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Abstract: This paper presents an intelligent economic operation on smart grid environment facilitating an advanced
quantum evolutionary method. The proposed method models the wind generation (WG) and the photovoltaic gener-
ation (PV) as renewable power generation sources as measures of global warming effect. Thermal generators (TGs)
are included in this model to provide the maximum amount of energy to meet consumers’ demand. On the other hand,
plug-in hybrid electric vehicles (PHEV) are capable of reducing CO2 and gradually becoming an integral part of a
smart-grid infrastructure. Such an integration introduces uncertainties into the system that are addressed by a fuzzy
agent (FA). The demanded load, the wind speed, the solar radiation and a number of involved PHEVs are taken as
fuzzy parameters to resolve uncertainties. An optimizer agent (OA), based on intelligent quantum inspired evolu-
tionary algorithm, is deployed to carry out the economic scheduling operation concerning scheduling and dispatching
with the help of FA. OA features intelligent operators such as a sophisticated rotation operator, a differential operator,
etc. The method is tested on a hypothetical power system with 10 thermal units, an equivalent number of PHEVs, an
equivalent solar and wind farm. The simulation results will show the effectiveness of OA-FA that provides an excellent
operational resource scheduling while reducing the production cost and emission.
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1. Introduction

Traditional views of power system are reshaping with the con-
cept of smart grid. Economic and environmental incentives, as
well as advances in technologies are engineering such a refine-
ment of the electric power industry. Another factor that works
for this transformation is the concern regarding the continuous
depletion of the finite energy resources such as fossil fuel, natu-
ral gas, etc. Moreover, the inevitable environmental changes due
to the emission of green house gases such as CO2 have gained
the global awareness which is reflected by current rigorous re-
searches oriented on green and clean technologies. Renewable
energy sources such as wind and solar energy are thought to be
primary sources of alternative energies. On a similar note, Plug-
in hybrid electric vehicles (PHEVs) have received increasing in-
terests because of their low pollution emissions and a high fuel
economy [1]. The PHEVs will be plugged into the grid, and their
onboard energy storage systems will be recharged using clean,
renewable energy sources. Therefore, a proper management of
PHEVs with renewables and thermal generators is of extreme
importance in the future smart grid infrastructure. Strategies re-
garding the interconnection of PHEV energy storage systems and
grids are receiving a great interest in the smart environment since
they provide insights of environmental and economical benefits
of PHEV. On the environmental point of view, PHEV and TGs
will be the main source of emission. Therefore, the intelligent op-
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erational strategy should also take the emission into account [2].
Again, the integration of WG and PV with TG and PHEV im-
poses complications because of the intermittent and fluctuating
nature of wind speed and solar radiation. Usually, a stochastic
scenario based strategy or fuzzy logic is employed to address
such uncertainties. The optimal scheduling as well as the eco-
nomic load dispatch of TGs is often coined as the Unit Commit-
ment (UC) problem. Hence, UC still remains one of the major
operations in a smart grid.

A bibliographical survey on UC reveals that, a good amount of
numerical and meta-heuristic optimization techniques such as pri-
ority list, the Lagrangian relaxation (LR) [3], [4], the genetic al-
gorithm (GA) [5], [6], the evolutionary programming (EP) [7], the
particle swarm optimization (PSO) [8], [9], [10], [26], simulated
annealing (SA) [11], [12], dynamic programming (DP) [13] and
constraint logic programming (CLP) [15] have been successfully
applied to achieve efficient and near optimal solutions for the UC
problem. One of the popular set of methods to deal with uncer-
tainties in a nominal UC problem is based on fuzzy logic [14].

Applications of Quantum Mechanics based techniques in the
field of operational research of evolutionary methods are consid-
ered as a new paradigm [16], [17], [18], [19]. The researches
on evolutionary computation coupled with quantum computing
trace back to the late ’90s. Such efforts can be classified into
two categories: i) Quantum algorithms using automatic program-
ming techniques (e.g., genetic algorithm), ii) Quantum inspired
evolutionary computation that is crafted based on the principles
of quantum mechanics (e.g., uncertainty, superposition, interfer-
ence, etc.) [20], [21], [22], [23], [24]. Therefore, the applicability
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on quantum evolutionary computing in the field of optimization
has already been proven effective.

