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Abstract: We propose a novel video summarization approach that takes the mass quantity of nursery school surveil-
lance videos as input and produces short daily video digests for children. The proposed approach makes full use of a
distance metric, which is learned using a novel learning algorithm called the adaptive large margin nearest neighbor
(ALMNN), and can properly measure the similarity between video clips. The learned distance metric is combined
with supervised classification and unsupervised clustering to categorize daily raw surveillance videos into individual
event categories. The final digest is constructed by selecting representative video clips that belong to individual event
categories. Digests generated using our approach cover and reflect the various activities of children in nursery schools.
They are of interest to parents, and they also enable easy access to mass quantities of daily surveillance video data. We
implemented the approach as a practical system in a real nursery school environment and assessed its performance.
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1. Introduction

Many children spend their early years in nursery schools or
kindergartens. Most parents want to monitor the progress on a
daily basis. To meet these needs, some nursery schools in Japan
have introduced remote surveillance camera systems [1]. Such
systems not only provide the chance for parents to check events
inside the nursery school online, but also allow them to watch the
accumulated videos over the Internet later. However, due to the
use of many surveillance cameras, a mass quantity of raw videos
is accumulated every day. As a result, it is very difficult for par-
ents to browse these videos and find their desired portions.

In addition to watching, these surveillance videos are also valu-
able for other purposes. For example, because they record the
progress of children, long-term behavior statistics can be ex-
tracted from the videos by adapting computer-vision-based be-
havior analysis techniques [2]. Such statistics are a boon for re-
search on child development; for example, analyzing interactions
among children in group activities can provide extremely valu-
able information for early diagnosis of autism [3]. However, be-
cause raw video data are very large and behavior analysis is typ-
ically conducted on a relatively small portion of such data show-
ing specific activities, raw video data are not useful unless they
are appropriately structuralized.

To make it possible to watch and analyze such large volumes of
video data, we devise a method to summarize them into compact
video digests. Every day, in nursery schools, children participate
in different events (see Fig. 1 for concrete examples). They par-
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Fig. 1 In nursery schools, children participate in different kinds of events
and perform them in their own way.

ticipate in these events in their own ways, and their performance
reflects their daily life and growth. A video digest that covers
and reflects the children’s performance in different events over a
day would be ideal for reviewing their daily activities. It would
satisfy the parents’ interest in knowing what their child does in
the nursery school, and it could also be used as a visible index to
facilitate the selection of video materials for further analysis.

In order to summarize raw video materials into such di-
gests, there are mainly two technical issues that need to be ad-
dressed: (1) the categorization of raw video materials into dif-
ferent events and (2) the selection of video clips that could well
reflect each event. For the first problem, supervised event clas-
sification [2], [4], which learns a classifier for each predefined
event category from the training data, is a typical solution. How-
ever, when dealing with videos of daily life, it is difficult to pre-
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define all possible event categories (there are too many kinds
of events) and provide sufficient training data for each category
(some events do not occur frequently). Therefore, it is not suit-
able to adopt only this method to our summarizing task. For
the second problem, many existing studies on video summariza-
tion [6], [7] use motion intensity as a measurement for selecting
representative video clips. This mechanism is applicable when
dealing with videos on sports or cooking, however, it does not
suffice for defining “representativeness” in videos of daily life,
because more visual aspects should be taken into consideration.

In this paper, we propose a novel approach for summarizing
nursery school surveillance videos. The approach simultaneously
solves the previous two problems by learning a distance metric
from training data, which can properly measure the similarity
between video clips. The distance metric is learned efficiently
in a mixed, noisy feature space using a novel learning algorithm
known as the adaptive large margin nearest neighbor (ALMNN).
It is combined with supervised classification and unsupervised
clustering, to categorize raw video materials initially into prede-
fined chief event classes; then, inside each class, it divides them
into more detailed event clusters. The representative video clip
for each individual event cluster is selected as the centroid using
a combination of multiple features. With our approach, only a
limited amount of labeling effort is required; additionally, it pro-
duces digests that are representative in multiple visual aspects.

The main contribution of this paper is two-fold: (1) we propose
an efficient distance-metric-learning-based video summarization
approach and implement it as a practical system in a real nurs-
ery school environment; and (2) we propose a distance metric
learning algorithm that is robust for dealing with mixed, noisy
feature vectors. The practical performance of the summarization
approach and the learning algorithm are confirmed through quan-
titative experiments on real-world data and questionnaires.

2. Related Works

There are many successful studies in the field of video sum-
marization. Most earlier works require meta-data (i.e., textual in-
dices) as necessary input. For example, in Ref. [5], Hashimoto et
al. developed a system for summarizing TV programs by match-
ing the keywords (specified by users) to TV program subtitles.
Later in Ref. [6], Takahashi et al. proposed to summarize baseball
game by substituting the corresponding textual index to a prede-
fined baseball game structure. Both these studies demonstrate
that meta-data can greatly help in the production of comprehen-
sive digests. However, because meta-data are not available for
many kinds of videos (such as personal recordings and surveil-
lance videos), these methods are limited in their usage.

There are also some studies that utilize the inherent rules of
video contents for summarization. In order to make video digests
for cooking show, Miura et al. [7] devised to follow the cooking
process to extract hand shot videos showing both food and cook-
ing activities. Similarly in Ref. [8], Bach et al. learned a Hidden
Markov Model to represent the baseball game process, and used
baseball games’ inherent rules to select highlight scenes for di-
gest producing. These methods work well in practice, however,
because they are designed under specific rules (a kind of domain

knowledge), it is difficult to generalize them for video contents
with other rules or without clear rules.

