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Abstract: In this paper, we present a novel method to extract keyposes from motion-capture data streams. It adap-
tively extracts keyposes in response to the motion characteristics of a given data stream. We adopt an approach to detect
local minima in the temporal variation of motion speed. In the developed algorithm, the intensity of each local mini-
mum is first evaluated by using a set of signals; it is obtained by applying a set of low-pass filters to a one-dimensional
motion-speed data stream. The cut-off frequencies of the filters are distributed over a wide frequency range. By adding
up the speed-descent values of each local minimum over all the signals, we exhaustively obtain the information on its
intensity provided at all the time-scale levels covered by a given data stream. Then, the obtained intensity values are
categorized by a clustering algorithm; the local minima categorized as those of little significance are deleted and the
remaining ones are fixed as those giving keyposes. Experimental results showed that the present method provided re-
sults comparable to the best of those given by the methods previously proposed. This was achieved without readjusting
the values of parameters used in the algorithm. Readjustment was indispensable for the other methods to obtain good
results.
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1. Introduction

Nowadays, motion-capture (Mocap) data streams are widely
used for various applications such as creating computer anima-
tions of human-like characters. Nevertheless, they are often
marked by their unfavorable characteristics such as high dimen-
sionality, great quantity and the lack of structured information
on motion sequences. This makes it difficult to browse, edit and
reuse them. Several approaches to overcome this issue have been
proposed; a typical one is “summarizing” a Mocap data stream
in an organized structure, i.e., a series of keyposes symbolizing
motion sequences included in the data stream.

Here, we define a keypose as each of the representative poses in
a motion sequence. Using keyposes allows us, for example, to ex-
tract boundaries of unit gestures or highlight moments in a given
motion sequence, or to represent a motion sequence as a train
of still images. This definition is almost the same with that of
Refs. [1] or [2]. Although this is also similar to that of a keyframe,
there is a clear distinction between them; we do not necessarily
require keyposes to precisely reconstruct the original motion se-
quence by interpolating themselves. This condition is often re-
quired for extracting keyframes from a Mocap data stream [3].
Rather, we regard keyposes as the elements which concisely rep-
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resent the fundamental structure of a motion sequence, exclusive
of subtle motion fluctuations whose information is needed only
for the highly accurate reconstruction of the original motion se-
quence.

In the cases of browsing Mocap data streams in databases, for
example, it is desirable that keyposes in each data stream are au-
tomatically extracted. As for the cases of subjective tasks such
as editing Mocap data streams, on the other hand, users may se-
lect keyposes manually by themselves so as to satisfy the condi-
tions they set. However, automatically preparing the candidates
of keyposes in advance can help in reducing users’ effort even in
such cases. Therefore, it is reasonable to think that developing an
effective method to automatically extract keyposes from Mocap
data streams is an important subject.

Many researchers have proposed the methods to automatically
extract keyposes. The details of them will be mentioned in Sec-
tion 2. We focus on the issue found in common among almost all
the methods previously proposed. To utilize these methods, users
have to manually adjust the values of several parameters used in
keypose-extraction procedures. In most cases, the optimal values
of these parameters vary depending on the characteristics of the
Mocap data stream analyzed. The readjustment of the parame-
ters can thereby be needed at every Mocap data stream, or at least
at every motion category. Readjustment process is often tedious,
and sometimes requires the knowledge and experience to judge
whether the extracted keyposes are proper or not.

To resolve this issue, we propose a novel method which adap-
tively extracts keyposes in response to the characteristics of a
given Mocap data stream. We adopt an approach in which the
moments giving local minima in the temporal variation of motion
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speed are detected; strong correlation between the appearance of
the local minima of motion speed and that of keyposes has been
pointed out [4], [5]. However, not all the local minima necessarily
correspond to keyposes. Several local minima may be attributed
to small speed fluctuations in the middle of motion. Therefore,
we try to develop an algorithm to appropriately select the local
minima actually giving keyposes.