This paper proposes a Fuzzy Agent (FA) based operational
strategy for a smart grid environment powered by thermal gen-
erators, solar and wind power and PHEVs. An advanced QA
based Optimizer Agent (OA) is applied to perform the econom-
ical operation. The method starts with the initialization a group
of feasible solutions (the OA is responsible for this initiation),
which is created by a sophisticated weighted priority list method.
A solution is comprised of the operating schedules of TGs, their
equivalent power dispatches, the solar and wind power dispatch
and the number of active PHEVs. The solutions are then ‘re-
observed’ and converted into quantum individuals. A FA is then
deployed which judges the solutions while taking the load de-
mand, the wind speed, the solar radiation, the spinning reserve,
the number of PHEVs and the total production cost into account
by imposing fuzzy membership degrees to deal with their asso-
ciated uncertainties. After judging their corresponding member-
ship values, the control is again given to the OA where the fit-

ness function is applied on it to evaluate the level of contribution.
The fitness function is defined by combining the aggregated fuzzy
membership function and the penalty function for constraints vio-
lations. For diversifying the individual(s), several operators such
as a quantum angle rotation, a GA based mutation and crossover
and a new operator based on a binary differential operator are ap-
plied.

The rest of the paper is organized as follows. Section 2 presents
the basis and underlying mechanism of the applied quantum in-
spired evolutionary method. The formulations of the proposed
model that include the constraints and the objective function are
detailed in Section 3. Section 4 describes the fuzzy transforma-
tion of uncertain variables by detailing fuzzy membership func-
tions. The key points of OA and FA with operators’ specifications
are provided in Section 5. Section 6 represents conducted numer-
ical simulations and result analyses. Finally, the conclusion is
drawn at Section 7.

2. Quantum Computation

The smallest unit of two-state quantum computation is known
as quantum bit (hereafter, Q-bit). The Q-bit can take any of these
three forms; “1” state, “0” stage or a superposition of these two
states. The phenomena is shown in Eq. (1)

| Φ〉 = α | 0〉 + β | 1〉 (1)

where α and β are complex numbers that specify the probabil-
ity amplitudes of the corresponding states. |α|2 and |β|2 give the
probabilities that whether Q-bit will be located in “0” state and
“1” state, respectively. Equation (2) represents the normalization
constraints of Q-bit probability amplitudes

|α|2 + |β|2 = 1 (2)

Similarly, a Q-bit individual is a string of λ Q-bits which is de-
fined as
⎡⎢⎢⎢⎢⎣
α1 α2 . . . αλ

β1 β2 . . . βλ

⎤⎥⎥⎥⎥⎦ (3)

where, for each Q-bit, Eq. (2) is satisfied. Q-bit representation is
able to present a linear superposition of states and able to repre-
sent 2λ states in probabilistic manner.

2.1 Quantum Individuals in Optimizer Agent (OA)
The lowest level of OA building block corresponds to Q-

individuals. As shown in Eq. (3), it contains a number of Q-
bits. Qi(t) denotes the Q-individual i at tth generation. Each
Q-individual has to be viewed as a distribution of bit strings of
length λ. The fitness of a Q-individual is re-evaluated at every
generation according to a realization of distribution even if the
individual is unchanged. Which is why, each Qi(t) is transformed
to its binary correspondent, Ci(t) by the process called collapse

or observe. In the context of classical evolutionary algorithms, Qi

is the genotype while Ci is the phenotype. The individual Qi is
further attached to a binary string Ai which acts as an attractor for
Qi. In every generation, Ci and Ai are compared in terms of both
the fitness and bit values. Operators, such as the rotation gate, the
bit flipping, the new differential operator, etc. are triggered to the
corresponding Q-bit when Ai is better than Ci and their bit values
differ. The distribution of Qi is, therefore, slightly moved toward
a given attractor Ai. On the other hand, the attractor is updated if
Ci is better than Ai.

2.2 Quantum Population
The set of all n × m Q-individuals forms the quantum popula-

tion. As for Q-groups, the individuals of a Q-population can syn-
chronize their attractors. Therefore, the best attractor (in terms of
fitness) among all Q-groups, Bglobal, is stored in every generation
and is periodically distributed to the group attractors.

2.3 Quantum Groups
The population is divided into m Q-groups each containing n

Q-individuals having the ability to synchronize their attractors.
Therefore, the best attractor of group k, Bk,g is stored at every
generation and is periodically distributed to the group and local
attractors.

3. Formulation

3.1 Thermal Generators
The required fuel cost of generating Pi,t power (for the ith gen-

erator in the tth hour) is expressed by the following equation

FCi(Pi,t) = a0,i + a1,i.Pi,t + a2,i.P
2
i,t (4)

where a0,i, a1,i and a2,i are the positive fuel cost coefficients for
generator i. The start-up cost of rebooting a decommitted unit is
shown as below