Recently, an increasing number of studies have tried to analyze
video contents directly without using meta-data or domain knowl-
edge. Ren et al. [9] proposed the utilization of unsupervised clus-
tering to summarize rush videos (short videos). Their method
groups similar frames into clusters, and construct the digest by
selecting frames from individual clusters. Similarly, Tavanapong
et al. [10] adopted clustering to create icons for video contents to
facilitate faster browsing. In these works, clustering is used to
group similar neighboring frames. It works well for short videos
because the visual variance between neighboring frames is rel-
atively small, and a simple feature set and Euclidean-distance-
based similarity measurement can provide promising clustering
results. However, for videos with large data content, such clus-
tering is not suitable because a simple feature set cannot capture
various visual aspects. On the other hand, if we use a mixture
of multiple features to capture more visual aspects, the Euclidean
distance metric will lose its power because it assumes that every
feature dimension weighs the same in measuring the similarity.

In addition, some studies have used supervised learning to an-
alyze video contents. Rodriguez [4] learned action classifiers for
a number of predefined actions of interest from the labeled data.
He used the classifiers to locate video portions containing cer-
tain actions to construct a digest. In Refs. [11] and [12], the au-
thors exploited a similar concept in summarizing nursery school
videos. The obvious flaw in these methods is that they require a
training set for every activity category of interest; this implies that
the training set could be very large and very difficult to prepare.

In this study, the data we deal with has its unique characteris-
tics: (1) because it is captured from multiple surveillance cam-
eras, the quantity is huge; (2) unlike many videos such as those
on sport or cooking, the contents of the videos, which record
the daily lives of children, do not have clear inherent rules, and
the events cannot be predefined totally; (3) the data are usually
very noisy. Hence, the existing approaches for video summariza-
tion are inadoptable for our problem. To deal with these kinds
of issues, we explore a novel distance-metric-learning-based ap-
proach.

Different from classifier learning which learns how to separate
data points into classes, distance metric learning learns how to
measure the similarity between data points. Since the learned
distance metrics are flexible for use, such an approach has been
introduced to more and more vision tasks recently. In many
works, the learned distance metrics are directly used to power
the k-nearest-neighbor rule. For example, Tran et al. [24] pro-
posed to integrate the learned metric with 1-nearest-neighbor for
action recognition, and Guillaumin et al. [21] devised to use the
learned metric with weighted-nearest-neighbor to conduct image
annotation. In some other works, the learned distance metrics are
considered as general knowledge of the data. In Ref. [23], Zhang
et al. proposed a cost function which is defined over the metric
that learned from a large dataset, for the people re-identification
task. In another work, Mensink et al. [20] learns a metric from a
large number of labelled images, and use it to classify new im-
age categories without additional learning. In our work, the basic
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idea of using distance metric learning is close to the later man-
ners, in which the metric is considered as a general knowledge of
the data. However, the usages of the learned metric is designed
for practical video summarization task and is unique to existing
works.

Similar with many existing works [20], [23], [24], distance
metric learning in our work is conducted based on the large mar-
gin nearest neighbor (LMNN) algorithm [14]. LMNN is known
as one of the best distance metric learning algorithm because of
its state-of-the-art performance. It also has successful extensions.
In Ref. [22], Kumar et al. proposed an extension which makes
feature vectors become invariant to known multivariate polyno-
mial transformations. In another work [20], Mensink et al. de-
vised to dynamically update the target neighbour membership
during learning in order to improve the learning performance. In
our work, we also introduce an extension of the LMNN algo-
rithm. Different from existing extensions, the proposed ALMNN
explicitly integrates feature selection. Though it is a straight for-
ward extension of LMNN, it significantly improves the robust-
ness when dealing with mixed, noisy feature vectors.

3. System Overview

Our objective is to develop an efficient method for summa-
rizing nursery school surveillance videos. For this, we propose
a distance-metric-learning-based summarizing approach and im-
plement it as a practical system in a real nursery school environ-
ment. In addition, considering that users (parents) would particu-
larly care about a specific child (their own child), we paid special
attention to the data acquisition and preprocessing of the system.

3.1 Video Data Acquisition and Preprocessing
Figure 2 summarizes our approach for video data acquisition

and preprocessing. The raw videos are captured by surveillance
cameras set up throughout the nursery school. In the nursery
school that we cooperated with, there are seven network cam-
eras installed in nursery rooms (4), resting room (1), entrance (1),
and passageway (1). These cameras are connected to a storage
server in the local network, and record over 80 hours’ worth of
videos every day. When we record the videos, since data transfer
over the network and video encoding are sometimes unstable, we
segregate the video into small clips of one minute each. This also
prevents file corruption as large files are more prone to corruption.

Beside cameras, we also utilize a radio frequency identification
(RFID) system to collect information on the locations of chil-
dren. We set one RFID receiver beside each camera and connect
all cameras and receivers to the storage server. Every morning,
we give an RFID tag to each child (that they keep in their pock-
ets) when they enter the nursery school. During the day, these
tags continuously send out the tag IDs, and the nearby receivers
capture them. Once a specific receiver captures a signal from a
specific tag at a specific time, it will leave a record on the server.
These records are then separated into log files according to the
tag IDs. In this way, each log file collects thousands of records
that register the locations where a specific child has been during
that day. We consider one of these records as evidence for the
target child appearing in the video feed of a specific camera at a

Fig. 2 Video data acquisition and preprocessing of the system.

specific time.
Although we try to set RFID receivers far from each other

and try to avoid signal interference, the signals sent from one
tag could sometimes be captured by more than one receiver, and
sometimes could be missed by all receivers. However, it is cer-
tainly true that signals are more frequently captured by a nearby
receiver than a distant one. This is, although a single record may
not always be reliable enough, its statistic over a period of time
can provide more reliable evidence. We, therefore, calculate the
statistic of the records within a unit time interval (in order to con-
veniently synchronize with the video, we use one-minute as the
unit time here as well), and use this information to preprocess the
raw video from all cameras into the tracing video of a target child.

