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Abstract: Analysis of malware-infected traffic data revealed the payload features that are the most effective for de-
tecting infection. The traffic data was attack traffic using the D3M2012 dataset and CCC DATAsets 2009, 2010, and
2011. Traffic flowing on an intranet at two different sites was used as normal traffic data. Since the type of malware
(worm, Internet connection confirmation, etc.) affects the type of traffic generated, the malware was divided into three
types—worm, Trojan horse, and file-infected virus—and the most effective features were identified for each type.
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1. Introduction

The Internet has become an essential part of work and every-
day life. It continues to expand and become increasingly conve-
nient, but it is also a source of problems because the harm done
by malware to the benefits of the Internet also continues to ex-
pand. “Malware” is short for “malicious software,” that is, soft-
ware designed with ill intent in mind. It has become a threat to
our everyday life by infecting personal computers, resulting in
data corruption, leaked personal information, and various other
problems.

The number of malware incidents increased by about 20 times
over the four-year period from 2007 to 2011 and exceeded 2.5
million for the first time in survey history in 2011 [1].

In response to this trend, security vendors have been develop-
ing anti-malware software for detecting and removing malware
using a signature-based detection technique [2]. This detection
technique, however, must prepare a signature for each item of
malware reflecting its features, meaning that it is unable to detect
unknown malware appearing in great quantities over a short pe-
riod of time. There is therefore a need for a detection technique
based on the likelihood of infection that can detect an unknown
malware infection in the early stage of its spread.

This infection detection requires that the target traffic data be
classified as either normal or infected, which is a two-class task.
The malware infection detection thus needs to classify the target
network traffic into normal or infected so that the detection sys-
tem can use the results to judge whether the target host is infected.

Our target data is mainly traffic data coming from an infected
host. Our approach is to use payload information because there is
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much information available in addition to header data that can be
used to discriminate between infected traffic and normal traffic.

In this study, we first analyzed existing research on infection
detection based on payload information. We found that the pre-
vious studies did not identify payload features that would make
it easy to discriminate between a normal and an infected system.
Once the effectiveness of individual features is clarified, methods
using an optimal combination of these features can be developed.

With this objective in mind, we analyzed malware-infected
traffic data and identified the payload features that would be the
most effective in detecting infection. The traffic data was at-
tack traffic using the D3M2012 dataset and CCC DATAsets 2009,
2010, and 2011 [3] (referred to below as CCC2009, CCC2010,
and CCC2011). Traffic flowing on an intranet at two different
sites was used as normal traffic data. Since the type of malware
(worm, Internet connection confirmation, etc.) affects the type of
traffic generated, we divided the malware into three types consist-
ing of Trojan horse, worm, and file infected virus and identified
the features that would be most effective for each type.

The rest of this paper is organized as follows. In Section 2,
we summarize the payload features commonly used in related
work and describe the goal of our research. In Section 3, we de-
scribe our experimental method along with the specific features
to be evaluated in this paper. Section 4 then presents the results
of our experiment evaluating the ease of discriminating between
infected traffic and normal traffic for each feature, and Section 5
considers which features have the highest discrimination rate for
each type of malware. Section 6 presents the results from evaluate
several important combinations of features including word occur-
rence such as “connection” and “Cookie.” Section 7 concludes

The initial version of this paper was presented at CSS2012 held be-
tween October 30 and November 1 in 2012, which was sponsored by
SIGCSEC. This paper was recommended to be submitted to Journal of
Information Processing (JIP) by the chairman of SIGCSEC.
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the paper.

2. Related Work

2.1 Features Used in Previous Research
Previous research related to malware infection detection and

infected network detection used various payload features.
The appearance frequency rate has been used in several stud-

ies [4], [5], [6]. Kuwabara et al. determined from payload in-
formation in bot-generated traffic that there are characteristic
strings (such as exe and NICK) corresponding to different types
of malware behavior, and they used those strings as features [6].

Lu et al. [7] proposed a technique that focuses on traffic data
carrying bot-generated remote-control communications. This
technique examines the packet payload information of normal
traffic and of bot-generated infected (abnormal) traffic and treats
the appearance frequency rate (number of bytes) of ASCII char-
acter codes within the payload as a feature.

Other infection detection techniques [8], [9] handle the prob-
lem of unknown attacks by using a decision tree, with the HTTP
request length and total HTTP request size used as features.

In short, previous studies have used the appearance frequency
rate of ASCII character codes, the appearance frequency rate of
character strings, and the HTTP request length as features for de-
tecting malware infection. None of these studies, however, eval-
uated the effectiveness of individual features.