In the developed algorithm, a one-dimensional motion-speed
data stream is first obtained by using the dimensionality-
reduction method of Ref. [6]. Then, a set of low-pass filters is
applied to the data stream; the cut-off frequencies of the filters
are distributed over a wide frequency range. The “intensity” of
each motion-speed local minimum is evaluated by adding up its
speed-descent values over all the filtered signals. The informa-
tion provided at all the time-scale levels covered by a given data
stream is exhaustively extracted in this process. Finally, the ob-
tained intensity values are categorized by a clustering algorithm;
the local minima categorized as those of little significance are
deleted and the remaining ones are selected as those giving key-
poses.

Since the above categorization is performed by using only the
speed data of a given data stream, the obtained result inevitably
corresponds to its motion-speed characteristics. Consequently, it
becomes possible to extract keyposes in response to the charac-
teristics of a given data stream without manual readjustment.

To evaluate the developed method, we conducted an experi-
ment in which Mocap data streams selected from multiple mo-
tion categories were used. In the experiment, we compared the
developed method with the methods previously proposed. The
developed method provided all the motion categories with results
comparable to the best of those given by the other methods. This
was achieved without readjusting the values of parameters used in
the algorithm newly introduced; readjustment was indispensable
for the other methods to obtain good results.

The remainder of this paper is organized as follows. We first
review the related work in Section 2. We describe the keypose-
extraction algorithm in Section 3. We verify the effectiveness of
the developed method in Section 4. Conclusions are finally sum-
marized in Section 5.

2. Related Work

Various keypose-extraction approaches have been proposed up
to the present*1. We classify them into four categories: curve
simplification, clustering, matrix factorization and breakpoint de-
tection.

In curve-simplification algorithms, a Mocap data stream is
treated as a curve in a high dimensional space; the curve is simpli-
fied into a set of straight lines, and the endpoints of each line are
regarded as keyposes. Lim et al. [7] presented a typical recursive
procedure; a curve sandwiched between the endpoints of a line is
divided into two segments at the point most distant from the line.

*1 Several of the methods mentioned in this section were proposed as those
to extract keyframes. However, we regard them as methods which also
belong to the group of keypose-extraction approaches, because adjusting
the parameters used in them may provide the possibility of extracting
keyposes.

This procedure is repeated until the maximum distance of any
curve point from the line becomes smaller than the error margin
prepared. To implement this algorithm, users have to manually
set up an appropriate error-margin value.

Clustering-based approaches classify similar poses in a Mocap
data stream into a cluster, and select a representative pose in each
cluster as a keypose. For example, Liu et al. [8] selected the pose
appearing at the first frame of each cluster obtained by a sim-
ple clustering algorithm. As for clustering-based approaches, the
disadvantage that the temporal relations between poses are not
considered has been pointed out [3]. In addition, parameters such
as a threshold to judge whether a given pose belongs to existing
clusters have to be prepared by users.

Matrix-factorization approaches are applied to a Mocap data
stream represented as a matrix; e.g., each frame in a data stream
is represented as a vector and all the vectors are placed in the
rows of a matrix. Huang et al. [9] proposed a typical matrix-
factorization approach called Key Probe, in which the keypose-
extraction process is treated as a least-squares optimization prob-
lem. Although the algorithm used in Key Probe was well or-
ganized, an issue which cannot be ignored has been pointed
out [3], [10]; the computing speed of Key Probe is considerably
slow due to its quadratic time complexity. Furthermore, this ap-
proach also requires users to set up an appropriate error-margin
value.

In breakpoint-detection methods, breakpoints in the time se-
ries of some sort of quantity representing motion feature are re-
garded as moments giving keyposes. A typical example is the
detection of local minima of motion speed (already mentioned
in Section 1); Shiratori et al. [5] presented a trial to extract key-
poses from dance performance. On the other hand, So et al. [1]
adopted the mutual information measure as the quantity to detect
directional change in motion patterns, and Assa et al. [2] used the
curvature of a motion curve to detect significant points. Since the
quantity peculiar to body motion is used in breakpoint-detection
methods, it is easy to understand the correspondence of each com-
putation procedure to the characteristics of actual human motion.
However, manually setting up the values of parameters used in
keypose-extraction procedures is also needed in this type of ap-
proaches.

