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Abstract: A subdivision of a rectangle into rectangular faces with horizontal and vertical line segments is called a
rectangular drawing or floorplan. Several encodings of rectangular drawings have been published; however, most of
them deal with rectangular drawings without vertices of degree four. Recently, Saito and Nakano developed two com-
pact encodings for general rectangular drawings, that is, which allows vertices of degree four. The two encodings
respectively need 6 f − 2n4 + 6 bits and 5 f − 5 bits for rectangular drawings with f inner faces and n4 degree four
vertices. The best encoding of the two depends on the number of vertices of degree four, that is, the former is the better
if 2n4 > f + 11; otherwise the latter is the better. In this paper, we propose a new encoding of general rectangular
drawings with 5 f − n4 − 6 bits for f ≥ 2, which is the most compact regardless of n4.
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1. Introduction

A rectangular drawing or floorplan is a subdivision of a rect-
angle with horizontal and vertical line segments. Usually no two
line segments are allowed to decussate, that is, an ordinary rect-
angular drawing has no crisscross intersections of line segments
(Fig. 1 (a)–(c)). Two rectangular drawings are equivalent if (i)
they have the same adjacent relations between the subdividing
line segments and the rectangles and (ii) they have the same adja-
cent relations between the rectangles. We consider the direction
of rectangular drawing. Thus, the three rectangular drawings in
Fig. 1 are all different.

Subdivisions of rectangles are also called rectangular partitions
or mosaic floorplans. However, two rectangular partitions or mo-
saic floorplans are equivalent if only condition (i) is satisfied, that
is condition (ii) is ignored. See Refs. [9], [10], [11], [12] for en-
codings. A survey of these encodings is also available [1].

For application in VLSI physical design, several encodings
of rectangular drawings have been published: For example,
H-Sequence [2], EQ-Sequence [3], FT-Squeeze [5], and so on.
The bit length of codes is a mesure of encoding schemes [4].
Takahashi, Fujimaki, and Inoue have given a (4 f − 4)-bit encod-

Fig. 1 Three different ordinary rectangular drawings.
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ing of an ordinary rectangular drawing, where f is the number of
rectangles (inner faces) of a rectangular drawing [7].

Rectangular drawings can be seen as special planar drawings of
graphs: The vertices are the intersections of line segments and the
edges are line segments between the vertices (Fig. 2 (a)). From
the viewpoint of graph drawing, encodings of rectangular draw-
ings with vertices of degree four are strongly desired (Fig. 2 (b)).
In the following, we will consider a rectangular drawing which
might have vertices of degree four and call them general rectan-

gular drawings (Fig. 3). Saito and Nakano developed two com-
pact encodings of general rectangular drawings [8]. The first
encoding in Ref. [8] is called code I, which is based on depth-
first search of on ordered tree. The bit length of the code I is
6 f − 2n4 + 6, where n4 is the number of vertices of degree four.
The second one is called code II, which is a pair of the (4 f − 4)-
bit code of ordinary rectangular drawings [7] and information of
vertices of degree four. The bit length of the code II is 5 f − 5.

If 2n4 > f +11, code I is the better since 6 f −2n4+6 < 5 f −5;
otherwise code II is. That is, the best encoding of the two depends
on the number of vertices of degree four.

Fig. 2 Rectangular drawings as graphs: (a) without vertices of degree four;
(b) with a vertex of degree four.

The initial version of the paper was presented at the FIT2013 workshop
held on Sept. 2013. The paper was recommended to be submitted to
Journal of Information Processing (JIP) by the chairman of FIT2013.

c© 2014 Information Processing Society of Japan 634



Journal of Information Processing Vol.22 No.4 634–637 (Oct. 2014)

Fig. 3 A general rectangular drawing.

In this paper, we propose a new encoding of general rectangu-
lar drawings with 5 f − n4 − 6 bits for f ≥ 2, which is the most
compact regardless of n4.

This paper is organized as follows: Section 2 introduces stair-
case and deletable rectangle, which are variants of those in
Ref. [7]. Section 3 gives the encoding and an upper bound of
the bit lengths.

2. General Staircase and Deletable Rectangle

Staircase appeared in Ref. [6] for computing the number of
rectangular drawings. In this section, a variant is introduced.

2.1 Staircase
Consider a rectangular drawing R placed in the xy-plane so that

the bottom-left corner is located at the origin. A general staircase

for R is a configuration obtained from R by deleting rectangles
such that
• the border consists of two line segments on the x-axis and y-

axis and a monotonic decreasing rectilinear path i.e., polyg-
onal line of horizontal and vertical line segments, and

• the interior is subdivided into rectangles with horizontal and
vertical line segments (Fig. 4).