2.2 Research Goal
The goal of this research topic from a long-term view is to im-

prove malware detection accuracy.
Because so much new malware appears every day, it is diffi-

cult to totally prevent infection. Malware infections have become
more difficult to detect, so infections have spread widely without
users knowing that their computers have been infected. There-
fore, malware detection is an important measure for preventing its
spread. The accuracy of detection is below the level needed to re-
duce the spread of malware, so improving accuracy is important.

There are two essential subjects that need to be completed to
achieve this goal. Although they are not independent, we can still
focus on either of them.
(1) Find traffic features that differ between traffic from infected
computers and traffic from uninfected computers. The greater the
difference, the more effective the feature.
(2) Develop algorithms that use these features to classify traffic
as either infected or not infected.

Previous research focused on developing algorithms using fea-
tures based only on the researchers’ experience. The most unique
point of our research is its focusing on finding effective traffic
features.

The main point of our approach was exhaustiveness; i.e., we
evaluated 261 features, including all occurrences of all ASCII
code. Because we used so many features, we mainly evaluated
each feature independently rather than evaluating combinations
of features, which would require evaluating 261n combinations
for an n-gram. However, we did evaluate several important com-
binations of features including word occurrence, i.e., sequences
of ASCII code features.

Fig. 1 Research approach.

As shown by the Trend Micro Security database [10], each
type of malware exhibits a unique behavior. To give an exam-
ple, a worm exploits vulnerabilities in software to carry out in-
fections on the network. A Trojan horse accesses a specific site
and requests the downloading of unauthorized files, thereby ex-
posing the infected computer to even more threats. A subspecies
of similar malware tends to exhibit the same behavior [10]. This
means that it is possible to identify effective features for each type
of malware. We thus divided malware into three types—worm,
Trojan horse, and file-infected virus—and identified the features
that would be the most effective for each type.

Figure 1 illustrates our approach. Here, the term “One Fea-
ture” means that we find features that differ between traffic
streams that are infected and those that are not infected for each
type of malware independently. Here, the term “Combination of
multiple features” means that we evaluate combinations of fea-
tures for each type of malware.

3. Methodology

The following describes the method we used for identifying
infected traffic and normal traffic.

3.1 Codebook Creation by Vector Quantization
We created an infected codebook and a normal codebook in

advance. They were used respectively for infected traffic train-
ing and normal traffic training. A codebook is the centroid of
a cluster that is divided from the distribution of the training data.
Since the objective of this study was to evaluate individual fea-
tures, we created a one-dimensional codebook for each feature.
We used the Linde-Buzo-Gray (LBG) + splitting algorithm [12]
for vector quantization, with the number of levels set to 2, 4, 8, or
16, because we refer [12] and number of timeslot we used in this
experiment is small.

Vector quantization yields a data description in terms of clus-
ters or groups of data points that possess strong internal similar-
ities. Vector quantization uses the sum of the square distances
from the cluster centers (codebooks in this paper) and seeks the
grouping that minimizes the sum of the square distances. Each re-
sulting group forms a cluster, with data points in the same cluster
being more similar to each other than to ones in other clusters.

The range of each codebook was calculated as follows. The
number of appearances of a target feature in each timeslot was
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input as a vector:
Notation: Input vector x = {x0, · · · xi, · · · , xk−1}, where k is the
number of time slots, xi is i the time slot.

square distortion d(a, b) =
k−1∑

i=0
|ai − bi|2,

N set = number of levels, and parameter N = 1.
Algorithm
1. Initialization: Given a distortion threshold ε and an initial

N-level codebook A0, set m = 0 and D−1 = ∞.
2. Given Am = {yi; i = 1, · · · ,N}, find its minimum dis-

tortion cluster P(Am) = {S i; i = 1, · · · ,N}: x ∈ S i if
d(x, yi) < d(x, y j) for all j. Compute the resulting average
distortion, Dm = D({Am, P(Am)}) = min

y∈Am

d(x, y).

3. If (Dm−1 − Dm)/Dm < ε and N = N set, halt, with Am

and P(Am) describing the final quantizer and output code-
book Am. If (Dm−1−Dm)/Dm < ε and N < N set, N = N×2,
and Codebook Splitting: yi = yi + δ, yi+N = yi − δ and go
to 1. Otherwise continue.

4. Find the optimal reproduction codebook x(P(Am)) =

{x(S i); i = 1, · · · ,N} for P(Am). Set Am+1 = x(P(Am)). Re-
place m with m + 1 and go to 2.

