the null hypothesis is true, the quantity has t distribution with
nm − 1 = 19 degree of freedom and p = 0.000576. Rejecting the
null hypothesis at 0.001 level, we conclude that there is a signif-
icant difference of prediction between the proposed scheme and
the disguised one [2].

4.3 Robustness
Huang, Du and Chen claimed that the additive perturbation is

not secure since using the PCA, the original data can be recon-
structed and a private information can be disclosed [3]. In an ad-
ditive perturbation such as Ref. [2], random numbers are indepen-
dent for each attribute. Their correlations are zero. Hence, their
variance is evenly distributed. The PCA transformation allows an
attacker to remove the random numbers’ variance as follows.

Let C be the covariance matrix derived from the disguised Y .
( 1 ) Conduct PCA to get C = QΛQT , where Λ is a diagonal ma-

trix of eigenvalues.
( 2 ) Let Q̂ be the first κ columns of Q.
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Table 12 Comparison of privacy preserving collaborative filtering schemes.

scheme Canny [7] Polat and Du [2] Proposed

randomization cryptographic additive perturbation randomized response
accuracy high (no error) low (inaccurate if sufficient

randomness provided)
better (low but can be im-
proved via the expected value)

robustness secure under computational
assumption

weak (vulnerable by the PCA-
based reconstruction)

better

performance heavy (suffered by the encryp-
tion cost for each value)

lightweight and scalable lightweight and scalable

Table 11 PCA-based reconstruction.

MAE κ = 2 κ = 3

additive perturbation [2] 0.47 1.7623 0.57666
randomized response 0.65 1.7744 1.4186

( 3 ) Reconstruct the original data by X̂ = YQ̂Q̂T .
Their attack assumes that the data is disguised as yi = xi + ri,

where ri is a random number chosen from a certain distribution.
Hence, the assumption does not hold in the proposed scheme
where the y is determined by a randomized response with the
probability p.

We have verified the robustness of the randomized response
against the PCA-based reconstruction. Table 11 shows the MAEs
of the reconstructed matrix from the randomized matrix in Ta-
ble 6, where κ = 2, 3 < m = 5 are used. In comparison to the
scheme [2] where random numbers in a uniform distribution from
0 to 1 are added to the original X, the randomized response is ro-
bust against the PCA-based reconstruction.

4.4 Comparison to Related Works
We compared the proposed scheme to the existing schemes in

terms of accuracy, security and performance as summarized in
Table 12. In comparison to the cryptographic approach, e.g.,
Refs. [7], [14], the proposed scheme is free from the computa-
tional cost to perform an additive homomorphic cryptosystem
such as Ref. [9]. The randomized approaches, e.g., Ref. [2], can
be performed quickly but the accuracy is lost. The proposed
scheme is classified as a randomized approach, too. It is more
robust against the PCA-based reconstruction than the simple ad-
ditive perturbation.

5. Conclusion

We have proposed a new scheme for privacy-preserving col-
laborative filtering based on the posterior probability distribution
generated through a Bayes reconstruction process.

Our experiment shows that the proposed scheme allows to re-
vise the similarity between items and to predict the rating value
for unseen items more accurately than predicting from the dis-
guised data. The advantage of the perturbation in a randomized
response is the higher degree of privacy of a personal rating in
terms of the entropy of the disguised vector.
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