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Abstract: Automated negotiations occur when a negotiating function is performed among intelligent agents. Al-
though current human-to-human negotiation appears to involve multiple extremely complex issues, each automated
negotiation setting is simple. In particular, the structure of issues is independent and flat in the existing automated
negotiation framework. In this paper, we propose realistic negotiation frameworks for non-monotonic utility functions.
The monotonicity of the utility functions is an important characteristic because if the utility function is monotonic, the
issues are independent. When the issues are independent, it is useful to separate them and reach a distinct agreement
for each sequentially. In addition, we propose an automated mediation protocol for multiple non-monotonic issue ne-
gotiations. This mediation protocol consists of the communications between agents and the mediator. The procedures
of the mediation protocol include recognizing related issues, announcement, bidding, awarding, and expediting. We
experimentally demonstrate that the proposed method results in good outcomes and greater scalability. In addition, we
demonstrate that a suitable mediation strategy leads to better outcomes and scalability.

Keywords: automated multi-issue negotiation, agreement technology, monotonic utility function

1. Introduction

Automated negotiation is an important aspect of daily life and
represents an important topic in the field of multiagent system
research. There has been extensive work in the area of au-
tomated negotiation, in which automated agents negotiate with
other agents in contexts such as e-commerce [1] and large-scale
deliberation [2]. Automated negotiations occur when the negoti-
ating function is performed among intelligent agents. Although
current human-to-human negotiation appears to involve multiple
extremely complex issues, most of the existing work on auto-
mated negotiation settings is simple (Refs. [3], [4] etc.). For ex-
ample, the structure of issues is independent and flat.

A key point in achieving automated negotiation frameworks in
complex situations is the non-monotonicity of the utility func-
tions. If the utility function is monotonic, the issues are inde-
pendent and not interdependent. Many real-world negotiation
problems involve multiple interdependent issues. When design-
ers work together to design a car, for example, the value of a given
carburetor depends strongly on which engine is chosen. When an
automated negotiation covers multiple independent issues, it is
useful to separate them and reach a separate agreement on each
sequentially. However, this is not always possible or desirable
because one issue affects another.

Recently, some papers attempted to consider the interdepen-
dence of issues and non-monotonicity. For example, Robu
et al. [6] propose the utility graph, which captures allocation pref-
erences as a set of nodes (each representing whether a given good
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was purchased). In addition, Ito et al. [7], Lopez-Carmona et
al. [8], and Fujita et al. [9] focus on constraints-based utility func-
tions, which are highly nonlinear and bumpy. In this paper, we
propose a novel representation for non-monotonic utility func-
tions, which leads to an efficient negotiation protocol.

First, we propose a novel monotonic tree structure to detect the
non-monotonic relationships between issues. The monotonic tree
is based on the term trees, and its branches represent the mono-
tonic relation. The leaves of the tree represent the non-monotonic
term set. By using the monotonic tree, we can distinguish ef-
fective issue grouping in which the complexity of finding con-
tracts is low and social welfare is high. Rosenschein et al. [10]
and Chevaleyre et al. [11] have also explored the idea of tree-
structured domains in the context of combinatorial auctions or
resource allocation. However, these papers don’t employ tree-
structured domains to represent monotonicity.

Next, we propose a novel automated negotiation protocol in
which the mediator tries to reorganize a highly complex utility
space into several tractable utility subspaces, in order to reduce
computational cost. This mediation protocol consists of commu-
nications between agents and the mediator. The mediation proto-
col procedures include recognizing related issues, announcement,
bidding, awarding, and expediting. Using a mediator allows us to
employ the knowledge sharing protocol (e.g., sharing the mono-
tonic tree) and effectively find points of agreement.

In addition, the adjustment step is a key point for effective au-
tomated negotiations. This is because of the trade-off between
social welfare and the complexity of the consensus. If the level
of the monotonic tree is too high, the consensus between agents
is too complex. Agents usually have constraints regarding is-
sue relationships; however, these constraints sometimes disturb
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the consensuses [4], [12]. On the other hand, if the level of the
monotonic tree is too low, the mediator misses important inter-
dependencies between the issues. Going down the monotonic
tree means that the mediator ignores some interdependency, re-
ducing social welfare. In this paper, we propose two methods
for adjusting the height level: the tree-climbing protocol and the
tree-descending protocol.