Am is codebook calculated using the LBG splitting algorithm.

3.2 Computation Method Using Codebooks
There are three requirements for a feature to be effective.

(1) The distance between data distribution in normal traffic should
be short.
(2) The distance between data distribution in infected traffic
should be short.
(3) The distance between data distribution in normal traffic and
data distribution in infected traffic should be long.

The first two mean that the variance for each traffic data type
should be small. The last one means that normal traffic and in-
fected traffic should have little overlap.

We thus need to investigate the relationship between normal
and infected traffic to evaluate the effectiveness of individual fea-
tures. We did this by representing the distributions of normal
traffic and of infected traffic as codebooks obtained using vec-
tor quantization (LBG + splitting algorithm). Then, by calcu-
lating the distance between the codebooks and the target traffic
data, we measured the goodness of separation between normal
and infected traffic. We used the nearest distance classifier for the
classification of the target network traffic to calculate the distance
between each codebook and the target traffic data. The support
vector machine (SVM), AdaBoost, deep learning, and extreme
learning machine (ELM) methods are not appropriate for evalu-
ation based on the three requirements because they basically do
not measure the goodness of separation. Instead, they determine
the boundary between two category distributions in feature space.

Using vector quantization and these codebooks, we calculated
the distance between the test data and the infected and normal
codebooks and identified the test data as being infected or normal
in accordance with the distance.

3.3 Feature Evaluation
We identified the features with both a high true positive rate

(TPR) and a high true negative rate (TNR), features with only
a high TPR, and features with only a high TNR. TPR is the rate
at which infected traffic is correctly classified as infected. TNR is
the rate at which normal traffic is correctly classified as normal.

TNR

=
Number of the infected test data classified correctly into infected category

Number of the total infected test data
TPR

=
Number of the normal test data classified correctly into normal category

Number of the total normal test data

Since the goal of this research is to improve the accuracy of
detecting malware infection of a host, we need to discriminate
between normal traffic data and infected traffic data. To evaluate
the effectiveness of discrimination, we used TPR and TNR.

Each timeslot of the tested traffic data containing the target
feature (for example ASCII code “i”) was discriminated between
normal and infected. The number of timeslots with correctly clas-
sified data was then calculated. The TPR and TNR were then
calculated using the equations above.

To evaluate each feature’s effectiveness, we focused on the po-
sition relation between the distribution of normal traffic and that
of infected traffic. We calculated the distance between the two
distributions and made a histogram to identify overlap between
the distributions (shown in Section 5). A discussion from the
viewpoints of the behavior for each type of malware is included
in Appendix B.

4. Experiment

4.1 Time Slots
We used time slots to extract features from traffic data. Time

slots divide traffic data into intervals lasting a specific length of
time.

Dividing time-varying traffic into time slots and representing
that traffic in units of time slots enables one to identify normal
and infected traffic by focusing on the overall temporal variation
of that traffic. We set the time-slot duration to 1 s and identified
the features for every time slot.

4.2 Payload Features
We used the entire payload included in traffic of communica-

tions over HTTP protocol using 80/tcp port because the dataset
included in payload is only communications over HTTP proto-
col using 80/tcp port in this experiment. We evaluated the 261
features frequently used in previous research:
• appearance frequency of 255 ASCII codes
• appearance frequency of five characteristic character strings

(GET, POST, exe, whatismyip, and checkip)
• HTTP request length.

4.3 Experimental Data
To evaluate the differences in data-acquisition environments,

we used traffic flowing on an intranet at two different sites (in-
tranet A and intranet B) as normal traffic. This enabled us to eval-
uate features without them being easily affected by differences in
the data-acquisition environment. We divided the data from each
site into training data for creating a normal codebook and test
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Table 1 Malware type(s) and malware sample(s) for each data set.

data.
We used the D3M2012, CCC2009, CCC2010, and CCC2011

datasets as infected traffic data and divided each into training data
for creating an infected codebook and test data. The malware
samples for each type of malware were divided up fairly evenly
among these data sets. For example, three of the four datasets
contained six worm samples. Three were used as training data,
and three were used as test data. In this way, we were able to de-
termine whether training using three types of worm could enable
detection of three other types of worm.