All the approaches mentioned above require users to manually
adjust the values of parameters used in keypose-extraction proce-
dures. Liu et al. [10] presented a method to overcome this issue;
the Simplex Hybrid Genetic Algorithm provides the optimal set
of keyposes without the readjustment of parameters.

We adopt the style of detecting local minima of motion speed.
This is attributed to the fact that an effective method to reduce
the dimensionality of motion-speed data was developed [6]; it
has thereby become easy to reorganize procedures to detect lo-
cal minima of motion speed. As mentioned in Section 1, each
local minimum is rated by its intensity value in the proposed al-
gorithm. This allows users to easily modify the obtained results
as the need arises; the set of intensity values can be used as a
reference to select the candidates to be added or deleted. Such a
property was not provided in Ref. [10].

As mentioned in Section 1, we compared the method devel-
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oped in this paper with those previously proposed. The latter
ones were selected from all the categories of keypose-extraction
approaches except the matrix-factorization category, because the
matrix-factorization approach takes too much computation time
due to its quadratic time complexity. The details of the compari-
son will be described in Section 4.

3. The Keypose-Extraction Algorithm

3.1 The One-dimensional Motion-speed Data Stream
We derive the keypose-extraction algorithm in this section.

A Mocap data stream is given as a high dimensional signal as
mentioned in Section 1. This makes it complicated and time
consuming to directly analyze raw Mocap data streams. There-
fore, it is desirable to reduce the dimensionality of Mocap data
streams prior to analyzing them. As for the temporal variation of
motion speed, an effective dimensionality-reduction method was
presented in Ref. [6] as already mentioned; a one-dimensional
motion-speed data stream is provided by a simple calculation. We
adopt this method as follows.

Consider the positions of 16 principal joints (including end ef-
fectors): shoulders, elbows, wrists, fingers, knees, ankles, toes,
neck and head. In this case, a Mocap data stream is described as
a time series of 3J-dimensional vectors (J = 16):

P = [ p(1) p(2) · · · p(N) ]T (1)

p(n) = [ p1(n) p2(n) · · · p3J(n) ]T

where p j(n) is the jth coordinate of joint positions at the nth
frame and N is the number of frames included in the Mocap
data stream analyzed, respectively. Coordinates of joint posi-
tions are described in the coordinate system fixed to the pelvis.
Bevilacqua et al. [4] pointed out that low-pass filtering position
data effectively eliminates the influence of jitter on motion-speed
data. Hence, we apply a low-pass filter to P:

PF = FLP[P, fc] = [ pF(1) pF(2) · · · pF(N) ]T (2)

pF(n) = [ pF,1(n) pF,2(n) · · · pF,3J(n) ]T

where PF is the filtered data stream and FLP[P, fc] means the ap-
plication of a low-pass filter with the cut-off frequency fc to P.
By using PF, we obtain the one-dimensional motion-speed data
stream V as follows [6]:

V = [ v(1) v(2) · · · v(N) ]T (3)

v(n) =

√∑3J
j=1{pF, j(n + 1) − pF, j(n)}2

Δt
where Δt is the sampling time. We use this data stream to extract
keyposes; the detail will be shown in the next subsection.

In this paper, we adopt the Hodrick-Prescott filter (HP fil-
ter) [11], [12] as a low-pass filter; the growth component [11] of
an inputted time series can be regarded as a low-pass filtered out-
put, and the 50-percent-gain frequency [12] can be used as a cut-
off frequency. The computation of the HP filter is fast and its
computational complexity does not depend on the value of the
cut-off frequency.