Finally, we demonstrate that our protocol has a higher optimal-
ity rate and discuss the impact of the negotiation outcomes on
optimality. In addition, the protocol is influenced by the height of
the monotonic tree. We also analyze our protocol on the basis of
the experimental results.

The remainder of this paper is organized as follows: We first
describe a multi-issue negotiation model, monotonic utility func-
tions, and the monotonic tree. Next, we present the basic medi-
ation protocol on the basis of monotonic trees, as well as tech-
niques for adjusting the monotonic tree height. We then present
the experimental results, demonstrating that our protocol pro-
duces more optimal outcomes. Finally, we describe related work
and present our overall conclusions.

2. Automated Negotiations and Monotonic
Utility Functions

2.1 Multi-issue Negotiation Environments
Negotiation in multiagent systems is the process by which a

group of agents come to a mutually acceptable agreement on
some matter [4]. Negotiation underpinnings attempt to cooper-
ate and coordinate when the agents are self interested and when
they are cooperative [13]. For modeling a negotiation situation
with multiple hierarchal issues, we define the players, negotia-
tion issues, and objects in the negotiation.

Definition 1 Agents and mediator: N agents (a1, . . . , aN)
want to reach an agreement with a mediator who manages the ne-
gotiation from a man-in-the-middle position. Agents act in line
with the negotiation protocol to achieve their objectives. Media-
tors also act in line with the protocol to support consensus build-
ing. In this paper, the mediator is not self-oriented or trying to
achieve a specific benefit.

Definition 2 Issues under negotiation: There are M issues
(i1, . . . , iM) to be negotiated.

Definition 3 Contract space: The negotiation solution space
is defined by the values that the different issues may take. To
simplify, we assume that the issue takes a value drawn from the
domain of integers {0, 1, ..., Xi}

Definition 4 Alternative to contract or potential solution: �s =
(s1, ..., sM). A contract is represented by a vector of issue values.

Definition 5 Utility function for agent a: ua(�s).
Definition 6 Objective functions: arg max�s

∑
a∈N ua(�s).

ua(�s) > δ, (a = 1, . . . ,N) (δ is the reservation value). Our
protocol, in other words, tries to find contracts that maximize
social welfare, i.e., the total utility for all agents. Such contracts,
by definition, will also be Pareto optimal. Simultaneously, each
agent tries to find contracts where its individual welfare is more
than the reservation value. The reservation value is the lowest
value the agent can accept for the contracts.

2.2 Monotonic Utility Function
The monotonicity of the utility functions is an important char-

acteristic because it guarantees that the issues are independent.
The monotone theory appears in some articles on the subject,
which give examples from special applications. In addition, util-
ity theory also appears in some articles such as those on combina-
tional auctions [14] or allocation theory [15]. In this subsection,
we define the monotonic utility function and describe its impor-
tant features.

Definition 7 Monotonicity of utility function for a multi-
variable function: A utility function ua(s1, s2, . . . , sk) is said to
be a monotonic if and only if sk and s′k, sk ≥ s′k implies
ua(s1, s2, . . . , sk) ≥ ua(s′1, s

′
2, . . . , s

′
k) in ∀ k for agent a.

In other words, ua(s1, s2, . . . , sk) is maximum if utility function
ua is monotonic and s1, s2, . . . , sk are maximum for agent a.

Using this definition, we can obtain sub-negotiation protocols
according to the issues regardless of whether the issues are inde-
pendent. Many real-world negotiation problems involve multiple
interdependent issues. When designers work together to design a
car, for example, the value of a given carburetor depends strongly
on which engine is chosen. In multiple independent issues ne-
gotiation, it is easy to divide the negotiation issues and find the
optimal point for each issue. For example, say there are three is-
sues in the negotiation, and the mediator wants to find the optimal
contract. In multiple independent issue negotiation, the mediator
finds the optimal contract for each issue and adds the maximum
utility values for each issue. On the other hand, the mediators
cannot find the optimal contract for each issue easily in multiple
interdependent issue negotiation, because the utility value of an
individual issue is influenced by other issues. Thus, the mediator
needs to search exhaustively despite the large computational cost.