S Ci =

⎧⎪⎪⎨⎪⎪⎩
hcosti :T off

i ≤ Xoff
i ≤ Hoff

i

ccosti :Xoff
i > Hoff

i

Hoff
i = T off

i + cshouri. (5)

where T off
i is the minimum down time for generator i, while Xoff

i

is the duration for which generator i is being off. hcost and ccost

are the hot and cold start cost for generator i, respectively. cshour

is the cold start hour of generator i. The power output of each
generator must be limited within a specified range, i.e.,
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Pmin
i ≤ Pi,t ≤ Pmax

i . (6)

where Pmin/max
i are the minimum and maximum operating limit

of generator i. Again due to operational limitations, once a gen-
erator is committed/decommitted it should be kept stable for a
minimum period of time before a transition. Such a scenario is
covered by the following equation

T on
i ≤ Xon

i (t)
T off

i ≤ Xoff
i (t)

⎫⎪⎪⎬⎪⎪⎭ . (7)

where T on/off
i is the minimum up/down time for generator i, re-

spectively. Xon/off
i is the duration for which generator i is being

ON and OFF, respectively. It is usually assumed for TGs, that
the dynamics of a generating plant do not pose restrictions on the
amount of power generated at each time period of the time hori-
zon. Unfortunately, this assumption is unrealistic when a smaller
time period is involved, since the ramp constraints need to be
considered. The following equation (Eq. (8)) addresses this issue

sPmin
i (t) ≤ Pi(t) ≤ Pmax

i (t). (8)

where Pmin
i (t) = max(Pi(t − 1) − DRi, Pmin

i ) and Pmax
i (t) =

min(Pi(t − 1) + URi, Pmax
i ). URi and DRi are the up and down

ramp limit for unit i.

3.2 Renewable Sources
The power output from a PV panel depends on the area of the

panel, the solar insulation and the efficiency of the panel. The
following equation [2] states the PV output in a time period t

Ppv,t = AμpvS It (9)

where A is the PV panel area, μpv is the efficiency of the panel
and S It is the solar insulation at hour t. However, determining
the wind power is not that straightforward. Due to the complex
mechanical nature of a wind turbine, many factors such as the air
density, the Albertz Benz constant, the area swept by the turbine
rotor etc. The following equation shows the power output

Pwind,t = (0.5)KρtA(vt)
3 (10)

where K is the Albertz Benz constant, ρt is the air density at hour
t, A is the area, and vt is the wind speed. Other factors including
rated, cut-in and cut out speeds are also considered.

3.3 PHEV Battery Model
To gain the maximum benefit from the grid connected PHEVs,

they should be operated intelligently and economically. Which is
why, the energy price difference, the charging time and the cur-
rent state-of-charge (SOC) are considered in the proposed model.
Such a formulation will allow the PHEVs to join the charging sys-
tem dynamically. In the case of the peak demand hour, PHEVs
are used as a source of energy by discharging the energy stored in
their batteries. Again in off-peak demand hour, they can charge
up the batteries. In order to operate and determine the contri-
bution of PHEV into the grid, the state-of-charge (SOC) of the
installed battery in the PHEV is essential. Therefore, the goal is
to maximize the average SOC of all PHEVs. For instance, the

remaining jth PHEV battery capacity at a particular time t is de-
fined as follows

RC j,t = (1 − S OC j,t).Cmax, jα (11)

where S OC j,t is the current SOC and Cmax, j is the rated battery
capacity of the jth PHEV at hour t. A weighting function can
be defined to control the contribution of factors such as RC j,t, the
time remaining for charging the jth PHEV; RT j,t and the dynamic
price difference between the real-time energy price and the price
a customer willing to pay for the jth PHEV and time t; DPj,t.
Mathematically

WFi,t = c0RC j,t + c1RT j,t + c2DPj,t (12)

The state-of-charge of the battery for the jth PHEVs in tth hour
(S OC j,t) is determined by considering the battery to be a capaci-
tor circuit. c0,1,2 are the assigned weights to the associated param-
eters such that

∑
c0,1,2 = 1. So, the maximization function can be

written as

max
Nphev,t∑

j

WF j,t.S OC j,(t+1) (13)

where Nphev,t is the number of active PHEV in hour t. The bat-
tery constraint being considered in this paper is the battery output
limit, which is defined as

S OCmin
j × Pphev, j,t ≤ Pphev, j,t ≤ S OCmax

j × Pphev, j,t (14)

where Pphev, j,t is the battery output of jth PHEV in tth time and
S OCmin/max

j are the range (in percentile) of the battery’s SOC.
Such constraint will help to keep the battery behavior in sane and
longer battery life.