Note that the CCC2009, CCC2010, and CCC2011 datasets in-
cluded data for communications prior to malware infection. Thus,
given the purpose of our evaluation, we extracted from the in-
fected traffic only the traffic following malware infection using
the method described by Kawamoto et al. [11]:
1) Remove control packets generated only in honeypot circum-
stances.
2) Divide pcap data in OS reset interval of the honeypot.
3) Check whether traffic is truly infected by referring to malware
collection log provided in CCC DATAset after the first packet of
malware transmission.
4) Extract traffic data after first packet of the malware transmis-
sion.

We used worms, Trojan horses, and file-infected viruses as the
three types of malware. The file-infected viruses infected exe-
cutable files with the .exe extension. The names of the malware
samples in the CCC DATAset were the names entered in the log
files of malware traffic data, and those in the D3M2012 dataset
were the names designated by G Data Software, Trend Micro,
and Kaspersky Lab using the hash values of those samples. The
malware in each of the datasets is listed in Table 1.

Table 2 shows the 1-s time slots of normal traffic for training
and testing. Table 3 shows the 1-s time slots of infected traffic
for training and testing. We used the data in the first 4,000 time
slots on one day as normal traffic training data and the data in

Table 2 Number of 1-s time slots in normal traffic.

Table 3 Number of 1-s time slots in infected traffic.

the first 4,000 time slots of another day as normal traffic testing
data. The training and testing of infected traffic was divided so
that the number of malware sample for training and the number
of malware sample for testing were the same.

4.4 Experimental Results
Since we use payload features to identify whether the target

traffic is infected or normal, we can improve the identification
rate by using more effective features. It can also be improved by
combining features. We therefore identified features with both
a high TPR and a high TNR, features with only a high TPR, and
features with only a high TNR.
4.4.1 Features with High TPR and TNR

From the viewpoint of evaluating the features less susceptible
to the acquisition environment and to evaluate the effect of the
number of quantization levels, we evaluated the average TPR and
TNR by using four different quantization levels (2, 4, 8, 16) for
each of the 261 features using the normal traffic data (intranets A
and B).

Table 4 shows the top 15 features in terms of average TPR and
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Table 4 Top 15 features in terms of average TPR and TNR by malware type by intranet.

Table 5 TPR and TNR for ASCII code “i” for worm by intranet.

TNR when changing the quantization levels by type of malware
by intranet. The TPR and TNR values were highly stable for
ASCII code “i” for worm and “HTTP request length” for file-
infected virus regardless of the acquisition environment. TPR and
TNR changed vector quantization levels using the ASCII code of
“i” and “HTTP request length, as shown in Tables 5 and 6. For
both intranets, these features were detected stably with a TPR
of more than 94% and a TNR of more than 80% even when the
number of quantization levels was changed.
4.4.2 Features with Only High TPR

In Table 4, the features with only a high TPR (enclosed by
a thick dotted line) effective for detecting a worm were “HTTP re-
quest length” and ASCII codes of “0” and “f”; those effective for

Table 6 TPR and TNR for “HTTP request length” for file-infected virus by
intranet.

detecting a Trojan horse were “HTTP request length” and ASCII
codes of “NL*,” “CR,” “0,” “5,” “A,” “C,” “M,” “d,” “e,” “r,” “t,”
and “x”; those effective for detecting a file-infected virus were
ASCII codes of “S,” “e,” “I,” “o,” and “p.” For both intranets,
these features were detected stably with a TPR of more than 95%
even when the number of quantization levels was changed.
4.4.3 Features with Only High TNR

In Table 4, the feature with only a high TNR (enclosed by a thin
dotted line) effective for detecting a worm was ASCII code “J.”
For both intranets, this feature was detected stably with a TNR of
more than 80% even when the number of quantization levels was
changed.
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5. Discussion

We clarified the effectiveness of the features identified as de-
scribed in Section 4 by checking the overlap between the normal
traffic and infected traffic distributions. In this section, we focus
on worm malware and discuss the situation of a histogram gen-
erated by appearance frequency. Similar discussions for Trojan
horse and file-infected virus malware are found in Appendix A.

5.1 Appearance Frequency of ASCII Code
We made histograms of the appearance frequency of each iden-

tified feature. In these histograms, the horizontal axis is the ap-
pearance frequency (number of times) and the vertical axis is the
ratio of the number of slots containing the target feature to the
number of total slots of infected traffic (or normal traffic).

For example, the dark bars in Fig. 2 show the appearance fre-
quency rate of ASCII code “i” to the total number of slots in
the infected traffic data. The leftmost one (appearance frequency
0. . . 9) shows that the slots containing 0–9 ASCII code “i” per slot
represent 75% of the total slots in the infected traffic data. The
light bars show the appearance frequency rate of ASCII code “i”
to the total number of slots in the normal traffic data. Figure 3 is
a continuation of Fig. 2.

