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Abstract: Yosenabe is one of Nikoli’s pencil puzzles, which is played on a rectangular grid of cells. Some of the
cells are colored gray, and two gray cells are considered connected if they are adjacent vertically or horizontally. A
set of connected gray cells is called a gray area. Some of the gray areas are labeled by numbers, and some of the
non-gray cells contain circles with numbers. The object of the puzzle is to draw arrows, vertically or horizontally, from
all circles to gray areas so that (i) the arrows do not bend, and do not cross other circles or lines of other arrows, (ii) the
number in a gray area is equal to the total of the numbers of the circles which enter the gray area, and (iii) gray areas
with no numbers may have any sum total, but at least one circle must enter each gray area. It is shown that deciding

whether a Yosenabe puzzle has a solution is NP-complete.
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1. Introduction

Yosenabe is one of Nikoli’s pencil puzzles[20], which is
played on a rectangular grid of cells (see Fig.1(a)). Some of
the cells are colored gray, and two gray cells are considered con-
nected if they are adjacent vertically or horizontally. A set of
connected gray cells is called a gray area, which is regarded as
a “deep pot” (“Nabe (#4)” in Japanese). Some of the gray areas
are labeled by numbers, and the remaining gray areas have no
numbers. Some of the non-gray cells contain circles with num-
bers, where circles are regarded as “ingredients” (“Guzai (ZL41)”
in Japanese). The Japanese word “Yosenabe (72 ##)” means a
“mixed stew.”

The object of the puzzle is to draw arrows, vertically or hori-
zontally, from all circles to gray areas (see Fig. 1 (b)) so that (i) the
arrows do not bend, and do not cross other circles or lines of other
arrows, (ii) the number in a gray area is equal to the total of the
numbers of the circles which enter the gray area, and (iii) gray
areas with no numbers may have any sum total, but at least one
circle (arrow tip) must enter each gray area. It should be noted
that only one arrow tip can enter a gray cell.

In this paper, it is shown that deciding whether a Yosenabe puz-
zle has a solution is NP-complete. The puzzle is trivially in NP,
since the puzzle can be solved by drawing an arrow from every
circle one by one.

There has been a huge amount of literature on the computa-
tional complexities of games and puzzles. In 2009, a survey of
games, puzzles, and their complexities was reported by Hearn
and Demaine [9]. After the publication of this book, the fol-
lowing Nikoli’s pencil puzzles were shown to be NP-complete:
Hashiwokakero [ 1], Kurodoko [15], Shakashaka [6], Shikaku and
Ripple Effect [19], Yajilin and Country Road [11].
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Fig. 1 (a) A Yosenabe puzzle. (b) A solution of (a). All circles are moved,
vertically or horizontally, so that they enter the gray areas. The num-
ber in a gray area is equal to the total of the numbers of the circles
which enter the gray area. At least one circle enters every gray area
with no number. (c) is not a solution, since pairs of arrows intersect
at cells (B,b) and (F,e). (d) is not a solution, since there is a gray
area (on cells (B, f) and (C, f)) which does not receive any arrow.
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Furthermore, it was also shown that Block Sum[8], Ka-
boozle [2], Magnet Puzzle [16], Pandemic [17], Shisen-Sho [14],
String Puzzle [13], single-player UNO [5] and Zen Puzzle Gar-
den[10] are NP-complete. As for higher complexity classes,
Chat Noir [12], Rolling Block Maze [3], and two-player UNO [5]
were shown to be PSPACE-complete.
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2. NP-completeness of Yosenabe

We present a polynomial-time transformation from an arbitrary
instance C of PLANAR 3SAT to a Yosenabe puzzle Y such that
C is satisfiable if and only if Y has a solution.

2.1 PLANAR 3SAT Problem

The definition of PLANAR 3SAT is mostly from [LO1] of
Ref.[7]. Let U = {x1,x2,...,x,} be a set of Boolean variables.
Boolean variables take on values O (false) and 1 (true). If x is a
variable in U, then x and X are literals over U. The value of X is
1 (true) if and only if x is O (false). A clause over U is a set of
literals over U, such as {X], x3, x4}. It represents the disjunction
of those literals and is satisfied by a truth assignment if and only
if at least one of its members is true under that assignment.

An instance of PLANAR 3SAT is a collection C =
{c1,¢2,...,cn} of clauses over U such that (i) |c;| < 3 for each
¢j € C and (ii) the bipartite graph G = (V, E), where V. = U U C
and E contains exactly those pairs {x, ¢} such that either literal x
or x belongs to the clause c, is planar.

The PLANAR 3SAT problem asks whether there exists some
truth assignment for U that simultaneously satisfies all the clauses
in C. This problem is known to be NP-complete. For example,
U = {x1,x,x3,x4}, C = {c1,¢2,¢3,¢4}, and ¢; = {x1,x2, %3},
¢y = {X1,%2, X4}, 3 = {X1, X3, X3}, c4 = {X2, X3, X4} provide an in-
stance of PLANAR 3SAT. In this instance, the answer is “yes,”
since there is a truth assignment (xy, x5, x3, x4) = (1,0, 1, 1) satis-
fying all clauses. It is known that PLANAR 3SAT is NP-complete
even if each variable occurs exactly once positively and exactly
twice negatively in C [4].