3.4 Emission Calculation
Calculating the emission generated from the system is very im-

portant from the viewpoint of the environmental aspect. Reduc-
ing the emission also factors the success metric of the proposed
model. Traditionally, the daily emission from a PHEV is deter-
mined by a linear function of emission per mile and the distance
covered by that PHEV. Since, the model includes emission, a
quadratic function (as stated below; for NOX) is defined to deter-
mine the NOX emission generation

ECi,NOX(Pi,t) = α0,i + α1,i.Pi,t + α2,i.P
2
i,t (15)

where α0,i, α1,i and α2,i are the emission coefficients of NOX for
generator i. The following linear function is applied to generate
the CO2 emission

ECi,CO2 (Pi,t) = βi.Pi,t (16)

where, βi is the average emission factor for unit i. Taking ac-
count of the above formulations, the system power balance can
be written as (for hour t)

Ntg∑

i=1

Pi,t + Ppv,t + Pwind,t ±
Nphev,t∑

j=1

μbatPphev, j,t × S OC j,t = Dt + Loss (17)
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(±∑Nphev,t

j=1 μbatPphev, j×S OC j,t) represents the discharging/charging
state of the participating PHEVs batteries, where μbat is the PHEV
battery efficiency. A sufficient spinning reserve is required in or-
der to maintain the system stability and reliability. The following
equation covers that scenario

Ntg∑

i=1

Pi,t + Ppv,t + Pwind,t ±
Nphev,t∑

j=1

μbatPphev, j,t × S OC j,t ≥ Dt + Loss + Rt (18)

where Rt is the spinning reserve requirement, which varies from
5% to 10% of the demand depending on the low peak to high peak
of load. Finally, the objective function for the optimal economic
operation can be stated as

min
N∑

i=1

T∑

t=1

[FCi(Pi,t) + S Ci(1 − Ii,t−1) + ECi]Ii,t (19)

where the decision variables are Ii,t (represents the status of ith
generator at tth hour), Pi,t and Nphev,t. This objective function is
subjected to the constraints and conditions that mentioned in this
section before.

4. Fuzzy Formulation in Fuzzy Agent (FA)

The following subsections describe the fuzzy formulation for
non-crisp constraints with associated membership functions.
Fuzzy load demand: Since the forecasted load demand is impre-
cise and can vary with the actual load demand, the crisp notation
is transformed by using fuzzy logic onto load demand constraints.
Five linguistic values (NE2, NE1, ZE, PE1, PE2) are defined for
negative, zero and positive errors. μLD is the membership func-
tion for the fuzzy load demand.
Fuzzy spinning reserve: Spinning reserve ensures the secured and
reliable operation during the period of outages. The spinning re-
serve membership function for the proposed method μS R as an
exponential function where the higher reserve requirement is en-
couraged.
Fuzzy cost function: The total production cost can also be taken
under fuzzy wings by imposing the lower membership function
value to a higher production cost schedule. The membership
function (μTC) is a reverse one of that of the spinning reserve.
Fuzzy solar and wind power: The solar radiation is a weather
variable which again cannot be predicted accurately. Similarly,
wind speed can also be unpredictable. Therefore, fuzzy member-
ship functions are defined for those (μLR and μWR, respectively).
Fuzzy active PHEVs number: The number of active PHEVs in
the grid can also fuzzified using a triangular function with three
linguistic variables. The membership degree can be represented
as μn phev.

5. Agent Functionalities Details

5.1 Generating the Initial Solution for Generator’s Schedul-
ing

In a trivial QEA algorithm for the mixed integer (MI) problem,
the Q-bits are initialized as [

√
(0.5),

√
(0.5)]T in order to ensure

the variables to be equal probable and non-biased to 0/1 state.

Fig. 1 Generating initial solution process.

But such an initialization may produce highly infeasible individ-
uals that eventually lead to a slower and premature convergence.
In OA, the initialization process for the generator’s scheduling
problem is accomplished by facilitating a priority list of genera-
tors. The process is shown in Fig. 1. The generating units are pri-
oritized using a sophisticated weighted priority list method. The
units are highly likely to be turned ON in the priority order until
the spinning reserve is met for a particular hour. The Q-individual
for the corresponding binary individual is set keeping the normal-
ized condition as per Eq. (2).

To satisfy minimum up/down constraints, some excess units
are needed to be ON. A logarithmic probability distribution func-
tion is used to stochastically set such units.

5.2 Strategy for Solving Economic Dispatch (ED) of Com-
mitted Units

The committed thermal generator units are provided with a Q-
bit where the state superposition represents the weighing factor
determining the power output from that unit. Since the Q-bit con-
veys the information of how much a state is biased to 1 or 0 (refer
to Eq. (1), where the complex number β represents the probability
amplitude of state ‘1’), the following equation can be defined to
generated the units output for a particular population g

Pgi,t = Pmin
i + β2(Pmax

i − Pmin
i ) (20)

Such formulation will provide the feasible and quality population
since, for the high priority unit, β2 is always close to ‘1’ which in
turn ensures the higher power output. In every generation, the Q-
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bit is updated using some operators, which will be defined in the
later section. The lambda iteration method is used to determine
the economic load dispatch while taking the initial generation.