The preprocessing is relatively simple yet efficient. We divide
the whole day into unit time intervals. For each interval, we col-
lect the records from the log file of a target child, and identify
the receiver with the maximum number of records. If the number
exceeds a threshold, we take the corresponding camera’s video;
otherwise, we do not take any video for that interval. The thresh-
old is used to guarantee the reliability of the appearance of the
target child in the selected video segment. In case the target child
is far away from the camera, or moving between different rooms,
the maximum number of the records will be small and no video
will be selected. We repeat the video selection for all time inter-
vals, and the selected videos are collected together as the tracing
video of the target child.

3.2 Main Summarization Pipeline
The main summarization pipeline is outlined in Fig. 3. It can

be divided into the learning phase, where the distance metric is
learned from the training data, and the summarizing phase, where
the learned distance metric is used to summarize the tracing video
of the target child into a short video digest.
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Fig. 3 Main summarization pipeline.

In the learning phase, we manually collect a set of video data
from a real nursery school environment. Each individual data
point is a one-minute video clip. According to the different activ-
ities performed by children, we coarsely divide these data points
into a small number of chief event categories which correspond
to relatively abstract concepts.

In practice, we defined four chief event categories after dis-
cussing with the nursery school teachers. They are “group activ-
ity,” “play,” “sleep,” and “meal.” “Sleep” and “meal” have small
motions and are characteristic in their appearance (“sleep” has
the appearance of bedding, “meal” has the appearance of tables).
These two types of activities together occupy nearly one-third of
a day’s duration in the nursery school. The other two types of
events, “play” and “group activity,” occupy the remaining two-
thirds of that day’s duration. In “group activity,” many children
(more than five children) participate in the same activity; whereas
in “play,” a small number of children (equal to or less than five
children) play. These two categories differ in both appearance
and motion.

The collected data points are encoded into vectors of motion
and appearance features. Then, the distance metric is learned
from them with the goal that data points in the same chief event
category will be separated by small distances, whereas data points
in different categories will be separated by large distances. In our
work, we proposed the ALMNN algorithm to learn this metric. It
will be detailed in Section 5.

In the summarizing phase, the system makes full use of the
learned distance metric. The tracing video of the target child is
taken as input, and the digest is produced in three steps. First, the
learned distance metric together with the training data are used
to conduct k-nearest-neighbor (kNN) classification [13] to clas-
sify the videos into one of the predefined chief event categories.
Then, within the videos of each chief category, the learned dis-
tance metric is used to conduct agglomerative clustering. This
clustering step helps to discover visually different event clusters
which correspond to more concrete individual events (e.g., within
the chief event category “meal,” there exist individual events such
as “lunch” and “snack”). Finally, within individual event clusters,

videos in the centroids are selected as representative videos and
are used to construct the output video digest. In the following
sections, we will give a detailed description on the main summa-
rizing pipeline and the ALMNN algorithm.

4. Summarization with a Distance Metric

In our proposed approach, summarization is conducted through
classification and clustering. Both the steps make full use of a
learned distance metric, which makes it possible to predefine only
a small number of chief event categories and prepare much less
training data than conventional video- analysis-based summariza-
tion methods. This leads to an easy practical implementation.

4.1 Feature Extraction
Raw video materials are firstly encoded into feature vectors. In

this work, we only utilize visual features. Though time stamp or
room ID can also provide cues for event classification, they are
weak in nursery school environment because in nursery school,
each room has multiple functions and the schedule of each event
is only loosely defined. Additionally, since it is difficult to inte-
grate the time stamp and the room ID together, or integrate them
with other features (the time stamp is a finite variable and the
room ID is an orderless discrete variable), using them in the pro-
posed summarization framework is not feasible.

In nursery school surveillance videos, visual characters that re-
late to the event identity are mainly the appearance and the mo-
tion. Because the same events could occur at different times in
different rooms, the features should be robust to the illumination
changes and independent to the room environment. Additionally,
since the quantity of the surveillance videos is extremely large
and the quality is relatively low, the features should also be com-
putationally efficient and robust to sensor noise. From this view-
point, we compute four kinds of basis features for the one-minute
video clips. They are the edge response, the color histogram, the
inter-frame subtraction and the histogram of gradient (HOG) dis-
tance. An example of these features is shown in Fig. 4.

We use the edge response because it is good for representing
the global appearance of the scene and robust to changes in il-
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Fig. 4 Visualization of the features that are used in the system. From left-
top to right-bottom, they are the original image, the edge response,
the inter-frame subtraction, and the HOG feature.

lumination. To obtain the edge response, we apply the Canny
edge detector on each frame in the one-minute video clip. We
divide each frame into 8 × 6 blocks and calculate the number of
edge points within each block (this enables the feature vectors to
reflect the spatial arrangement of these edge points). The calcu-
lation result is a 48-dimensional feature vector fe for each frame.