3.2 The Keypose-extraction Algorithm
As mentioned in Section 1, we assume that the frames giving

keyposes can be extracted from those giving local minima of mo-
tion speed; we have to appropriately select the frames actually
giving keyposes from the above candidate local minima. The cri-
terion to judge whether a candidate gives a keypose is thought
to depend on the motion-speed characteristics of a given Mocap
data stream: e.g., the time scale of speed variation or the speed
range covered by a given data stream. Here, we present a method
to adaptively select appropriate candidates in response to the vari-
ation of such motion-speed characteristics.

It seems to be reasonable to think that there is a high possibil-
ity a local minimum with a large speed descent gives a keypose.
To quantitatively evaluate each candidate, therefore, we define
the intensity of a local minimum based on the degree of speed
descent.

An example of speed descent around a motion-speed local min-
imum is shown in Fig. 1. In general, the speed descent at a lo-
cal minimum can be estimated by obtaining the speed difference
from the average speed around it. As for the case of the local
minimum M in Fig. 1, its depression is slightly deeper than those
of the adjacent ones. To appropriately evaluate this tendency, we
must consider the speed descent from the average speed obtained
at a relatively short time-scale level (blue arrow line in Fig. 1). On
the other hand, M is located at a trough of a simplified motion-
speed curve (red curve in Fig. 1) which represents the speed char-
acteristics in the long-time-scale range. This means that M plays
an important role at a long time-scale level; therefore, we must
also consider the speed descent from the long-time-scale average
(red arrow line in Fig. 1). These facts suggest that the speed de-
scent at each local minimum should be treated as the composition
of various time-scale components.

To take the above property into account, we use a set of low-
pass filters; a motion-speed data stream is simplified in accor-
dance with the time-scale level corresponding to the cut-off fre-
quency of each low-pass filter. The process of applying the filters
to the motion-speed data stream V is shown in Fig. 2. Only the
local minima having a certain degree of speed descent at a given
time-scale level remain in the simplified data stream FLP[V, f ]
( f = fmin, · · · , fi, · · · , f j, · · · , fmax) (left side of Fig. 2). To evalu-
ate the intensity of each candidate with respect to the entire time-
scale range, we add up its speed-descent values over all the time-
scale levels, namely over [ fmin, fmax] (right side of Fig. 2). At
each time-scale level, the speed-descent value is given as follows:

Fig. 1 Motion-speed descent around a local minimum.
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Fig. 2 Evaluation of the intensity of keypose candidates.

Fig. 3 Correspondence of local minima to keypose candidates.

u( f ) = |FLP[V, f ] − FLP[V, f /2]| (4)

where the average speed at each time-scale level is given as
FLP[V, f /2].

The minimum-width time-scale range needed in the above
analysis, i.e., the range outside which the u( f ) values decrease
to almost zero, can change at every data stream, depending on
the variation of motion-speed characteristics. On the other hand,
the range outside the above minimum range has little influence
on intensity values. By making [ fmin, fmax] as wide as possible,
therefore, we can guarantee the robustness against the variation of
motion-speed characteristics without readjusting the time-scale
range.

Since time resolution becomes poor in the long-time-scale
range, each candidate can shift its position on the time axis as
shown in the right side of Fig. 2. The amount of shift often be-
comes unignorable. Consequently, the correspondence between
the original candidates and the local minima extracted at a given
time-scale level may become ambiguous. To resolve this issue,
we must provide a procedure to properly fix the correspondence
of the local minima to the original candidates, guaranteeing con-
sistency throughout the entire time-scale range.

The procedure adopted is shown in Fig. 3. First, the corre-
spondence of the local minima extracted at the shortest time-scale
level (i.e., f = fmax, with the highest time resolution) to the orig-

Fig. 4 Categorization of keypose candidates by their intensity values.

inal candidates is fixed by dynamic programming (DP) [13]; the
sum of time difference between a local minimum and the corre-
sponding candidate (dmax

i ’s in Fig. 3) is used as the cost function.
Then, DP is also applied to all the combinations of adjacent time-
scale levels (e.g., the combination of fi−1 and fi in Fig. 3 where
i = 2, 3, · · · , imax and f1 and fimax correspond to fmax and fmin, re-
spectively). As a result, the correspondence of all the local min-
ima to the candidates is fixed with consistency throughout the
entire time-scale range. This allows us to appropriately estimate
the intensity of each candidate. It is noted that the intensity of
the candidates having no correspondence with the local minima
extracted at fmax becomes zero (e.g., C3 in Fig. 3).