5.3 Fitness Function
In the proposed method, the fitness function is comprised with

the objective function, the penalty function for constraints vio-
lation and the aggregated fuzzy membership function that inte-
grates uncertain fuzzy constraints. The aggregated fuzzy mem-
bership function for an individual j is defined as

μA j = min(μLD∗, μS R∗, μTC , μLR∗, μWR∗, μn phev) (21)

where

μLD∗ = min(μLD1 , μLD2 , . . . , μLDT ) (22)

μS R∗ = min(μS R1 , μS R2 , . . . , μS RT ) (23)

μLR∗ = min(μLR1 , μLR2 , . . . , μLRT ) (24)

μWR∗ = min(μWR1 , μWR2 , . . . , μWRT ) (25)

The penalty function needs to be defined to measure up the vio-
lation index of an individual, which is defined as

PF = K.| unmet demand| +
ic∑

k=1

Ck |min(ULD, LLD)| (26)

where K is a scaling factor (set as 200). Here ic is the number of
inequality constraints, Ck represents the scaling factor associated
with related inequality constraints (set as 50). ULD and LLD

are the upper and lower limit constraints violations for inequal-
ity constraints, respectively. So, the evaluation function is finally
defined as

E =
10round(logFmax

10 )

F + PF
× μA j . (27)

where Fmax is a priori value of the maximum fuel cost which is
determined by several trials and errors. To normalize the value
of E within a scalable range, the numerator is set in accordance
with the exponent corresponds to the number of digits in Fmax.
The higher E represents better individual.

5.4 Quantum Operators
Several operators such as the rotation gate, the 2-point

crossover, the mutation and the differential operator are applied
to diversify Q-bits to generate better offsprings. A fuzzy rule is
employed to calculate the operators’ probabilities to engage. The
brief descriptions of the key operators followed by the fuzzy rule
are presented below.
5.4.1 Rotation Gate

The rotation gate, U(θ) is employed on a single Q-bit individ-
ual as a variation operator. (αi, j, βi, j) of the jth Q-bit of ith indi-
vidual is updated for the (t + 1)-th iteration as follows
⎡⎢⎢⎢⎢⎣
αi, j(t + 1)
βi, j(t + 1)

⎤⎥⎥⎥⎥⎦ = U(θi, j)

⎡⎢⎢⎢⎢⎣
αi, j(t)
βi, j(t)

⎤⎥⎥⎥⎥⎦ (28)

=

⎡⎢⎢⎢⎢⎣
cos(θi, j) − sin(θi, j)
sin(θi, j) cos(θi, j)

⎤⎥⎥⎥⎥⎦ .
⎡⎢⎢⎢⎢⎣
αi, j(t)
βi, j(t)

⎤⎥⎥⎥⎥⎦ .

where the θi, j is rotation angle, θi, j = s(αi, j, βi, j)Δθi, j, where

Table 1 Lookup table for determining the rotation angle for the quantum
rotation operation.

Xj Bj f (r) Δθ j s(α j, β j)
≥ f (global) α jβ j α jβ j α j = 0 β j = 0

> 0 < 0

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True θ −1 +1 ±1 0
1 0 False θ −1 +1 ±1 0
1 0 True θ +1 −1 0 ±1
1 1 False θ +1 −1 0 ±1
1 1 True θ +1 −1 0 ±1

Table 2 The operators’ probabilities determination fuzzy rules table.

Rule
Antecedent

Consequent
Δd Δsr Δtc

1 NE2 sr∗ tc∗ VL

2 NE1 sr∗ tc∗ L

3 ZE sr∗ tc∗ S

4 PE2 sr∗ tc∗ L

5 PE2 sr∗ tc∗ VL

s(αi, j, βi, j) is the sign of θi that determines the direction, Δθi. j is
the magnitude of rotation angle whose lookup table is shown in
Table 1. The angle θ is determined based on several trials and er-
rors considering their sensitivity towards the outcome (explained
in Section VI). In the table, Bj and Xj represent the jth quantum
bit of the best solution B and the binary corresponding bit of Q-bit
individual, X, respectively.
5.4.2 Differential Operator

A new differential operator is used in OA to provide diversi-
fied Q-bits. The trivial mutation operator does not assure a better
offspring. To overcome such a deficiency, the OA uses the infor-
mation of the best Q-individual in Q-groups. Therefore, the new
Q-individual, Qnew(t + 1) is defined as