Color histograms in the 3D RGB space are used to capture the
color appearance of the scene. We quantize each color channel
into 8 bins, and then, the entire color space is divided into 8×8×8
3D blocks. Each pixel is assigned to one of the 512 blocks, and
could be represented as an integer from 1 to 512. The color fea-
ture fc for each frame is represented as a 512-dimensional his-
togram by counting the number of pixels for each integer.

Inter-frame subtraction is used to capture the global mo-
tion intensity between two frames. We subtract each frame
from the previous one, and binarize the difference image using
Otsu’s method [16], which realizes binarization by identifying
the threshold that minimizes the within-class variance between
changed and unchanged pixels, and thus is robust to changes
in illumination. We also adapt erosion [18] to remove bridges,
branches, and noises in the binarized image. The final output is
a binary image in which white pixels denote changed pixels. We
divide the image again into 8 × 6 blocks and calculate the white
pixels within each block. The resulting feature vector fi is a 48-
dimensional vector.

Though the inter-frame subtraction is good for capturing the
global character of the motion, it does not capture the local mo-
tion feature. For this reason, we include the HOG distance as an-
other feature. We compute the 36-dimensional HOG feature [17]
of each frame with a bin size of 16. In our case, the computation
uses a 320× 240 pixel image as input and outputs a 18× 13× 36-
dimensional HOG feature. The HOG distance for each frame
is calculated as the bin-wise Euclidean distance between its own
HOG feature and that of the previous frame. The result is a 18×13
feature. Because the HOG distance captures the changes in the
edge directions, it provides a good supplement for the inter-frame
subtraction feature. The HOG distance for each frame is a 234-
dimensional feature vector fh.

We collect these four features for each frame and take the av-
erage vectors ( fea, fca, fia, fha)T as well as the deviation vectors
( fed, fcd, fid, fhd)T of all the frames within each video clip. The fi-
nal feature f for each unit video clip becomes a concatenation of
them ( fea, fed, fca, fcd, fia, fid, fha, fhd)T , i.e., a 1684-dimensional
feature vector.

4.2 Supervised Chief Event Classification
We utilize supervised classification to assign chief event labels

to video materials. These labels not only provide conceptual in-
formation on the videos but also make it easy to customize the
digests. For example, many parents may like to see less video
of sleeping but more of playing. This could be done easily if we
know what video portion includes the sleeping scenes and what
includes the playing scenes.

However, as mentioned previously, supervised classification
requires predefined event categories and corresponding training
data, which are not easy to do for the videos of chronicling daily
life. Therefore, instead of defining every possible event, we only
coarsely predefine a small number of chief events. This leads
to a less ambiguous definition of event categories and an easier
preparation of the training data.

We adapt the kNN rule [13] for the chief event classification.
Despite its simplicity, the kNN rule often yields competitive re-
sults when combined with prior knowledge. We manually pro-
vide a training set D = {( fi, ti)}ni=1 that comprises n labeled unit
video clips. Here, fi means the feature vector of the ith segment,
and ti indicates its corresponding chief event label. For a new
video clip with a feature vector f j, we compute its pair-wise dis-
tance with all fi in D using a distance function Dst( fi, f j) and find
its kNNs. The majority label of the kNNs is chosen as the label
of f j.

In kNN, the performance depends crucially on the distance
function Dst( fm, fn). Without any knowledge of the data, most
kNN implementations utilize the Euclidean distance. In our work,
in order to guarantee the accuracy of classification, we learn the
metric from the training data. With the proposed ALMNN algo-
rithm, the learned Dst( fm, fn) properly reflects the characteristics
of the data and yields a promising classification accuracy.

4.3 Unsupervised Event Clustering
Through the chief event classification, raw video materials are

divided into a small number of predefined chief categories. How-
ever, they are too coarse for the video summarization purpose.
Within each chief event category, there still exist many visually
different individual events. It is thus necessary to discover these
individual events further in order to generate the digests that cover
the various activities of children.

We collect all the video clips that share the same chief event
label and perform agglomerative clustering on them without as-
suming the number of individual events. Initially, every video clip
forms an individual cluster. We start by computing the pair-wise
distance of every two video clips using the learned distance metric
Dst( fm, fn). Because Dst( fm, fn) that learned by the ALMNN al-
gorithm preserves the local compactness within each chief event
class, using it can separate the visually different video clips into
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more detailed clusters. In each cycle of the clustering, two clus-
ters are combined into a single cluster, if they have the smallest
average inter-group distance. The iteration goes on until the dis-
tance exceeds a predefined cut-off threshold. This resulted in a
set of visually different individual event clusters.

After clustering is completed, the remaining tasks are relatively
straightforward. In case of generating a n minutes digest, we pick
out the n largest individual event clusters, and select one represen-
tative video clip for each cluster. The representative video clip is
chosen as the one that has the minimum within-cluster distance
to other video clips. Such a choice considers various visual as-
pects and is suitable for picking the “representative” videos of the
child’s daily life. The selected representative video clips are col-
lected together and linked in a periodically linear order to become
the final digest.

5. Distance Metric Learning

In both classification and clustering described in the previ-
ous section, the distance metric plays the most important role.
In order to properly measure the similarity between video seg-
ments, we learn it from labeled training data. The learning is con-
ducted using our proposed ALMNN algorithm, which originates
from the existing large margin nearest neighbor (LMNN) algo-
rithm [14]; however, comparatively, our algorithm is much more
robust to mixed, noisy feature vectors. In the following section,
we first briefly review the LMNN algorithm, and then introduce
our extended ALMNN algorithm.