2.3 Monotonic Tree
We define the Issue Interdependent Tree for representing the

monotonicity of the utility functions. The set of terms of a utility
function ua is the set of bundles T with a nonzero coefficient αT .
For instance, the utility function ua(�s) = 16.s2+5.s1.s3.s4+2.s1.s3

uses the terms s2, s1.s3.s4, and s1.s3. If the functions are mono-
tonic, + is used, and if they are non-monotonic, . is used. In
the example, i1, i3, and i4 are non-monotonic, and other rela-
tionships are monotonic for agent a. T will denote the set of all
terms appearing in the representation of any of the utility func-
tions (u1, . . . , uN), and αT will denote the coefficient of term T

in ua. Finally, T l denotes the set of terms in T consisting of ex-
actly l issues, and T≤l denotes the set of terms in T with at most l

non-monotonic functions each.
Intuitively, tree-structured utilities are k-additive functions in

which there are no “overlapping” terms.
Definition 8 A set of utility functions {u1, . . . , uN} is called

tree-structured i f , if it is a case in which all terms T1, T2 ∈ T

have either T1 ⊆ T2 or T1 ⊇ T2 or T1 ∩ T2 = {}.
In the monotonic tree, the T terms can be represented by a tree

in which R is the root, and each term is a node. The branches
of the tree represent the “monotonic” relation, and the leaves of
the tree represent the non-monotonic terms set. The following
example illustrates this representation:
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Fig. 1 Example of monotonic tree.

Example 1 Agent 1, Agent 2, and Agent 3 have utility func-
tions u1, u2, and u3, as follows:

u1(�s) = s2 + 3s5

u2(�s) = 3s1 + 10s1.s2.s3.s4 + 8s5 + 4s6

u3(�s) = s6 + s4 + 8s3.s4

In this situation, there are six issues (i1, . . . , i6). The set of is-
sues T = {i1, i2, i4, i5, i6, i3.i4, i1.i2.i3.i4} can also be represented
by Fig. 1.

The height of the tree (l) represents how many agents agree
with the monotonicity between the issues. For example, Agent 3
agrees with the monotonicity when “l = 1.” This is because issue
3 and issue 4 are non-monotonic in the utility function of Agent 3.
On the other hand, Agent 2 does not agree with the monotonicity
because issue 1, issue 2, issue 3, and issue 4 are non-monotonic
in its utility function.

Rosenschein et al. [10] and Chevaleyre et al. [11] have also ex-
plored the idea of tree-structured domains in the context of com-
binatorial auctions or resource allocations. However, these papers
don’t address monotonicity.

3. Automated Mediation Protocols Based on
Monotonic Tree

3.1 Baseline Mediation Protocol
In this paper, we propose a novel approach in which agents

reach an agreement. The proposed protocol is a remarkable re-
sult focusing on automated negotiation with non-monotonicity.
In this protocol, many agents (participants) and a mediator ap-
pear. Figure 2 shows the flow of the automated mediation proto-
col. The proposed automated negotiation protocol consists of the
following steps:
Step 1: Recognizing the Grouping Issues: In this step, the
mediator identifies the effective issue groups. First, the mediator
generates the monotonic tree. Next, it identifies the issue groups
on the basis of the tree. Identifying the issue groups is not very
difficult. The mediator gathers all nodes that have a height of “l.”
Each node’s terms indicate effective issue grouping.
Step 2: Announcement: The mediator sends out an announce-
ment to the agents about submitting bids. The announcement in-
cludes the issue grouping information described in the previous
step.
Step 3: Bidding: Each agent generates a bid by searching the
utility functions. For each contract �s found through an exhaustive