2.2 Transformation from an Instance of PLANAR 3SAT to
a Yosenabe Puzzle

Each variable x; € {x1, x2, ..., x,} is transformed into the vari-

able gadget (as illustrated in Fig.2 (a)), which consists of two
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Fig.2 (a) Variable gadget transformed from x;. (b) If x; is filled by s, z, then
X; must be filled by u, v. In this case, gray area c;, can be filled by r,
but c;,,c;, cannot be filled by u,v. (c) If X; is filled by s, 7, then x;
must be filled by r. In this case, c},,c;, can be filled by u,v, but ¢;,
cannot be filled by r.
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gray areas having number 2 (labeled with x; and X;), one circle
with number 2 (labeled with r), and two pairs of circles with num-
ber 1 (labeled with s, ¢ and u, v).

Suppose that there are gray areas c;, and c¢;,, c;, to the left and
right sides of the variable gadget (see Fig. 2 (b)). If gray area x; is
filled by circles s, #, then gray area x; must be filled by circles u, v.
In this case, gray area c;, can be filled by circle r, but ¢;,,c},
cannot be filled by circles u, v. This configuration corresponds to
x; = 1.

On the other hand, if gray area X; is filled by circles s, (see
Fig.2(c)), then gray area x; must be filled by circle r. In this
case, ¢j,,cj, can be filled by circles u, v, but ¢;, cannot be filled
by r. This corresponds to X; = 1.

Figure 3 is the right-and-left turn gadget, which consists of
two gray areas having number k (labeled with A and B) and three
circles with number & (labeled with p, ¢, and r) , where k € {1,2}.
If gray area c; is filled by circle p, then gray areas A and B must
be filled by circles g and r, respectively. Conversely, if x; is filled
by circle r, then gray areas B and A must be filled by circles ¢
and p, respectively.

Figure 4 is a Yosenabe puzzle Y transformed from C =
{c1,¢2,¢3,¢c4) and U = {x1,x2, x3, x4}, where ¢; = {x, x2, X3},
c2 = {x1,%2, x4}, 3 = {X1, x3, X4}, and ¢4 = {x7, %3, %4}, If either
literal x; or X; belongs to the clause c; € C, then the variable gad-
get for x; € U is connected to gray area c; via right-and-left turn
gadgets.

Let G = (V,E) be a graph, where V = U U C and E contains
exactly those pairs {x;, ¢;} such that either literal x; or X; belongs
to the clause c;. Now one can see that E corresponds to white
regions of Fig.4, and V = U U C corresponds to red regions
(labeled with x;,x;) and gray rectangle areas (labeled with c;),
respectively. Regions labeled with color | € {3,4,5} in Fig. 4 cor-
respond to G’s faces.

Regions labeled with color [ € {3,4, 5} are used as “walls” (see
also Fig. 5), which are composed of pairs of gray areas (squares)
with number / and circles having number /. For example, the cen-
ter region labeled with color 3 in Fig. 4 is composed of seven gray
areas (squares) with number 3 and seven circles having number 3
(see Fig.5).

Each gray square of Fig. 5 must be filled by a single circle (and
not by two or more circles), since it is composed of a single cell.
The center region of color 3 (see Fig.5) can be filled up with
seven arrows connecting circles to gray squares in the region.

Fig.3 Right-and-left turn gadget when k = 2. If ¢; is filled by p, then A and
B must be filled by ¢ and r, respectively. If x; is filled by r, then B
and A must be filled by g and p, respectively.
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Fig. 4 Yosenabe puzzle Y transformed from C = {cy, ¢2, ¢3, ¢4}, where ¢; = {x1, X2, X3}, ¢2 = {X7, X2, X4},
c3 = {x7,x3,%}, and ¢4 = {X2,%3,X4}. From the solution indicated by solid arrows, one can see
that the assignment (x;, x2, x3, x4) = (1,0, 1, 1) satisfies all clauses of C.
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Fig. 5 The center region labeled with color 3 of Fig.4 is composed of seven gray areas (squares) with
number 3 and seven circles having number 3. This region will be filled up with seven arrows
connecting circles to gray squares in the region.
By using the quadratic-time four-coloring algorithm [18], we Since the maximum degree of G is three, such a coloring satisfies
can assign four colors {3,4, 5, 6} to every face of G so that no two that no two faces sharing a single vertex have the same color.
adjacent faces have the same color. (In Fig. 4, color 6 is not used.) Therefore, any pair of regions having the same color are sepa-
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rated by a region having a different color. For example, in Fig. 4,
there are two regions of color 3. The center region of color 3 is
completely surrounded by colors 4 and 5, and is separated from
the outer region of color 3.

Hence, every circle in a region of color [ € {3,4,5,6} has an
arrow to a gray area (square) in the same region (see Fig.5) (and
not to a gray area (square) in a different region).

From this construction, the instance C of PLANAR 3SAT is
satisfiable if and only if Yosenabe puzzle Y has a solution. From
the solution indicated by solid arrows in Fig. 4, one can see that
the assignment (x1,x2,x3,x4) = (1,0, 1,1) satisfies all clauses
of C.
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