Figures 2 and 3, which show examples of features that have
been accurately identified, are histograms of the appearance fre-
quency of ASCII code “i” in worm-infected traffic and in normal
traffic (intranet A). They show the results of setting the quantiza-
tion level to 2. The dark bars in Figs. 2 and 3 are to the left of 59
on the x axis, meaning that the appearance frequency of ASCII
code “i” in the infected traffic data was less than 59 per slot. The
light bars to the right of 1,000 on the x axis indicate that the ap-
pearance frequency of ASCII code “i” in the normal traffic data
was more than 1,000 per slot. We therefore created a small-value
infected codebook and a large-value normal codebook.

One codebook is made for a place where the frequency of
ASCII code “i” is high (the number for the infected codebook
is 9). The other is made for a place where the codebook num-
ber is large (the number for the normal codebook is 1,450). Each
codebook represents an outline of a histogram, so using the LBG
splitting algorithm was appropriate for calculating the codebook
numbers in this experiment.

The dark bars in Figs. 2 and 3 are to the left of 59 on the x axis,
meaning that the appearance frequency of ASCII code “i” in the
infected traffic data was less than 59 per slot. The light bars to the
right of 1,000 on the x axis indicate that the appearance frequency
of ASCII code “i” in the normal traffic data was more than 1,000
per slot. We therefore created a small-value infected codebook
and a large-value normal codebook.

One codebook is made for a place where the frequency of
ASCII code “i” is high (the number for the infected codebook
is 9). The other is made for a place where the codebook num-
ber is large (the number for the normal codebook is 1,450). Each
codebook represents an outline of a histogram, so using the LBG
splitting algorithm was appropriate for calculating the codebook
numbers in this experiment.

There are two explanations for the normal traffic having

Fig. 2 Histogram for ASCII code “i” (ratio of number of displayed slots
to total number of slots is more than 1%). (Horizontal: appearance
frequency (no. of times); vertical: appearance frequency rate (%)).

Fig. 3 Continuation of histogram for ASCII code “i” (ratio of number of
displayed slots to total number of slots is less than 1%). (Horizontal:
appearance frequency (no. of times); vertical: appearance frequency
rate (%))

a greater appearance frequency of ASCII code “i.” First, the size
of the payload in normal traffic is greater than that of the payload
in infected traffic. In fact, the byte count of the payload in normal
traffic was twice that of the payload in infected traffic. This is
why the appearance frequency of ASCII code “i” is so high.

The second explanation is that the appearance of a keyword
containing ASCII code “i” in normal traffic is more frequent than
that of a keyword containing ASCII code “i” in infected traffic.
These keywords include terms containing an ASCII code “i” such
as “Cookie,” which saves personal information such as login in-
formation and so on in normal traffic, and “Content-type images,”
which are used for multimedia (images and video) appearing in
normal traffic data. Character strings containing ASCII code “i,”
their meaning, and our comments are summarized in Table 7.

The findings for Trojan horse and file-infected virus are similar
(see Appendix A.).

5.2 Appearance Frequency of HTTP Request Length
A histogram of HTTP request length in normal traffic (in-

tranet A) and in worm-infected traffic infected when the quanti-
zation level was set to 2 is shown in Figs. 4 and 5. The horizontal
axis is the HTTP request length, and the vertical axis is the ratio
of the number of slots contained in the range of HTTP request
lengths to the total number of slots. Figure 4 shows the range up
to a request length of 200, and Fig. 5 shows the range up to 5,000.

The appearance frequencies for the infected traffic were less
than 110 while most of those for the normal traffic data were more
than 110.

Normal traffic data (user communications) features many types
of communication, so the HTTP request length varies. The HTTP
request length for much of the infected traffic data was small, and
the value of the infected codebook was also small, so the TPR
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Table 7 Character strings containing ASCII code “i,” their meaning, and our comments.

Fig. 4 Histogram for HTTP request length (ratio of number of displayed
slots to number of total slots is more than 1%). (Horizontal: request
length, vertical: rate of appearance frequency (%)).

Fig. 5 Continuation of histogram for HTTP request length (ratio of dis-
played slots to the total number of slots is less than 1%). (Horizontal:
request length, vertical: rate of appearance frequency (%)).

was high. We concluded that the TNR was lower because some
HTTP requests in normal traffic are shorter.