Fig. 2 Flow of baseline mediation protocol.

search, an agent evaluates the utility on the basis of the utility
function. If that utility is larger than the reservation value δ, the
agent defines a bid that has a domain set and the utility value.
The reservation value is the lowest value agents can accept for
the contracts. Next, the agents divide the bids into those for each
issue group and set the evaluation values for these bids.
Step 4: Awarding: After the mediator sends the contract an-
nouncement, it must choose among the received bids and decide
which contract is awarded. The mediator identifies the final con-
tract by finding the bid combinations, one from each agent, that
are mutually consistent. If there is more than one such overlap,
the mediator selects the one with the highest summed bid value
(and thus, assuming truthful bidding, the highest social welfare).
The result of this process is communicated to the agents that sub-
mitted a bid.
Step 5: Expediting: After the agents receive the contract, they
indicate whether it is accepted. If all agents accept the alternative,
the negotiation is finished. If at least one agent does not accept
the alternative, the mediator adjusts l based on the adjustment
method, which is described in the next subsection.

The basic idea of this protocol has its roots in the Contract Net
Protocol [16]. The roles of the manager and agents are similar
to those of the mediator and agents in our protocol. By employ-
ing a mediator, we can use the shared protocol knowledge (e.g.,
sharing the monotonic tree) and effectively identify the points of
agreement.

3.2 Adjusting Height Level of Monotonic Tree
For an effective automated negotiation protocol in non-

monotonic situations, the adjustment step is a key point. This is
because there is a trade-off between social welfare and the com-
plexity of the consensus. If the height level of the monotonic tree
is too high, the consensus between agents is too complex. Agents
usually have issue relationship constraints; however, these con-
straints sometimes disturb the consensuses. On the other hand,
if the height level of the monotonic tree is too low, the mediator
misses the important interdependency between the issues. Going
down the monotonic tree means that the mediator ignores some
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interdependency, thus reducing social welfare.
In this paper, we propose two methods for adjusting the height

level: the tree-climbing protocol and the tree-descending proto-
col. The basic idea of tree-climbing protocols is to allow T 0 in-
volving only the smallest groups (the size of groups is only 1)
first, and then incrementally allow bigger bundles until the medi-
ator reaches an agreement. In addition, the automated negotiation
protocol in the previous section is carried out, modifying the util-
ity functions of each agent during each round of the protocol.
Algorithm 1 shows the tree-climbing protocol.

Algorithm 1 Tree-climbing protocol

n agents with monotonic tree. (u1, . . . , un: Utility functions; T l: the set
of all terms in the tree when the height level of the tree is l, |T |: the
height of the tree.)

1: l := 0

2: while l < |T | do

3: Restrict allowed deals to T l.

4: Let mediator and agents negotiate T l.

5: if agents cannot make agreements then

6: l := l + 1

7: end if

8: end while

The basic idea of tree-descending protocols is to allow T M in-
volving only the largest group including all issues first, and then
to incrementally allow smaller bundles until the mediator reaches
an agreement. In addition, the automated negotiation protocol in
the previous section is carried out, modifying the utility functions
of each agent during each round of the protocol. Algorithm 2
shows the tree-descending protocol.

4. Experimental Results

4.1 Setting
We conducted several experiments to evaluate our approach.

In each experiment, we ran 100 negotiations. The follow-
ing parameters were used: The domain for the issue values is
{0, 1, . . . , 9}. The utility of each domain is chosen randomly from
{0, 1, . . . , 10}. We use following utility function for expressing
the non-monotonic functions. If u(a, b) is a monotonic function,
u(a, b) = (u(a) + u(b))/2. If u(a, b) is a non-monotonic function,
u(a, b) = |10 sin (a + b)|. By using this utility functions, the utility
values are normalized from 1 to 10.

We compared the following negotiation methods:

Algorithm 2 Tree-descending protocol

n agents with monotonic tree. (u1, . . . , un: Utility functions; T l: the set
of all terms in the tree when the height level of the tree is l, |T |: the
height of the tree.)