In the following, ‘general’ is omitted for simplicity.
Horizontal line segments of the monotonic decreasing rectilin-

ear path are called steps. A rectangle is called a step rectangle if
its top-right corner is at the right end of a step. For example, the
staircase in Fig. 4 has three steps and rectangles 9, 10, and 11 are
step rectangles.

The number of inner rectangles of a staircase is also denoted f

as in the case of a rectangular drawing. Note that a rectangular
drawing is also a staircase with one step.

2.2 Deletable Rectangle
The deletable rectangle r of a staircase is the uppermost rectan-

gle among the rectangles satisfying the following four conditions:
( 1 ) The top side of r is wholly contained in the border of the

staircase.
( 2 ) The right side of r is wholly contained in the border of the

staircase.
( 3 ) The rightward ray from the bottom-right corner of r does not

meet a top-left corner of another rectangle.
( 4 ) The upward ray from the top-left corner of r does not meet a

Fig. 4 A general staircase.

Fig. 5 The six types of deletable rectangles.

bottom right corner of another rectangle except at the initial
point of the ray.

Note that the condition 4 has an exception. It is easy to see that
the deletable rectangle is uniquely defined for every staircase with
f > 0: Let the step rectangles be sr1, sr2, . . . , srm from the top.
The topmost step rectangle sr1 satisfies the conditions 1 and 4.
If sr1 violates the conditions 2 or 3, sr2 satisfies the conditions 1
and 4. Similarly, if sr2 again violates the conditions 2 or 3, sr3

satisfies the conditions 1 and 4, and so on. On the other hand the
bottommost step rectangle srm satisfies the conditions 2 and 3.

See the staircase in Fig. 4. Only rectangle 11 satisfies the above
four conditions. Rectangle 9 violates condition 3 since the right-
ward ray from its bottom-right corner meet the top-left corner of
rectangle 10. Rectangle 10 also violates condition 3 since the
rightward ray from its bottom-right corner meets the top-left cor-
ner of rectangle 11. However, rectangle 10 does not violate con-
dition 4: The upward ray from its top-left corner meets the bottom
right corner of rectangle 9 at the initial point of the ray, which is
a vertex of degree four. Therefore, rectangle 11 is the deletable
rectangle in the staircase.

Deletable rectangles are classified into the following six types
as shown in Fig. 5. Let r be a deletable rectangle of a staircase.
• Group A: the bottom-right corner of r is located at the right

end of a step in the resultant staircase, that is, the staircase
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obtained by deleting r.
– Type a: The top side of r is strictly included in a step. The

deletion of r increases the number of the steps of the stair-
case by one.

– Type b : The top side of r coincides with a step and the
degree of the top-left corner of r is three. The deletion of r

does not change the number of the steps of the staircase.
– Type c : The top side of r coincides with a step and the

degree of the top-left corner of r is four. The deletion of r

does not change the number of the steps of the staircase.
• Group B: the bottom-right corner is not located at the right

end of a step in the resultant staircase.
– Type d: The top side of r is strictly included in a step. The

deletion of r does not change the number of the steps of the
staircase.

– Type e : The top side of r coincides with a step and the
degree of the top-left corner of r is three. The deletion of r

decreases the number of the steps of the staircase by one.
– Type f : The top side of r coincides with a step and the

degree of the top-left corner of r is four. The deletion of r

decreases the number of the steps of the staircase by one.

3. A (5 f − n4 − 6)-bit Representation of a Gen-
eral Rectangular Drawing

In this section, we give a variant of the encoding for ordinary
rectangular drawings in Ref. [7].

3.1 A String Representation and Encoding
First we give a representation of a rectangular drawing on al-

phabet {0, A, B} as in Ref. [7]. Let S f and r f be a rectangular
drawing with f rectangles and its deletable rectangle, respec-
tively. The staircase obtained by deleting r f from S f has f − 1
rectangles. Denote the staircase and its deletable rectangle by
S f−1 and r f−1, respectively. Again deleting r f−1 from S f−1, we
obtain staircase S f−2 with deletable rectangle r f−2. In this way,
we obtain a sequence of staircases S f , S f−1, . . . , S 1, where S 1 is
the staircase with f = 1, that is, a single rectangle. Note that the
sequence is uniquely determined since the deletable rectangle ri

is unique for S i (i = f , . . . , 2).
For the representation, we define the candidate positions of

staircase S i (i = 1, . . . , f − 1). Consider adding rectangle ri+1

to staircase S i and obtaining S i+1. According to the six types
of deletable rectangles, the position of the top-left corner of ri+1

must be one of the following:
( 1 ) A point on the y-axis above the top step of staircase S i: In

Fig. 6, the position indicated by arrow 0.
( 2 ) The right end point of a step of S i: In Fig. 6, the positions

indicated by arrows 1 and 4.
( 3 ) A point on both the right side of a step rectangle and the bor-

der of S i: In Fig. 6, the positions indicated by arrows 2 and

Table 1 The parameters for the example in Fig. 3.

i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ci 1 1 1 4 5 3 0 1 5 7 4 3 0 0 −
di 3 3 3 7 6 5 3 3 7 8 7 5 3 3 2
δi 2 2 6 2 0 0 3 6 3 0 1 0 3 2 −
Ti A A A B B B A A A B A B A B −

5.
( 4 ) The bottom-right corner of a step rectangle on the border

except on the x-axis: In Fig. 6, the positions indicated by
arrows 3 and 6.