The results for Trojan horse and file-infected virus were similar
(see Appendix A).

6. Evaluation of Words

We evaluated the effectiveness of the words mentioned in
the previous section under the same experimental conditions.
Those with a high TPR (enclosed by a thick dotted line in Ta-
ble 8) effective for detecting a worm were “Accept-Encoding,”

“keep-alive,” “Cookie,” and “Content-type”; those effective for
Trojan horse were “Accept-Encoding,” “gzip,” “keep-alive” and
“Cookie”; those effective for file-infected virus were “Accept-
Encoding,” “gzip,” “Connection,” “keep-alive,” “Cookie,” and
“Content-type.”

7. Conclusion

We evaluated the payload features of three malware types—
worm, Trojan horse, and file-infected virus—to determine their
effectiveness in detecting malware infection. We used the
D3M2012, CCC2009, 2010, and 2011 datasets for infected traffic
data and the traffic data of two intranets as normal traffic data.

We found that the TPR and TNR for each malware type using
a specific ASCII code and HTTP request length were high and
that specific ASCII codes and HTTP request lengths are effective
features for detecting infection. We varied the quantization level
and focused on the top 15 features in terms of average TPR and
TNR and found that when TPR was more than 95% and TNR was
more than 80%, the detection rate was “high.”

We also identified 3 optimal features for worms, 15 for Trojan
horses, and 5 for the file-infected viruses as features that have
only a high TPR. Only one feature for worms had a high TNR.
As a feature with both a high TPR and high TNR, ASCII code
“i” was especially effective for detecting file-infected viruses,
and HTTP request length was especially effective for detecting
worms.

In addition, there are infection activities specific to each type of
malware, such as “Internet connection confirmation” for worms,
“download malware order to attack communications” for Trojan
horses, and “IRC connection” for the file-infected viruses. We
identified the relationships between the identified features and
these infection activities.

Now that we have identified the most effective features for
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Table 8 Average TPR and TNR for words in each intranet.

detecting malware infection for three types of malware, we will
next investigate effective combinations of features (n-gram and
so on) for discriminating between normal and infected traffic. We
will also improve our classification algorithm so that normal traf-
fic and infected traffic can be discriminated more effectively.
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Appendix

A.1 Discussion of Trojan Horse and File-
infected Virus

A.1.1 Trojan Horse
A.1.1.1 Appearance Frequency of ACII Characters

As an example of the features that were judged accurately in
Section 4, we show histograms of the appearance frequency of
the ASCII code “o” of the infected traffic data of a Trojan horse
and of the normal traffic data of intranet A (Figs. A·1 and A·2).
The vertical and horizontal axes of these figures are the same as
those in Figs. 2 and 3.

The appearance frequency of ASCII code “o” for the infected
traffic data was less than 20 per slot, as shown in Figs. A·1
and A·2. However, there are light bars to the right of 1,000 on
the x axis, which indicates that a small-value infected codebook
and a large-value normal codebook were created.

There are two reasons that normal traffic had a greater appear-
ance frequency for ASCII code “o.” First, the amount of payload
contained in normal traffic is greater than that in infected traffic.
In fact, the byte count of the payload in the normal traffic was
twice that of the payload in the infected traffic. This explains the
frequent appearance of ASCII code “o.”

Second, keywords containing ASCII code “o” appear more of-
ten in normal traffic than in infected traffic. These keywords in-
clude “Cookie,” which saves personal login information in nor-
mal traffic, and “Connection,” which sends and receives multiple
files in one session. Character strings containing ASCII code “o,”
their meaning, and our comments are summarized in Table 6.
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Table A·1 Character strings containing ASCII “o,” their meaning, and our comments.

Fig. A·1 Histogram for ASCII code “o” (ratio of number of displayed slots
to total number of slots is more than 1%). (Horizontal: appear-
ance frequency (no. of times), vertical axis: rate of appearance
frequency (%)).

Fig. A·2 Continuation of histogram for ASCII code “o” (ratio of number
of displayed slots to total number of slots is less than 1%). (Hori-
zontal: appearance frequency (no. of times), vertical axis: rate of
appearance frequency (%)).

A.1.1.2 Appearance Frequency of HTTP Request Length
Histograms of the appearance frequency for HTTP request

length for normal traffic (intranet A) and the infected traffic of
a Trojan horse are shown in Figs. A·3 and A·4. The vertical and
horizontal axes are the same as those in Figs. 4 and 5.