1: l := |T |
2: while l > 0 do

3: Restrict allowed deals to T l.

4: Let mediator and agents negotiate T l.

5: if agents cannot make agreements then

6: l := l − 1

7: end if

8: end while

• “(A) Tree-climbing protocol” applies the tree-climbing pro-
tocol to the automated negotiation protocol proposed in this
paper.

• “(B) Tree-descending protocol” applies the tree-descending
protocol to the automated negotiation protocol proposed in
this paper.

• “(C) One-shot Automated Negotiation Protocol (Random)”
applies the automated negotiation protocol proposed in this
paper without monotonic tree height adjustment. The height
l is chosen randomly.

• “(D) One-shot Automated Negotiation Protocol (Root)” ap-
plies the automated negotiation protocol proposed in this pa-
per without monotonic tree height adjustment. The height l

is the maximum value (Root).
• “(E) One-shot Automated Negotiation Protocol (Leaves)”

applies the automated negotiation protocol proposed in this
paper without monotonic tree height adjustment. The height
l is 0 (Leaves).

We applied a centralized exhaustive search for the sum of the
individual agents’ utility functions to obtain the optimal social
welfare for each negotiation test run. We calculated a normalized
optimality rate for each negotiation run, defined as (social welfare

achieved by each protocol)/(optimal social welfare calculated by

Simulated Annealing). This central Simulated Annealing method
is generally unrealistic in negotiation contexts because it requires
that agents fully reveal their utility functions to a third party. The
failure rate for each negotiation run is defined as (the number of

successful negotiations)/100. If the number of issues in the exper-
iments varies, the number of agents is 5 and the reservation value
is 0.2. If the number of agents varies, the number of issues is 20
and the reservation value is 0.2. If the reservation value varies,
the number of issues is 20 and the number of agents is 5.

Our code was implemented in Java 2 (1.6) and was run on a
core-i7 with 4.0 GB of memory under Mac OS X (10.6).

4.2 Results
Figure 3 compares the optimality rate when the number of is-

sues or agents varies. “(D) One-shot automated negotiation pro-
tocol (Root)” achieved the highest optimality rate. This is be-
cause it accepts only the optimal solutions; therefore, it is not
robust with respect to scalability of negotiation problems. The
results of “(A) Tree-climbing protocol” are almost the same as
those of “(E) One-shot automated negotiation protocol (Leaves).”
This means that (A) does not change the height of the monotonic
tree. In other words, it finds agreements at the initial step even
though some of the interdependency between issues is ignored.
“(B) Tree-descending protocol” yields the second-highest opti-
mality rate, and higher than the “(C) One-shot automated negoti-
ation protocol (Random).” This means that (B) finds the contracts
and obtains an effective height for the monotonic tree.

Figure 4 compares the failure rate when the number of issues
or agents varies. All the protocols except for “(C) One-shot au-
tomated negotiation protocol (Random)” and “(D) One-shot au-
tomated negotiation protocol (Root)” can reach agreement. This
means that the proposed adjustment protocol can work well to
find agreements. “(E) One-shot automated negotiation protocol
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Fig. 3 Comparison of optimality when the number of issues or agents varies.

Fig. 4 Comparison of failure rate when the number of issues or agents varies.

(Leaves)” reaches agreement without adjusting the height of the
monotonic tree because it is easy to identify agreements at the
bottom of the tree.

Figure 5 compares the optimality and failure rate for various
reservation values. The reservation value indicates the selfishness
of the agents. If the reservation value is high, it is hard to make
agreements because of the selfishness of the agents. When the
reservation value increases, the optimality rate decreases. This is
because the agents don’t concur with the solutions having high
social welfare. In addition, the failure rate is high when the reser-
vation value becomes high. This is because agents don’t agree
with solutions that usually produce agreements between unselfish
agents.