5.1 LMNN Algorithm
Let D = {( fi, ti)}ni=1 denote a training set that comprises n la-

beled unit video clips with feature vectors fi and event labels ti.
We formulate the similarity of two feature vectors fn and fm as a
Mahanalobis distance function:

Dst( fn, fm) = ( fn − fm)T M( fn − fm). (1)

Here, M is a symmetric, positive definite matrix that com-
pletely parameterizes this distance function. The objective of dis-
tance metric learning is to learn M from D with the goal being that
if tn = tm, Dst( fn, fm) attains a small value, otherwise, Dst( fn, fm)
attains a large value. LMNN is one of the state-of-the-art algo-
rithms for such a learning task [15]; it learns M through two steps:
(1) for each data point fi, it uses the Euclidean distance to select
its k nearest data points (that have the same label as fi) as target
neighbors, and (2) it estimates M by minimizing a cost function
defined as:

L(M) =
∑

i, j

DstM( fi, f j)

+C
∑

i, j,l

h(1 + DstM( fi, f j) − DstM( fi, fl)). (2)

The first term penalizes a large distance between data point i

and its target neighbors j, whereas the second term penalizes a
small distance between i and all imposter points l that have class
labels different from ti. In particular, the second term is designed
to enforce the distance between i and l such that it becomes one
unit further than the distance between i and j. C is a predefined

positive constant, and h(z) = max(z, 0) is the standard hinge loss
function that makes the cost function convex. Given the target
neighbor membership, M can be solved using the semi-definitive
programming (SDP) algorithm.

In LMNN, the learning attempts to minimize the local dis-
tances between data points and their target neighbors. Compared
to global methods that minimize distances between all pairs of
data points of the same labels, LMNN can work out the solution
more efficiently [15]. Additionally, in global methods, since the
distances between all the same data points are treated equally,
each class is actually considered as a uni-modal distribution.
However, in LMNN, because data points are trained to be only
close to their target neighbors, each class is actually considered
as a multi-modal distribution. The metric learned by LMNN pre-
serves the local compactness of the data points, therefore, it is
also able to separate the data points into more detailed classes.

However, such a property makes LMNN sensitive in the learn-
ing phase. Since selecting the target neighbor is critical for the
success of training, if the wrong target neighbors are initialized,
the cost function will become unreasonable, and this will even-
tually result in a poor distance function which cannot properly
measure the similarity.

5.2 ALMNN Algorithm
The initialization issue of the original algorithm is very likely

to happen when dealing with mixed, noisy feature vectors such
as those used in this work. The reason is two-fold: (1) different
features usually have different scales; and (2) some dimensions
of the feature vectors are sometimes too noisy for training. If
the noisy dimensions are weighted too heavy in determining the
target neighbors, the initialization will fail.

To deal with this issue, we devise an extension of LMNN
known as the Adaptive LMNN. The algorithm relies on an addi-
tionally introduced binary feature mask B = (b1, ..., bd)T , which
has the same length as the feature vector (in our case d = 1684).
This mask is used to turn on the ith dimension of the feature vec-
tor by setting bi = 1, and turn off the ith dimension of the feature
vector by setting bi = 0. With this mask, we define a new cost
function:

L(M, B) =
∑

i, j

DstM(B ⊗ fi, B ⊗ f j) +C
∑

i, j,l

h(1 +

DstM(B ⊗ fi, B ⊗ f j) − DstM(B ⊗ fi, B ⊗ fl)), (3)

where ⊗ specifies dimension element-wise multiplication of two
vectors. This cost function is derived from the intuition that some
dimensions of the feature vector may be very noisy, and the re-
maining dimensions should work well. The goal of this learning
becomes to find a pair of M and B that minimizes L(M, B).

Given a fixed B, we can prove L(M, B) is also convex. There-
fore, the SDP algorithm still can be used to find M in the same
way as in the original LMNN [14]. However, because the num-
ber of possible values of B is very large (in our case 21684), it is
not feasible to estimate M for every possible B and select the best
pair. Instead, we propose a feature-selection-like learning algo-
rithm to conduct the learning.

The learning algorithm is implemented in two steps. In the first
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step, the complete data set D is used to estimate a discriminabil-
ity list P = (p1, ..., pd) (d = 1, 684). Each pi specifies how well
the ith feature dimension can separate the videos into pre-defined
categories: the higher the value is, the more discriminative the
corresponding dimension should be. The value of pi is computed
by taking the ratio of inter-class variance to the intra-class vari-
ance according to the Fisher’ criterion. Algorithm 1 summarizes
the details of computing P from D.

Algorithm 1 Compute the discriminability list P
Require: the training data: D = {( fi, ti)}ni=1, ti ∈ {ω1, ..., ωC}
Require: the number of data points in ω j: n j

Require: the element-wise multiplication: ⊗
Require: the element-wise division: �

compute the total mean of all data points: m = 1
n

∑n
i=1 fi

compute the total variance of all data points: S T =
∑n

i=1( fi −m)⊗ ( fi −m)

for j = 1 to C do

compute the mean for class j: mj =
1
n j

∑
i∈ω j

fi
compute the within-class variance for class j: σ j =

∑
i∈ω j

( fi − mj) ⊗
( fi − mj)

end for

compute the total within-class variance: S W =
∑c

j=1 σ j

compute the total between-class variance: S B = S T − S W

compute P: P = S B � S W

In the second step, B and M are learned by using P to continu-
ously update B. At first, B is initialized as an all 0 vector. In each
iteration τ, one dimension of the feature vector is turned on by
updating the corresponding dimension in B to 1 (the order for up-
dating depends on the value in P, from high to low). The resulted
Bτ is then substituted into Eq. (3), and the SDP algorithm is used
to work out its corresponding distance metric Mτ which has the
minimum cost. The iteration continues until all dimensions of B

become 1. Next, we compare the costs of all pairs of M and B,
and select the pair M∗ and B∗ which has the minimum cost. The
learning algorithm is summarized in Algorithm 2.