After calculating the intensity of all the candidates, we cat-
egorize them by their intensity values. In this case, a cluster-
ing procedure in which the number of clusters is automatically
determined must be used. We adopt Ward’s method [14] with
Mojena’s Stopping Rule One [15] as shown in Fig. 4. In Ward’s
method, candidates are grouped using the squared Euclidean dis-
tance (Ui−U j)2 where Ui and U j are the intensity values of the ith
and jth candidates. Ward’s method is known as a method giving
good approximations of the optimal grouping by minimizing the
total within-cluster variance; this is easily realized by a simple
Lance-Williams algorithm when the squared Euclidean distance
is used [14]. It is also known that the proper number of clus-
ters can be obtained via simple calculations by combining Ward’s
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method with Mojena’s Stopping Rule One*2.
The candidates categorized into the cluster including a zero-

intensity candidate are regarded as those of little significance and
deleted; in the case of Fig. 4, C3 and C4, which belong to Clus-
ter 0 including the zero-intensity candidate C3, are deleted. The
remaining candidates are finally fixed as the frames giving key-
poses.

To sum up, the algorithm to implement the above procedures
becomes as follows:
( 1 ) The following parameters are set: the time-scale range

[ fmin, fmax], the ratio between the cut-off frequencies of ad-
jacent time-scale levels rf (0 < rf < 1) and the constant k

used in Mojena’s Stopping Rule One [15].
( 2 ) Keypose candidates giving local minima in V are extracted.
( 3 ) At each time scale f , local minima in FLP[V, f ] are extracted

and the correspondence of them to the original candidates
are fixed. The f value at the ith time scale (1 ≤ i ≤ imax) is
given as f = fmaxr(i−1)

f (regular interval on the logarithmic
axis), and imax is given as the maximum integer satisfying
fmaxr(imax−1)

f ≥ fmin.
( 4 ) The intensity of each candidate is calculated.
( 5 ) All the candidates are categorized and the frames giving key-

poses are fixed.
As already mentioned, it is better to make [ fmin, fmax] as wide

as possible. However, excessively widening the frequency range
has to be avoided to prevent the excessive increase of computa-
tion time. According to the analysis results in Ref. [17], the upper
limit of the tempo of human motion is around 250 to 300 BPM
(i.e., over 4 Hz). Therefore, we set fmax = 8.0 Hz, considering a
twofold margin. As for the lower limit, we adopt fmin = 0.2 Hz;
this was determined under the condition that the u( f ) values de-
crease to almost zero for most Mocap data streams. We set
rf = 0.95; this is obtained as the lowest value which does not
cause the breakdown of consistency throughout the entire time-
scale range. The constant of Mojena’s Stopping Rule One was
set as k = 2.75 which is the value included in the range recom-
mended in Ref. [15]. The cut-off frequency of the low-pass filter
used in Eq. (2) was set as fc = 10.0 Hz; this was determined by
considering the noise frequency in Mocap data streams.

4. Experimental Results

4.1 Motion-capture Data Streams Used in the Experiment
We report the experimental results in this section. The Mo-

cap data streams used in the experiment are shown in Table 1;
20 data streams selected from five motion categories were used.
We selected these categories based on whether criteria to deter-
mine the ground-truth keyposes can easily be defined or not. The
criteria actually used are shown in Table 2, and the numbers of
the ground-truth keyposes chosen are shown in Table 1. In ad-
dition, we also took the diversity of motion characteristics into
account. The data streams belonging to Walk, Punch Sequence
and Charleston have the motion sequences consisting of the repe-

*2 Recently, several new clustering methods automatically giving the num-
ber of clusters have been proposed (e.g., Ref. [16]). It may be possible
to replace the clustering procedure adopted in this paper by one of these
methods as the need arises.