These figures show the results when the quantization level was
set to 2. The appearance frequency for the infected traffic was
less than 20, and that for the normal traffic data was mostly more

Fig. A·3 Histogram for HTTP request length (ratio of number of displayed
slots to total number of slots is more than 1%). (Horizontal: re-
quest length, vertical: rate of appearance frequency (%)).

Fig. A·4 Continuation of histogram for HTTP request length (ratio of dis-
played slots to the total number of slots is less than 1%). (Horizon-
tal: request length, vertical: rate of appearance frequency (%)).

than 100.
Normal traffic data (user communications) features many types

of communication, so the HTTP request length varies. The HTTP
request length of significantly infected traffic data is small and is
classified into the infected codebook. Therefore, TPR was higher
and TNR was lower because some HTTP requests were shorter
in the normal traffic.
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Table A·2 Character strings containing ASCII “i,” their meaning, and our comments.

Fig. A·5 Histogram for ASCII code “i” (ratio of number of displayed slots
to total number of slots is more than 1%). (Horizontal: appearance
frequency (no. of times), vertical: rate of appearance frequency
(%)).

Fig. A·6 Histogram for ASCII code “i” (ratio of displayed slots to the total
number of slots is less than 1%). (Horizontal: appearance fre-
quency (no. of times), vertical: rate of appearance frequency (%)).

A.1.2 File-infected Virus
A.1.2.1 Appearance Frequency of ACII Characters

As an example of the features that were judged accurately in
Section 4, we show histograms of the appearance frequency of
ASCII code “i” of the infected traffic data of a file-infected virus
and of normal traffic data (intranet A) in Figs. A·5 and A·6). The
vertical and horizontal axes of these figures are the same as those
in Figs. 2 and 3.

The appearance frequency of ASCII code “i” of the infected
traffic data was less than 59 per slot, as seen in Figs. A·5 and A·6.

Fig. A·7 Histogram for HTTP request length (ratio of number of displayed
slots to total number of slots is more than 1%). (Horizontal: re-
quest length, vertical: rate of appearance frequency (%)).

There are light bars to the right of 1,000 on the x axis, which
indicates that a small-value infected codebook and a large-value
normal codebook were created.

There are two reasons that normal traffic had a greater appear-
ance frequency for ASCII code “i” First, the size of the payload
in the normal traffic was greater than that in the infected traffic. In
fact, the byte count of the payload in the normal traffic was twice
that of the payload in the infected traffic. This is why ASCII code
“i” appeared so frequently.

The second reason is that keywords containing ASCII code “i”
occur more frequently in normal traffic than in infected traffic.
These keywords include “Cookie,” which saves personal login in-
formation in normal traffic, and “Content-type image,” which is
used for multimedia (images and video) appearing in normal traf-
fic. Character strings containing ASCII code “i,” their meaning,
and our comments are summarized in Table A·2.
A.1.2.2 Appearance Frequency of HTTP Request Length

Histograms of the appearance frequency of HTTP request
length in normal traffic (intranet A) and the infected traffic of
a file-infected virus are shown in Figs. A·7 and A·8. The verti-
cal and horizontal axes of these figures are the same as those in
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Fig. A·8 Continuation of histogram for HTTP request length (ratio of dis-
played slots to the total number of slots is less than 1%). (Horizon-
tal: request length, vertical: rate of appearance frequency (%)).

Figs. 4 and 5.
These figures show the results when the quantization level was

set to 2. The appearance frequency for the infected traffic was less
than 20, and that the appearance frequency for the normal traffic
was mostly more than 110.

Normal traffic data (user communications) features many types
of communication, so the HTTP request length varies. The HTTP
request length of significantly infected traffic data is small and is
classified into the infected codebook. Therefore, TPR was higher
and TNR was lower because some HTTP requests were shorter
in the normal traffic.

A.2 Discussion of Malware Behavior by Type

As mentioned, we investigated the behavior of each type of
malware and identified the features most effective against each
type of malware. Here, we describe the payload information
for normal and infected traffic data for each type (worm, Trojan
horse, and file-infected virus), explain the associated behaviors,
and discuss the most effective features for detecting infection.

A.2.1 Worm
• Determine Internet connection

With worm infections, the worm first checks that the target PC
is connected to the Internet and then performs activities to in-
fect the PC. It then checks the Internet connection to a particular
domain, i.e., a site that displays the user’s IP address, such as
www.whatismyipaddress.com and checkip.dyndns.org.
• Download malware in order to attack communications

After the worm completes the infection, which serves as a start-
ing point, it downloads other malware from individual servers by
using “HTTP GET” commands such as “GET /vss.exe HTTP/1.0”
and “GET /fdc1.data HTTP/1.0.” The HTTP request length of
infected traffic data is generally shorter than 110, while that of
normal traffic data is generally longer than 110 (i.e., the ratio of
the number of slots featuring an HTTP request length longer than
110 to the number of total slots is more than 95%; Figs. 4 and 5).