Qnew(t + 1) = Qr1(t) + (Bglobal(t) − Qr2(t)) (29)

where Qr1 and Qr2 are two randomly chosen Q-individuals where
r1 � r2, r1 < r2 and assuming the Q-individuals are in as-
cending order according to their fitness, f (Qr1(t)) < f (Qr2(t)).
Now, the arithmetical operators on the above equation should be
transformed to work with Q-individuals or the corresponding col-

lapsed binary solutions. Therefore, the above equation is revis-
ited such as follows

Qnew(t + 1) = Qr1(t)&&(Bglobal(t)||Qr2(t))||
(Bglobal(t)&&Qr2(t)) (30)

5.5 Fuzzy Scheme for Operators’ Probability in FA
The mentioned operators will not always be applied on individ-

ual(s). Rather, in order to reflect the fact that all the individuals
are not equally fitted, a fuzzy based rule is undertaken. In order
to reduce the disturbance within the high performing individuals,
the scheme will apply the operators with the minimum probabil-
ity while reversing the process for low performance individuals.
The fuzzy rules for determining the engagement probability to
apply on the unary operators are shown in Table 2. The corre-
sponding fuzzy membership function for operators’ probability
is defined as the same triangular function with five linguistic val-
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ues. In the case of the mutation operator, the consequent corre-
sponds to the number of flipping bits instead of the probability
itself. The Larsen product is used as the fuzzy implication op-
erator for the individual rules. The union of the results from the
fired rules then determines the total output. Finally, the centroid

function is applied to de-fuzzify the produced output. In case of
binary (or more) quantum operators (such as crossover and dif-

ferential operator), the engagement probabilities are determined
by taking the minimum de-fuzzified crisp output among the en-
gaging individuals.

6. Simulation and Result Analyses

The proposed method is applied on a thermal power system
of 10 units with an equivalent solar and wind power rating of
40 MW and 25.5 MW, respectively. For simulating, a Pentium IV
machine with 2.2 GHz clock speed with 1,024 MB RAM is used.
PHP 5.0 and Matlab are used to develop and simulate the pro-
gram. The generators parameters and load data were reported on
reference [3] for 10-units system. Initially, the sensitivity analy-
ses of pivotal parameters are performed.

6.1 Sensitivities of Important Parameters in OA
This section presents two analyses of parameters’ sensitivities.

First, the sensitivity of the rotational angle θ is scrutinized. Since
θ varies with the nature of applied problem domain [18], it should
be chosen carefully. Which is why, several trials are conducted
for 10-units system whose results are shown in Fig. 2. The fig-
ure points out the frequency of hitting the optimal solution range
($563942–$564210) for various values of θ. θ is varied from
0.005 to 0.05 with step size of 0.0025. It can be seen that, θ is
sensitive. Among the best performing θ-values, 0.03 is chosen.
The sensitivity of Q-population size (G = m × n) and a max-
imum iteration (MX T ) on 10 units system is performed to fix
the corresponding parameters. The different trials are shown in
Table 3. The method is run for 100 times for each of the sys-
tem configurations. The solution quality of the method is found
to be better when (G, MX T ):(40, 150). Moreover, the reported
standard deviation calculated for this pair is also not significant.
The Q-population is divided into 8-groups, each containing 5 Q-
individuals.

6.2 Thermal Generators with Renewables and PHEV Inte-
gration

The number of active PHEV in accordance with the base 10
units power system can be estimated analytically based on the ap-

Fig. 2 Sensitivity of θ on the performance of OA.

plied region. For this model, a hypothetical region is considered
as shown in Table 4.

Therefore, according to Ref. [2], the number of PHEVs
is roughly 43,000 which is a good estimation of a sce-
nario of an isolated island. Now, a PHEV is estimated
to run 32.88 miles/day [24] which tells, that it needs around
8.22 kWh/day. Therefore, the extra energy required for 43K
PHEVs is around 353.46 MWh ([43,000 × 8.22]/1,000). An in-
telligent distribution of such extra power within the thermal gen-
erators is required to achieve a certain load leveling.

The highest load demand in 1,500 MW (Hour 12). Usually a
typical estimation of the marginal demand which separates the
high demand region from the low demand region is 75% of the
highest demand. Therefore, 1,125 MW is set as the marginal de-
mand point. According to the demand graph, therefore, Hours
(1–6, 16–18 and 22–24) are the off-peak region (total 12 hours).
The proposed method intelligently distributes the extra energy re-
quired for powering the PHEVs (in this case, 353.46 MW) among
these 12 hours. However, instead of equally distributing the re-
quired energy, the method uses a different approach. A subroutine
is defined which initially sought out the total number of commit-
ted units for each of the off-peak hours. According to the priority
order of the committed units, the routine then weighs the off-peak
hours. The extra required power to support the PHEVs inclusion
is distributed according to the defined weights. For instance, Ta-
ble 5 shows the weighted hours and corresponding distributions
of the extra 353.46 MW. Consequently, the demand curve is mod-
ified to reflect these changes.