Table 1 Motion-capture data streams used in the experiment.

Motion category Index
Length
[sec]

Frame Number Number
rate of of
[fps] frames keyposes

Walk

07 01 2.63 120 316 4
07 02 2.74 120 329 5
07 03 3.46 120 415 5
07 06 3.48 120 417 6

Punch Sequence

144 13 16.22 120 1,946 44
144 14 17.13 120 2,055 44
144 20 18.92 120 2,270 58
144 21 16.08 120 1,930 50

Charleston

93 03 3.68 120 442 8
93 04 4.22 120 506 10
93 05 4.55 120 546 12
93 08 4.64 120 557 12

Nishimonai
Bon Odori, Ondo
(1st verse)
(Japanese folkdance)

#1 26.07 30 782 14
#2 24.37 30 731 14
#3 23.77 30 713 14
#4 23.10 30 693 14

Tsugaru Jinku
(Japanese folkdance)

#1 6.73 30 202 7
#2 6.53 30 196 7
#3 6.47 30 194 7
#4 6.60 30 198 7

Walk, Punch Sequence and Charleston:
Downloaded from Carnegie-Mellon Mocap Database [18].

Nishimonai Bon Odori and Tsugaru Jinku:
Acquired by the authors (measured by MotionStar WirelessTM (Ascension
Technology Corporation) with LIBERTYTM (Polhemus) ×2).

Table 2 Criteria to determine the ground-truth keyposes.

Motion
category

Ground-truth keypose

Walk Moment of heel strike (boudary of gait cycle [19]).
Punch
Sequence

Arm-extension pose and drawing-back pose.

Charleston
Foot-Up pose, Foot-Forward pose (including Crossed
pose), Foot-Backward pose and Kick [20].

Nishimonai
Bon Odori

Quoted from the illustration of dance choreography
in “Furusato no Min’yō I” [21].

Tsugaru
Jinku

Quoted from the illustration of dance choreography
in “Furusato no Min’yō I” [21].

tition of simple gestures [19], [20], whereas those of Nishimonai

Bon Odori and Tsugaru Jinku show the choreography including
a variety of motion patterns [21]. This tendency can be confirmed
by obtaining the motion-speed data streams (given by Eq. (3)*3)
shown in Fig. 5. The diversity of both the time scale of speed
variation and speed range can also be recognized.

4.2 Keypose-extraction Methods Used for Comparison
We compared the present keypose-extraction method with the

methods shown in Table 3. They were selected from the three
categories of keypose-extraction approaches as mentioned in Sec-
tion 2; both the CM-EE Speed Analysis method [5]*4 and the
Mutual-Information-Measure Analysis method [1] belong to the
breakpoint-detection category. As for the Clustering-Based Ap-
proach, Liu et al. [8] selected the frame appearing first in each
cluster as that giving a keypose; however, we chose the frame
closest to the centroid of each cluster since slightly better results
were obtained. To use these methods, users have to determine the

*3 To eliminate the influence of difference in body constitution among data
streams, we normalized the joint-coordinate values used in Eq. (3) by the
height of the body.

*4 In the original CM-EE Speed Analysis method, extracted keyposes are
refined by using the sound data of musical accompaniment. However,
we omitted this procedure to compare with the other methods in which
no sound data is used.
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Fig. 5 Examples of motion-speed data streams.

Table 3 Methods used for comparison.

Curve-Simplification Algorithm [7]
Evaluation index:
· Distance of Mocap curve point from simplified lines.

Adjustable parameter:
· Error margin (de).

Clustering-Based Approach [8]
Procedure:
· Selecting representative frames from similar-pose clusters.

Adjustable parameter:
· Threshold of inter-cluster distance (dc).

CM-EE Speed Analysis [5]
Evaluation index:
· Local minima of Center-of-Mass- (CM), hands- and feet- (i.e.,
End Effectors: EE) speeds.