5. Related Work

Klein et al. [17] presented a protocol that produces near-

optimal results in medium-sized bilateral negotiations with binary
dependencies, but it was not applied to multilateral negotiations
and higher-order dependencies. In addition, Ito et al. [7] pre-
sented a bidding-based protocol aimed at complex utility spaces,
where agents generate bids by finding high regions in their own
utility functions, and the mediator determines the optimum com-
bination of bids submitted by the agents. Lopez-Carmona et
al. [8] proposed a novel auction-based protocol using weighted
constraints and addressing highly rugged utility spaces. These ex-
isting works tackle similar issues in automated negotiation frame-
works. However, they don’t use the concept of the monotonic tree
proposed in this paper. Fujita et al. [18], [19] propose the effective
negotiation protocols based on the nonhierarchical grouping.

Jonker et al. [5] propose a model for bargaining with incom-
plete information, while Robu et al. [6], [20] propose a utility
graphs formalism to address complex multi-issue negotiations.
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Fig. 5 Comparison of optimality and failure rate for various reservation values.

The utility graph captures allocation preferences as a set of nodes
(each representing the issue of whether a given good was pur-
chased), in addition to a set of links between these nodes that
capture the (positive or negative) complementarities between the
goods. The utility graph also shows the interdependency (mono-
tonicity) between issues using the graph. In this paper, we use a
tree structure containing multiple hierarchal issues, not a graph
structure.

CP-nets capture preferential dependencies for N-ary issues us-
ing directed graphs in which each node represents the agent’s
preference for an issue, and each link captures the impact of one
issue choice on the preferences for another [21]. A CP-net fo-
cuses on a network structure, not a tree structure. By introducing
the tree structure, we could propose a method for searching tree
structures in complex automated negotiations.

In addition, some promising approaches have been suggested
in recent years. Hindriks et al. [22] proposed an approach based
on a weighted approximation technique to simplify the utility
space. The resulting approximated utility function can be handled
by negotiation algorithms designed for multiple independent is-
sues and has a polynomial time complexity. Our protocol can find
an optimal agreement point if agents don’t have an expected ne-
gotiation outcome in common. An et al. [23] proposed the design
and implementation of a negotiation mechanism for dynamic re-
source allocation problems in cloud computing. Multiple buyers
and sellers are allowed to negotiate with each other concurrently,
and an agent is allowed to decommit from an agreement only after
paying a penalty.

Lin et al. [24], [25] focused on Expert Designed Negotiators,
which are based on negotiations between humans and automated
agents in real life. In addition, tools for evaluating automatic
agents that negotiate with people are proposed. These studies
include some demonstrations of efficient negotiations in exten-
sive experiments involving many human subjects and personal
digital assistants. However, these studies don’t consider the non-

monotonic utility function, on which this paper focuses.
Fenghui et al. [26] proposes a bilateral single-issue negotiation

model for nonlinear utility functions. A multiple offers mech-
anism is introduced to handle non-monotonic utility functions,
and an approximating offer mechanism is introduced to handle
discrete utility functions. Our paper focuses on multiple issues
and agents negotiations, not only a bilateral single-issue negotia-
tions.

6. Conclusions

In this paper, we focused on the non-monotonicity of utility
functions and proposed the monotonic tree for recognizing ef-
fective issue grouping. The monotonicity of the utility functions
is an important characteristic because it guarantees that the is-
sues are independent. In addition, we proposed an automated
mediation protocol for multiple non-monotonic issue negotiation.
This mediation protocol consists of the communications between
agents and a mediator. The procedures in the mediation proto-
col include recognizing related issues, announcement, bidding,
awarding, and expediting. We demonstrated experimentally that
the proposed method permits good outcomes and greater scal-
ability. In addition, we demonstrated that a suitable mediation
strategy leads to better outcomes and scalability.

In our future work, we will address incentive compatibility is-
sues. In the bilateral case, we found that this can be done using
a type of Clarke tax [27], wherein each agent has a limited bud-
get from which it has to pay other agents before the mediator
accepts a contract that favors that agent but reduces the utility for
the others. This approach gives agents the incentive to avoid ex-
aggeration, because exaggerating will cause them to spend their
limited budget on contracts that don’t strongly affect their true
utility values. We will investigate whether and how this approach
can be applied to the multilateral case.
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