Therefore, the proposed real-time Quantum Evolutionary Al-
gorithm can dynamically adjust the extra energy within the ther-
mal power. The inclusion of PHEVs will increase demand and

Table 3 Parameter analysis for 10-units system.

G = 20 G = 30
MX T MX T

50 75 150 60 100 150
Min. 536,884 535,428 532,048 532,173 528,471 528,890
Mean 539,871 539,875 538,481 538,728 531,484 531,614
Max. 544,069 545,036 543,094 542,403 531,484 535,293

Std. dev. 8.791 7.665 9.064 5.602 4.685 5.172
G = 40 G = 50
MX T MX T

100 150 200 100 150 200
Min. 529,461 525,478 527,025 5,291,048 531,584 530,247
Mean 532,238 530,734 532,746 534,197 537,044 536,310
Max. 536,109 535,807 537,048 538,991 541,879 540,094

Std. dev. 6.074 5.358 5.914 7.725 9.815 8.223

Table 4 PHEV parameters (Estimated and calculated).

PHEV battery capacity 1,025 kWh
Minimum load of the load profile 700 MW
Daily domestic load 2.08 kW [25]
Residential load percentile in the network 40%
Per client PHEV availability 80%
Active participation of residential PHEVs 40%

Table 5 Weighted Priority Hours for load leveling and corresponding extra
power requirement (in MW).

H:22 H:18 H:6 H:16 H:5 H:17
34.40 34.40 34.40 32.84 31.28 31.28

H:4 H:23 H:3 H:24 H:2 H:1
29.71 28.15 26.58 25.02 23.46 21.89
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Table 6 Thermal power generation output with smart-grid model (equivalent solar-wind and PHEV stor-
age output) and emission.

Hour U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9 U 10 Solar (MW) Wind (MW) PHEV (MW) Power (MW) Emission (ton) Cost (USD)
1 455 150 110 0 0 0 0 0 0 0 0 7.2 −21.96 700 1,460.9 14,582.00
2 455 161.8 130 0 0 0 0 0 0 0 0 22.27 −19.09 750 1,522.5 15,128.41
3 455 257.1 130 0 0 0 0 0 0 0 0 25.5 −17.93 850 1,733.7 16,785.66
4 455 232.6 130 130 0 0 0 0 0 0 0 25.5 −22.65 950 1,887.2 19,219.73
5 455 259.6 130 130 25 0 0 0 0 0 0 25.5 −24.98 1,000 2,006.7 20,634.86
6 455 352 130 130 25 0 0 0 0 0 0 25.5 −17.52 1,100 2,267.0 22,247.20
7 455 399.4 130 130 25 0 0 0 0 0 0.09 25.5 −15.08 1,150 2,421.2 23,076.36
8 455 387.7 130 130 25 0 0 0 0 0 17.46 25.5 29.29 1,200 2,381.9 22,871.57
9 455 427 130 130 25 20 25 0 0 0 31.45 25.5 31.07 1,300 2,621.3 25,556.30

10 455 455 130 130 89.6 20 25 0 0 10 36.01 25.5 23.77 1,400 2,843.3 28,297.39
11 455 455 130 130 130.8 20 25 10 10 0 38.06 25.5 20.56 1,450 2,946.5 30,054.63
12 455 454 130 130 120.4 20 25 10 10 10 35.93 25.5 74.6 1,500 2,969.7 30,769.89
13 455 455 130 130 97.6 20 25 0 0 10 36.78 25.5 15.03 1,400 2,854.6 28,460.95
14 455 441.9 130 130 25 20 25 0 0 0 31.59 24.82 16.76 1,300 2,675.3 25,817.48
15 455 414.4 130 130 25 0 0 0 0 0 9.7 20.74 15.08 1,200 2,473.0 23,339.05
16 455 303.8 130 130 25 0 0 0 0 0 12.92 14.62 −21.43 1,050 2,124.5 21,405.47
17 455 271.8 130 130 25 0 0 0 0 0 0 25.5 −37.33 1,000 2,038.0 20,847.44
18 455 357.2 130 130 25 0 0 0 0 0 0 19.04 −16.22 1,100 2,283.2 22,338.09
19 455 372.2 130 130 25 20 25 0 0 0 0 25.5 17.12 1,200 2,434.9 24,596.87
20 455 455 130 130 104.2 20 25 10 0 0 0 18.02 52.35 1,400 2,861.4 28,567.81
21 455 455 130 130 37.4 20 25 0 0 0 0 25.5 21.98 1,300 2,736.1 26,294.59
22 455 358.1 128 130 25 0 0 0 0 0 0 21.42 −17.59 1,100 2,282.0 22,319.60
23 455 221.2 130 130 0 0 0 0 0 0 0 0 −36.27 900 1,860.7 19,021.36
24 455 150 115.7 130 0 0 0 0 0 0 0 2.55 −52.9 800 1,684.9 17,539.85

(NOx +CO2): 55,370.27 549,772.54

Fig. 3 The output from renewables and PHEVs’ batteries.

emission as well since the thermal units are now responsible for
generating extra energies. Therefore, the system requires renew-
able sources which will nullify such effects. So that brings our
next simulation.