The above positions whose y-coordinate is equal to or more
than that of ri are called candidate positions. Candidate positions
are numbered 0, 1, . . . beginning at the top (Fig. 6). Rectangle
ri+1 must be added to one of the candidate positions of S i. (In
Fig. 6, bold arrows 0,1,2,and 3 indicate the candidate positions.
The deletable rectangle is shaded. Thus, for example, position 4
cannot be a candidate: If ri+1 were added to position 4, it would
not be the deletable rectangle in the resultant staircase S i+1.)

Now we are ready to describe how to reconstruct the sequence
of staircases S 1, S 2, . . . , S f by consecutively adding rectangles
r2, r3, . . . , r f .

First compute the following parameters by consecutively delet-
ing rectangles r f , . . . , r2.
• ci: the candidate position in S i−1 at which ri is added to;
• di: the lowest candidate position of S i.
• Ti: the group of ri;
• δi = di−1 − ci.
For the example in Fig. 3, the result is shown in Table 1.
The location and the type of rectangle ri are determined by

S i−1, ci, and Ti. Since di−1 is an invariant of S i−1, the location and
the type are also determined by S i−1, δi, and Ti.

Let string si (i = 2, . . . , f ) be the unary representation
of δi followed by Ti. For the exmaple, s2 = 00B, s3 =

000A, s4 = B, . . . , s15 = 00A. The string representation of S f

on alphabet {0, A, B} is the concatenation s2s3 · · · s f . Finally re-
place A and B in the representation by 10 and 11 to obtain the
code, i.e., bit representation of S f . The code for our example is
the following 58-bit code: 0011000101 1010110001 0000000100
0010111100 1100000010 00100010.

Linear time encoding and decoding algorithms are almost the

Fig. 6 Candidate positions of a staircase.
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Table 2 Type of rectangle ri and lowest candidate di.

Type of ri di

Type a ci + 2
Type b ci + 3
Type c ci + 2
Type d ci + 1 if ri lies on the x-axis; otherwise ci + 2
Type e ci + 2 if ri lies on the x-axis; otherwise ci + 3
Type f ci + 1 if ri lies on the x-axis; otherwise ci + 2

same as those for ordinary rectangular drawings in Ref. [7].

Note: In fact, that symbol 0 appears most frequently in a rep-
resentation. This means that the code can be more compact by
using standard data compression techniques rather than simply
replacing A and B by 10 and 11, respectively (See Ref. [7] for a
similar argument).

3.2 The upper bound (5 f − n4 − 6) of the bit length
In this subsection, we give a proof of the upper bound 5 f−n4−6

of the bit length for f ≥ 2. Consider a string representation
w = {0, A, B}∗ of a rectangular drawing S f .

Symbols A and B collectively appear exactly f − 1 times in
w corresponding to f − 1 rectangles r2, . . . , rn. They contribute
exactly 2( f − 1) to the bit length of the corresponding code.

The number of 0’s in w is equal to the sum
∑ f

i=2 δi. Now con-
sider adding rectangular ri to S i−1 at the candidate position ci.
The lowest candidate di of the resultant staircase S i is at most
ci + 3. Precisely, di depends on the type of ri (Table 2).

Note that if the top-left corner of ri is a vertex of degree four,
the type of ri is c or f and di = ci + 2. Then,

f∑

i=2

δi =

f∑

i=2

(di−1 − ci)

= d1 − c f +

f−1∑

i=2

(di − ci)

≤ 2 +
f−1∑

i=2

(di − ci) [d1 = 2; c f = 0 or 1]

≤ 2 + 3( f − 2) − n4 = 3 f − n4 − 4.

Therefore, the total bit length of w is at most 2( f − 1) + (3 f −
n4 − 4) = 5 f − n4 − 6.

Now we summarize the above argument as follows.
Theorem 1 There exists an encoding of general rectangular

drawings with f (≥ 2) rectangles and n4 vertices of degree four in
at most 5 f − n4 − 6 bits.

4. Concluding Remarks

In this paper, a (5 f − n4 − 6)-bit representation of a general
rectangular drawing with f ≥ 2 is introduced. The length of a
code is at most 5 f − n4 − 6, which is the most compact encoding
ever known.
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Editor’s Recommendation
The authors improves the length of the code representing rect-

angular drawings, possibly containing vertices of degree four.
(Chairman of FIT2013 Ken-ichi Arakawa)
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