Adjustable Parameters:
·Minimum- and maximum-speeds of CM (vCMmin, vCMmax).
·Minimum- and maximum-speeds of hands (vHmin, vHmax).
·Minimum motion distance of feet (dF).
· Cut-off frequency of the noise-reduction Gaussian filter ( fc).
· Shortest interval between local minima (tmin).

Mutual-Information-Measure Analysis [1]
Evaluation Index:
· Local minima of mutual infomation measure for directional
change in motion patterns.

Adjustable parameters:
·Maximum value of local minima (Imax).
· Shortest interval between local minima (tmin) [22].

values of the adjustable parameters shown in Table 3. We deter-
mined these values at every motion category through the prelim-
inary trial-and-error adjustment process. The obtained values are
shown in Table 4. It is noted that the adjusted values considerably
vary according to motion categories in all the methods.

Table 4 Adjusted parameter values.

Method Parameter
Motion category

Walk
Punch
Sequence Charleston

Nishimonai
Bon Odori

Tsugaru
Jinku

Curve
Simplification

de 2.8 2.0 2.3 3.1 3.4

Clustering dc 1.0 1.2 0.9 1.8 2.8

CM-EE
Speed

vCMmin [sec−1 ] 2.0 0.5 0.5 0.3 0.5
vCMmax [sec−1 ] 0.0 0.0 0.05 0.05 0.0
vHmin [sec−1 ] 0.5 1.3 1.5 0.4 1.6
vHmax [sec−1 ] 0.0 0.0 0.0 0.2 0.0

dF 0.05 0.1 0.1 0.1 0.1
fc [Hz] 10 10 10 6 5

tmin [sec] 0.2 0.1 0.08 0.3 0.2
Mutual
Information
Measure

Imax 0.885 0.93 0.89 0.82 0.86
tmin [sec] 0.1 0.1 0.1 0.3 0.3

Fig. 6 Examples of keypose-extraction process.

4.3 Keypose-extraction Precess
Prior to presenting the extracted keyposes, we show some ex-

amples of the keypose-extraction process in the present method.
The cases of Walk (07 01) and Tsugaru Jinku (#1) are shown in
(a) and (b) of Fig. 6, respectively. First, at each time-scale level, a
filtered motion-speed curve was obtained and the values of u( f ),
given by Eq. (4), of each candidate was calculated. For example,
the u( f ) value on the dark blue curve was given as the speed de-
scent from the light blue curve. Each of the red curves represents
the u( f ) values and shift of each candidate throughout the en-
tire time-scale range. As for the candidates located at extremely
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shallow depressions of the original motion-speed data stream, or
those each of which is extremely close to another candidate, the
red curves showed little extension. On the other hand, all the u( f )
values decreased to almost zero at the longest time-scale level
(i.e., at 0.2 Hz) in both of (a) and (b). These facts suggest that the
characteristics of each candidate were well extracted under the
selected time-scale-range condition.

Then, the intensity of each candidate was obtained by adding
up its u( f ) values, and all the candidates were categorized by their
intensity values. In both of (a) and (b) in Fig. 6, candidates were
categorized into two clusters. The validity of categorization was
confirmed by ANOVA [23]. The null hypothesis was rejected at
the 1% significance level in both cases. It was confirmed that
the null hypothesis was rejected in the analyses of all the data
streams in Table 1. Finally, the candidates categorized into Clus-
ter 0 including zero-intensity candidates were deleted and key-
pose frames were fixed; four keyposes were extracted from Walk
(07 01) and eight from Tsugaru Jinku (#1). The extracted key-
poses will be presented in the next subsection.

4.4 Results of Keypose Extraction
Examples of extracted keyposes are shown in Fig. 7 and Fig. 8.

Fig. 7 Keypose extraction from Walk (07 01).