The next simulation is conducted by considering the renew-
able sources (PV and WG) integrated with thermal generators and
PHEVs. The rating of the solar farm under study is 40 MW while
the wind farm is 25 MW. The economic dispatch of the ther-
mal generators as well as renewable sources and PHEVs’ stor-
ages are shown in Table 6. From that table, it is evident that the
proposed model is capable to intelligently schedule and allocate
resources. The renewables’ power output as well as the aggre-
gated PHEV batteries output are shown in Fig. 3. The total emis-
sion from thermal generators for that particular case is 55,370.27
tons. This means the inclusion of renewable sources has actually
helped to reduce the emission. Accordingly, the production cost
is also reduced (down to $549,772.54; note that, the start-up cost
is not considered here). The emission reduction phenomena is

Fig. 4 Emission reduction in smart-grid model.

Fig. 5 Convergence of the proposed method for the 10-units system.

portrayed in Fig. 4.
The convergence of OA-FA on a 10-units’ system is plotted

in Fig. 5 considering two random cases. The aggregated fuzzy
membership function (μA) is also pointed in the figure from the
starting point of the convergence graph to the settling cost. It
can be seen that, the μA is converging as OA-FA reaches to opti-
mality. The fuzzy membership degrees (μLD, μWR, μS R and μLR)
for different scaled power systems are reported on Table 7. The
method manages to keep the membership degrees to higher val-
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Table 7 Fuzzy membership degrees for different number units’ system.

Unit μ∗LD μ∗S R μ∗WR μ∗LR

10 0.9538 0.9410 0.9363 0.9742
20 0.9206 0.9177 0.9185 0.9365
40 0.9152 0.9034 0.8961 0.9241
60 0.9241 0.9071 0.8828 0.8924
80 0.8962 0.8875 0.8790 0.9004
100 0.8634 0.8742 0.8705 0.8593

ues that elucidate its capability to generate high quality solutions.

7. Conclusion

This paper presents an agent based operational economic strat-
egy for a smart grid with facilitating the fuzzy and optimizer
agents (OA-FA). A modified quantum inspired evolutionary al-
gorithm is used as a core of optimizer agent. The purpose of
OA-FA is two-fold; 1) to introduce a fuzzy based quantum evo-
lutionary method comprised with several high-performance op-
erators to explore a greater search space by the diversification
of solutions, applied on uncertainty based combinatorial opti-
mization problem, and 2) to integrated renewable sources and
PHEVs with conventional fuel-based thermal power system to
highlight the concern regarding global-warming as well as en-
hance the research oriented for future smart grid infrastructure.
Introducing sophisticated syncing operations between different
levels of individuals advances the traditional quantum evolution-
ary algorithm. Moreover, sophisticated quantum operators are
applied for diversifying the individuals that will feature the ex-
ploration and exploitation scheme of evolutionary computation.
The proposed method intelligently performs the economic opera-
tion by reducing the production cost, distributing the renewables
and PHEVs charging/discharging scheduling and minimizing the
emission. The performed simulation shows the effectiveness of
the proposed method. As an evolutionary algorithm, it provides a
very smooth convergence graph which ensures its ability to find
a balance between local and global search. It can also be safely
said that, quantum-based algorithms qualify to be a potential set
of solution strategies for the high scaled combinatorial optimiza-
tion problem. In a more generalized note, the method exhibits to
be parallel in nature (considering the fact that although Q-bits are
highly coupled, their entanglement can be represented as a prob-
ability distribution function which helps the manipulation of Q-
individuals to be performed in a pseudo-parallel machine), which
makes it a potential solution method for the distributed optimiza-
tion problem. As the simulation results suggest, the proposed al-
gorithm outperforms most of the established methods for the UC
problem (both meta-heuristics and mathematical programming).
Although, there are no theoretical proofs presented in this paper
that explain such result due to the stochastic nature of the algo-
rithm, but analytically speaking, the solution diversification re-
sulted from efficient usage of operators coupled with intelligent
generation of initial population have done the trick. Another ad-
vantage of such a strategy is upon realising true quantum com-
puters, this class of algorithms will provide very high quality so-
lutions with a minimum amount of computational effort (with a
O(1) complexity).
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