This discussion indicates that the features shown in Table 4
(such as ASCII code “f”) are effective for detecting malware in-
fected because, in the case of infected traffic data, the appearance
frequency of ASCII code included in domains is less than that of
normal traffic data, and the HTTP request length is shorter than
that of infected traffic data.

A.2.2 Trojan Horse
• Download malware in order to attack communications

After infection with a Trojan horse as a starting point, the
Trojan horse downloads other malware from individual servers by
using “HTTP GET” commands such as “GET /vot.exe HTTP/1.0”
and “GET /15Psv3zJ/4ah6NuS.exe HTTP/1.0.” Most infected traf-
fic communication is done using only “HTTP GET” since the
amount of information in the payload is small. The number of
breaks (�r�n) in infected traffic is fewer than that in normal traf-
fic. The HTTP request length of infected traffic data is generally
shorter than 20 while that of normal traffic data is generally longer
than 110 (i.e., the ratio of the number of slots featuring an HTTP
request length longer than 110 to the number of total slots is more
than 95%; Figs. A·3 and A·4).

This discussion indicates that the features shown in Table 4
(ASCII code “e”, etc.) are effective for detecting malware infec-
tion because, in the case of infected traffic data, the appearance
frequency of ASCII code included in domains etc. is less than
that of normal traffic data, and the HTTP request length is shorter
than that of infected traffic data.

A.2.3 File-infected Virus
• C&C server connection by IRC communication (IRC connec-

tion)
A file-infected virus performs IRC communication and con-

nects the target PC to a C&C server in preparation for performing
infection activities. After the IRC communication is established,
the file-infected virus performs infection activities such as down-
loading malware for communication attacks, DoS attacks against
a target PC, etc. the file-infected virus performed infection activ-
ities such as downloading malware for attack communication in
this analyzing. When performing IRC communication, specific
strings (IRC domain: norks.org 001, etc.) repeatedly appeared
with similarly high frequency in each slot in the communica-
tion contents. The appearance frequency of ASCII codes is typi-
cally variable in normal traffic data, but the appearance frequency
of ASCII codes included in IRC communication (infected traffic
data) was constant at 60 to 75.
• Download malware in order to attack communications

After infection with a file-infected virus as a starting point, the
virus downloads other malware from individual servers by using
“HTTP GET” commands such as “GET /jiri.data HTTP/1.0” and
“GET 44.data HTTP/1.0.” The HTTP request length of infected
traffic data is generally shorter than 110 while that of normal traf-
fic data is generally longer than 110 (i.e., the ratio of the number
of slots featuring an HTTP request length longer than 110 to the
number of total slots is more than 95%; Figs. A·7 and A·8).

The appearance frequency of ASCII codes in IRC communica-
tion is greater than that of ASCII codes in normal traffic in each
slot in terms of the communication contents and is a similar num-
ber in each slot. In other words, the appearance frequency of
ASCII codes is variable in normal traffic data but that in IRC com-
munication (infected traffic data) is constant at 60 to 75. More-
over, the HTTP request length is short in cases of infected traffic
data. This indicates that the features shown in Table 4 (ASCII
code “d”, etc.) are effective for detecting malware infection.
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In terms of the three types of malware, malware using HTTP
communications performs “confirm Internet connection” and
“download malware in order to perform attack communication”
as infection activities. We identified the different behaviors (IRC
connection and downloading from an outside server directly, etc.)
for each type of malware when it was downloaded and performed
infection activities such as attacking communications. In addi-
tion, we found that the string of payload information for down-
loading malware is different for each type of malware. We there-
fore conclude that the most effective feature for detecting infec-
tion depends on the type of malware.

Editor’s Recommendation
How to extract payload features form network traffic plays

a critically important role when we want to detect unknown
malware effectively and efficiently. In this paper, the authors
comprehensively evaluate a wide range of feature extraction
methods. In addition, the evaluation results are reliable based
on the common MWS2012 (anti Malware engineering WorkShop
2012) Datasets. The implications carefully derived from the eval-
uation thus have a great impact on malware detection researches
and practices.

(Chairman of SIGCSEC Kanta Matsuura)
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