Algorithm 2 Learn B∗ and M∗

Require: the training data: D = {( fi, ti)}ni=1

Require: the discriminability list: P = (p1, ..., pd)

Require: the feature mask at time τ: Bτ = (b1, ..., bd)T

B0 = 0 {initialization}
for τ = 1 to d do

a = arg max
j

(p j)( j = 1, ..., d) {find the index of the strongest feature}
pa = 0 {remove the feature from the list}
ba = 1 {turn on the ath feature}
Mτ = arg min

M
L(M, Bτ) {given Bτ, solve Mτ with SDP}

Cτ = L(Mτ, Bτ) {compute the cost for Mτ and Bτ}
end for

v = arg min
τ

Cτ(τ = 1, ..., d)

B∗ = Bv, M∗ = Mv

In Algorithm 2, learning is conducted by slowly adding feature
dimensions. The learned B∗ specifies only a subset of all feature
dimensions, and the learned B∗ and M∗ have the best combina-
tional performance in minimizing the learning cost.

5.3 Dimension Reduction
In LMNN, when dealing with feature vectors of a high dimen-

sionality, the learning becomes untractable due to a high compu-
tational complexity. Weinberger et al. [14] suggest to adopt prin-
cipal component analysis (PCA) to reduce the feature vectors to
a lower dimension before learning. PCA finds a low dimensional
subspace which preserves most information and captures major
variations of the original high dimensional feature vectors. It is
used as a standard preprocessing step of LMNN leaning in many
works [14], [20], [23], [24].

The proposed ALMNN also suffers when the feature vectors
are of a high dimensionality. We follow [14] to also utilize PCA
to do the preprocessing. In ALMNN, the subspace is learned
using original unmasked raw feature vectors. During ALMNN
learning, at each time τ in Algorithm 2, training vectors are firstly
masked by the updated Bτ, then projected to low dimensional fea-
ture vectors in the learned subspace. The low dimensional feature
vectors are then used to work out the Mτ that minimizes the cost
defined in Eq. (3). Note that, in ALMNN, in each learning it-
eration, we do not use diffident projections that are learned every
time after the feature vectors are masked, but use the same projec-
tion which is learned from unmasked feature vectors. This makes
the PCA be only used to bridge the original high dimensional fea-
ture space and its subspace. The projection is not affected by the
feature mask which changes dynamically.

PCA helps to reduce the dimensionality, thus, simplifies the
computation. However, because it is an unsupervised process-
ing, it does not reduce the noise in the original high dimensional
feature vectors. Beside PCA, there also exist supervised dimen-
sion reduction approaches, such as linear discriminant analysis
(LDA) [19]. LDA finds a low dimensional subspace by maximiz-
ing the between-class scatter while minimizing the within-class
scatter. Using LDA to conduct the dimension reduction some-
times could lead to less noisy low dimensional feature vectors.
However, as a dimension reduction tool, LDA has two limita-
tions: 1) comparing to PCA, using LDA will result in more loss
of variance and information of the original data; 2) when the den-
sities of the classes are not distributed in multivariate Gaussian,
LDA may extract spurious features that are poor for classifica-
tion [14]. In our work, because ALMNN has already integrated
feature selection and the distribution of event categories is com-
plicated, we do not adopt LDA for dimension reduction.

6. Experimental Results

We implemented the system in a real nursery school environ-
ment. The cameras we used are Techno One DTC-301, which
record videos with a resolution of 320 × 240, at 4 frames per
second. The RFID solution is provided by Megras. It uses the
RFT15-05 tags which transmit signals in every 1.1 seconds. We
conducted two experiments to evaluate the system. The first ex-
periment evaluated the learned distance metric; the second one
evaluated the quality of the automatically generated digest.

6.1 Evaluation of Distance Metric Learning
The distance metric plays a crucial role in our system. In

this experiment, we evaluate its working in the chief event clas-
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(a) ALMNN (b) LMNN

Fig. 5 Confusion matrices of the classification result of different classification methods.

Table 1 Accuracy of the three classification methods.

ALMNN LMNN AdaBoost
Paly 95.1% 80.5% 91.6%
Group 78.8% 34.9% 71.7%
Sleep 96.7% 82.1% 95.1%
Meal 89.7% 71.0% 84.5%
Total 91.7% 71.3% 87.8%

sification. To do so, we collected a data set comprising 4,648
one-minute video clips from the surveillance cameras. These
video clips were taken from the seven different cameras within
a week. We manually provided the chief event labels to these
videos as ground truth, and randomly separate them into a train-
ing set (play: 1639, group: 642, sleep: 734, meal: 471) and a
testing set (play: 549, group: 212, sleep: 246, meal: 155).