In Fig. 7 which shows the case of Walk (07 01), all the methods
except the Clustering-Based Approach show the results giving
relatively good agreement with the ground-truth keyposes. As
for the Clustering-Based Approach, decreasing the threshold of
inter-cluster distance was needed to obtain keyposes close to the
ground-truth ones; this caused the excessive increase of the num-
ber of clusters, consequently giving rise to performance degrada-
tion. In Fig. 8 which shows the case of Tsugaru Jinku (#1), on the
other hand, the Mutual-Information-Measure Analysis method
shows the best agreement with the ground-truth keyposes (The
First Beat which is not shown in Fig. 8 also well agreed). The
present method also gave a good result; only a single error key-
pose caused disagreement with the ground-truth one. The re-
maining three methods provided worse results; multiple errors
occurred in all the cases.

To quantitatively evaluate the results obtained from all the
data streams in Table 1, we introduced the evaluation index
Fmeasure [24]. In the calculation of Fmeasure for each data stream,
only the keyposes extracted from the part of the motion sequences
directly related to its motion category were used: e.g., consider
only the dance-performance part of Charleston, exclusive of the
periods before and after the performance, etc. The parts to which

Fig. 8 Keypose extraction from Tsugaru Jinku (#1).
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Fig. 9 Evaluation of keypose-extraction results.

the criteria shown in Table 2 are inapplicable were thereby elim-
inated. We defined a correct keypose as a pose whose time dif-
ference from the ground-truth one is shorter than 1/4 of keypose
interval.

The resulting data are shown in Fig. 9. The present method
showed high Fmeasure values in all the motion categories. The
Mutual-Information-Measure Analysis method also gave high
values as a whole; however, readjusting the parameters at each
category was indispensable to achieve this level. On the other
hand, both the Curve-Simplification Algorithm and the CM-
EE Speed Analysis method provided high values only for spe-
cific categories. As for the Clustering-Based Approach, no high
Fmeasure value was shown; this is attributed to the fact that the
excessive increase of the number of clusters could not have been
avoided in all the categories.

4.5 Discussion
As shown in Fig. 9, the present method gave considerably good

results. These were given through the keypose-extraction pro-
cess shown in Fig. 6. This means that the candidates were almost
properly rated by the intensity values given by the procedures pre-
sented in Section 3. When a user wants to modify an obtained re-
sult, therefore, the set of intensity values can be used as a reliable

reference in the modification process as mentioned in Section 2.
As for the methods other than the present method, the values

of the adjustable parameters shown in Table 3 were prearranged
to give good results to every motion category. As already men-
tioned, the assigned values were different from category to cate-
gory as shown in Table 4. On the other hand, the parameter values
used in the present method, described in Section 3.2, were fixed
over all the categories. Nevertheless, the present method gave re-
sults comparable to the best of those given by the other methods
over all the categories. This suggests the effectiveness of the pro-
cedures introduced to adaptively deal with the variation of motion
characteristics.

It should also be pointed out, however, that the present method
has a limitation; the variation of postures in motion sequences is
not considered. The appearance of keyposes sometimes depends
on directional change in motion patterns [1]. To detect the mo-
ments of directional change, grasping posture variation is indis-
pensable. An example of error caused by this limitation is shown
in Fig. 8; the present method extracted an error keypose at the
moment between the Sixth and Seventh Beats. Although a rela-
tively large speed descent is observed at this moment, no signifi-
cant directional change occurs; the Mutual-Information-Measure
Analysis method which detects directional change extracted no
keypose at this moment. Additional work is needed to address
this issue.

5. Conclusions

The main contribution of this paper is the introduction of an
adaptive algorithm to the process of extracting keyposes from
Mocap data streams; it adaptively extracts keyposes in response
to the motion-speed characteristics of a given Mocap data stream.
The experimental results showed that the readjustment of the pa-
rameters used in the algorithm can be omitted. It is hoped that the
present method will help in browsing, editing or reusing Mocap
data streams. However, the issue that the posture variation in mo-
tion sequences is not considered still remains unresolved. This
will be the subject of future work.
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