We learned the Mahanalobis distance metric with ALMNN al-
gorithm. Because the feature vectors are of high dimension, we
used PCA for dimension reduction (according to Section 5.3).
We first conducted PCA on the training set feature vectors, and
selected the top 80 eigenvectors for projection. Then, the pro-
jection is used during learning: in Algorithm 2, at each time τ,
after the feature mask is applied, training vectors are projected to
the linear subspace spanned by the selected 80 eigenvectors. We
used the 80-d subspace because it makes the training complex-
ity acceptable, and the top 80 eigenvectors capture almost all the
information of the feature vectors. We have also tried subspaces
with higher and lower dimensionality: from 10-d to 100-d with a
step of 10-d. We observed that ALMNN’s performances are the
same for subspaces higher or equal to 40-d, and the performances
show obvious decreasing for subspaces lower than 40-d.

We used the learned distance metric to perform kNN classifi-
cation (k = 5) on the testing set. The accuracy (percentage of
correctly classified video segments) of the method is shown in
Table 1. Our method has an overall accuracy of 91.7%, which is
much better than the 76.6% that reported in Ref. [12].

For a comparison, we implemented two other methods on
the same dataset. One is the baseline method, which also uses
the same kNN classification rules. Compared to the proposed
method, the baseline method used the same feature set but a dif-
ferent distance metric learned from the LMNN algorithm. For a
fair comparison, PCA was also used to reduce the feature vector
to 80-d. The other method is an improved version of the method
described in Ref. [12]. In Ref. [12], the authors used a relatively
simple feature set (including background subtraction, inter-fame
subtraction, and black pixel extraction) and the AdaBoost to per-

form the classification. In order to make a fair comparison, we
replaced the original feature set with the same feature set used in
the proposed method and set the weak classifier number in Ad-
aBoost to 20. The results of these two methods are shown in
Table 1.

Comparing our ALMNN-based classification with the LMNN-
based classification, we can see that the former shows approxi-
mately a 20% improvement in the overall classification accuracy
as compared to the latter. As can be seen from the resulting
confusion matrix in Fig. 5, LMNN performed especially poorly
for the classes “play” and “group.” This is because these two
classes share some common visual characteristics and are sim-
ilar in many feature dimensions. In LMNN, when using Eu-
clidean distance to initialize the target neighbors, the selected tar-
get neighbors tend to be similar to the imposter data points. In
such case, during the learning, when pushing the imposter data
points away, the target neighbors are also being pushed away.
This makes the cost minimization cannot hit a low value, and
the quality of the learned metric becomes poor. Conversely, for
learning, the ALMNN uses a new cost function that helps to avoid
such an issue; hence, it yields a considerable improvement.

When we compare our ALMNN-based classification with
AdaBoost-based classification, we also see an improvement for
different kinds of events. Because the feature set is the same,
the improvement is mainly beneficial due to the distance-metric-
powered kNN rule. We think that this is because the categories
that we deal with are of large within-class variance. For such
a classification task, example-based classification methods, such
as kNN, are more powerful when combined with an appropri-
ate similarity measurement. On the other hand, the AdaBoost-
based method also outperforms the LMNN-based method. We
think that this is because the AdaBoost itself is robust to noise. In
AdaBoost, learning is implemented by training many weak clas-
sifiers. Every loop in the weak classifier training is similar to
a feature selection step. This makes it robust against the noise
in feature vectors, and eventually works better than the LMNN-
based classification.

We also integrated the ALMNN and LMNN algorithm with
a supervised dimension reduction approach - linear discriminant
analysis (LDA) [19], to see if the performance can be further im-
proved. When utilizing LDA, we use the same 80-d subspace as
we used in PCA based dimension reduction. The results are sum-
marized in Table 2. We observed the performance of LMNN
improves (+9.3%) but the performance of ALMNN decreases
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(a) Group A (b) Group B (c) Group C (d) Group D (e) Group E

(f) Play A (g) Play B (h) Play C (i) Play D (j) Play E

(k) Meal A (l) Meal B (m) Meal C (n) Sleep A (o) Sleep B

Fig. 6 Examples of event clustering results.

Table 2 Performance of ALMNN and LMNN with LDA.

ALMNN + LDA LMNN + LDA
Paly 91.8% 90.0%
Group 76.4% 49.5%
Sleep 94.3% 87.8%
Meal 78.7% 78.1%
Total 87.8% 80.6%

(−3.9%). In our opinion, LDA works like a double-edged sword:
it is supervised and can reduce some noises in data, but it also re-
sults in more loss of information and variation during dimension
reduction, and sometimes extracts spurious features for classifica-
tion. LMNN got improved because it benefited from the positive
property of LDA. On the other hand, ALMNN got a decreased
performance because ALMNN itself is robust against noisy fea-
tures, and is mainly affected by the negative properties of LDA.

In our proposed system, another use of the learned distance
metric is to divide chief events into visually different individual
event clusters, and select representative videos for each cluster.
To intuitively show its working, we used the video data of a sin-
gle day from all the cameras and performed a clustering experi-
ment. We used the method described in Section 4.2 to predict the
chief event labels for the video segments, and then conducted ag-
glomerative clustering within each chief category using a cut-off
threshold. Please note that in the actual system, clustering is done
for every child (a subset of a complete day). We use the data of
a complete day because we want to see the general applicability
of the clustering. (In agglomerative clustering, when the cut-off
threshold is fixed, the clustering result of the subset data points is
coherent with the clustering result of all data points.)

The clustering results in a number of clusters. After eliminat-

ing the small clusters, we get multiple individual events: group
(5), meal (3), sleep (2), play (5). We visualize the results in Fig. 6
by displaying the middle frames in the centroid videos of each
individual event cluster. We can see that they show visually dif-
ferent individual events. At some level, this confirms that the
clustering is capable of dividing the chief event into visually dif-
ferent individual event clusters.

6.2 Evaluation of Digest Generation
In order to evaluate the quality of the generated digest, we in-

vited one child (male) to participate in the experiment. We put an
RFID tag in his pocket for a day and used the proposed method
to generate a digest for him. The video data we used was cap-
tured using all the seven cameras, from 9 am to 6 pm hours. The
log file, which is also within the same period, comprises 15,642
records.

First, we process the entire video into the tracing video of the
target child by analyzing the log file. The analysis of the log takes
15 s. We set the rejection threshold to 10 records, and 369 one-
minute video segments were selected. In order to confirm the ac-
curacy of this RFID-based pre-processing, we selected 74 video
segments by uniformly taking samples in the resultant video, and
manually confirmed if the target child existed in them. If the tar-
get child exists in the video for more than 80% of the one-minute
duration, we treat it as a correct selection. Through verification
of the 74 video segments, the selection accuracy was confirmed
to be 100%.

We computed the feature vectors for these selected videos, and
used the method described in Section 4.2 to divide them into chief
event categories, and then into individual event clusters. Since
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Table 3 Comparison between Digests A and B (manual).

A is better Almost the same B is better
Q1 1 11 3
Q2 1 12 2

we want to generate a ten-minute digest, we picked up the top
10 largest individual event clusters for the digest construction.
The chief labels of the selected clusters are: group (3), meal (2),
sleep (1), play (4). We selected the centroid videos of these clus-
ters and linked them in a periodically linear order. This finally
resulted in a ten-minute digest, which covered ten different, indi-
vidual events. The whole generation process cost approximately
2 hours; most of the time was spent on feature computation (ap-
proximately 100 min) and video linking/ compression (approxi-
mately 18 min). In the following section, we refer to the resultant
digest as Digest A.

For a comparison, we also produced two digests from the same
data using two other methods. Digest B was produced manually
following three rules: (1) the digest should cover different chief
events; (2) through the digest, it should be easy to understand the
daily life of the target child; (3) the digest should contain various
activities. Digest C was produced using the method in Ref. [12].
In addition to the differences in the event classification accuracy,
the video selection strategy in Ref. [12] is also different from that
in this work. The selection rules in Ref. [12] include: (1) selec-
tion of videos with high inter-frame difference (high motion in-
tensity), and (2) selection of videos during different time periods
over a day.

We invited 15 parents to participate in our questionnaire sur-
vey. They were asked to watch Digests A and B and Digests A
and C on two different days. Then, they were asked two ques-
tions: 1) which digest is better? and 2) which digest gives a bet-
ter description of the child’s daily life? Through question 1, we
hoped to obtain an overall evaluation of the quality of the digests,
and through question 2, we hoped to know how well the digests
could reflect the daily life.

The evaluation result between Digests A and B is shown in
Table 3. The table shows that the quality of the digest generated
by our system is similar to the manually generated one. For the
five answers that pointed out that B is better than A, we asked for
reasons. Regarding the first question, three participants selected
“B is better” because “B has more interesting scenes, while A
appears to be plain.” With respect to the second question, the
participants who chose “B is better” essentially indicated that “B
is smoother than A.” These answers indicate that when humans
manually generated digests, they tend to select interesting scenes
and unconsciously link them in a comfortable manner. However,
this is outside the scope of our current system.

The evaluation result between Digests A and C is shown in
Table 4. The table shows that most people thought that A is better
than C, which confirms the superiority of the proposed method.
We further collected the reasons for the responses of the partic-
ipants. Most participants thought that “A is better” because “A
includes more types of activities,” “A has less redundant scenes,”
and so on. This suggests that in the proposed method, the strategy
of dividing the chief event into more detailed individual events

Table 4 Comparison between Digests A and C [12].

A is better Almost the same C is better
Q1 10 3 2
Q2 11 3 1

was able to achieve the desired results. Specifically, the parame-
ter “make a digest cover different activities” met the requirements
of most parents.

7. Conclusion

In this paper, we proposed a novel approach for summarizing
nursery school surveillance videos. The approach makes full use
of a learned distance metric and generates digests that cover and
reflect different activities of children. We implemented the ap-
proach as a practical system in a real nursery school environment,
and confirmed its ability to generate digests that satisfy the re-
quirements of parents. Additionally, the proposed approach only
relies on general knowledge of daily lives in nursery schools, and
it uses environment-independent visual features to analyze video
contents. The proposed approach can easily be adapted to com-
mon nursery school environments.

Another contribution of this paper is a novel distance metric
learning algorithm. Since the fundamental of the proposed sum-
marization approach is a distance metric, its quality is crucial. To
robustly learn such a distance metric from mixed, noisy feature
vectors, we proposed a new learning algorithm called ALMNN.
This algorithm extended the existing LMNN algorithm with a
new cost function and a new feature selection-like learning pro-
cess. It outperforms the existing LMNN algorithm by over 20%
in the classification task, and has a strong potential to be widely
used in other applications.

However, our experiments suggested that there are gaps be-
tween digests generated using our approach and those generated
manually. Selecting not only visually representative but also in-
teresting videos will be key preparing better digests. Therefore,
exploring the mechanism for finding “interesting” videos is one
of our future works.

In addition, the approach discussed in this paper only dealt with
visualization aspects. It makes a very limited use of information-
rich nursery school surveillance videos. In order to make full
use of these, we will develop high-level activity analysis meth-
ods (e.g., action recognition, interaction understanding) to extract
more meaningful information from such videos for various appli-
cations.
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